
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 35, 323-339 (2019)
DOI: 10.6688/JISE.201903_35(2).0005

323

Real-time Auditing of the Runtime Environment
for Cloud Computing Platforms

GWAN-HWAN HWANG, KUN-YIH HUANG, BO-SIANG LIAO,

YI-LING YUAN AND HUNG-FU CHEN
Department of Computer Science and Information Engineering

National Taiwan Normal University
Taipei, 106 Taiwan

E-mail: ghhwang@csie.ntnu.edu.tw

In this paper we show how to perform efficient auditing of the runtime environment

for virtual machines in public cloud systems or standalone computer systems. The goal is
to perform real-time integrity checking of executable codes and library files that will be
dynamically linked before an application is launched. Auditing these binary files accord-
ing to their hash values stored in a local machine is deficient because malware or viruses
infecting those files can simultaneously alter their corresponding hash values. We pro-
pose an effective scheme to perform real-time auditing of such binary files. First, a status
code that represents the current status of all executable codes and library files in the
runtime environment and comprises only 32 bytes is downloaded from a trusted remote
computer. Second, a full binary hash tree is used to perform efficient auditing of files that
will be executed and linked by an application according to the downloaded status code.
Finally, this application can then be launched safely. We used a real operating system to
evaluate the performance of the proposed scheme, and the obtained experimental results
demonstrated its feasibility.

Keywords: cloud auditing, runtime-environment auditing, malware, virus, proof-of-viol-
ation

1. INTRODUCTION

The computing platform on which programs run includes a certain hardware archi-
tecture, an operating system, and runtime libraries. The auditing of the runtime environ-
ment should include integrity checking of software components in the computing plat-
form. Runtime libraries typically comprise a huge number of files; for example, the li-
braries of Mac OS X El Capitan 10.11.5 when popular application software is installed
comprise 149,487 directories and 717,976 files. The execution of applications always
involves dynamically linking to many library files.

Cloud services are becoming a popular distributed technology because they allow
users to rent well-specified computing, network, and storage resources without needing
to spend massive amounts on integrating, maintaining, or managing the IT infrastructure.
There are three main delivery models for cloud services: infrastructure as a service (IaaS),
platform as a service (PaaS), and software as a service. IaaS is the most basic cloud-ser-
vice model, in which the service provider offers virtual machines to users. Cloud users
deploy their applications by installing operating-system images and their application

Received September 15, 2017; revised November 24, 2017; accepted January 15, 2018.
Communicated by Chang-Shing Lee.

GWAN-HWAN HWANG, KUN-YIH HUANG, BO-SIANG LIAO, YI-LING YUAN AND HUNG-FU CHEN

324

software on the offered virtual machines. PaaS provides a platform allowing customers
to develop, run, and manage applications without the complexity of building and main-
taining the infrastructure typically associated with developing and launching application
software.

In IaaS and PaaS, the computing platforms of users are executed in some kind of
virtual machines [1, 2]. The images of these virtual machines are maintained and con-
trolled by the service providers, and users have no knowledge about this is implemented.
Images of virtual machines may be damaged or destroyed by internal errors or malicious
security attacks. Malware or viruses could infect or be installed in the virtual machines
without being detected by users because users do not have control of the images of their
virtual machines. Some service providers support the live migration of virtual machines,
and users cannot determine or are unlikely to be notified that their virtual machines have
been migrated to other physical machines. Users of standalone computers can employ
certain methods1 to defend against the infection of malware or viruses because they have
full control of their computers. Another situation is that when the images of virtual ma-
chines are destroyed, the service provider may restore these virtual machines using a
backup of an early version of the images, and then deny that the user’s latest version of
the image has been lost. This situation can also allow a so-called roll-back attack [3] or
replay attack [4]. If users cannot detect this kind of roll-back attack immediately, the
presence of an outdated execution environment of their virtual machine can cause many
problems. Antivirus tools do not work in this situation because the problem is not due to
the virtual machine being infected with viruses. In addition, no antivirus software is able
to uncover all computer viruses, especially new ones.

In this paper we present how to perform efficient auditing of the runtime environ-
ment of virtual machines in public cloud systems or standalone computers. The goal is to
perform real-time integrity checking of executable codes of an application and dynami-
cally linked library files2 in a computing platform when the application is launched. An
intuitive solution called integrity checking is used to keep all the hash values of executa-
ble codes and library files in the local computing platform so that the integrity of these
files can be checked whenever the application is launched [5]. However, this scheme is
deficient because if the computing platform is infected by a virus or the image of the
virtual machine is controlled by a hacker, malware can be installed in some of the exe-
cutable codes and the library files and the corresponding hash values of these infected
files can be tampered with simultaneously since they are stored in the same computer. In
addition, it is obvious that this scheme cannot resist a roll-back attack because recovering
the virtual machine using a previous image will restore outdated executable codes and
library files with their corresponding hash values. Besides, it would be quite inefficient
to store the hash values of all the executable codes and library files in another remote
computer because libraries comprise huge numbers of files.

We present a novel scheme to perform efficient real-time auditing of the runtime
environment. Although the hash values of library files are stored in the local machine, a

1 For example, if the computing platform is executing a Web server, the user can simply forbid any unknown

software tool from executing, and can use a firewall to restrict the communication channels used by the com-
puter.

2 For example, the execution of the FaceTime application in Mac OS X El Capitan 10.11.5 requires 64 dynam-
ically linked library files in /System/Library/ and /usr/lib/ to be loaded.

REAL-TIME AUDITING OF THE RUNTIME ENVIRONMENT FOR CLOUD PLATFORMS 325

status code stored in a trusted remote computer is used to audit if executable codes and
library files have been tampered with or modified. The hash values are stored in the local
machine as a full binary hash tree (FBHTree). The status code is the root hash of the
FBHTree, and it comprises only 32 bytes. Whenever application software is going to be
launched, the latest status code is first downloaded. The hash values of the executable
codes and library files that are going to be executed and linked are then inspected according
to the status code. Finally, these inspected hash values are used to check if the library
files have been modified. We employed a real operating system to evaluate the perfor-
mance of the proposed scheme, and the experimental results demonstrate its feasibility.

This paper is organized as follows: Section 2 introduces the system architecture,
two intuitive solutions, and the proposed scheme, Section 3 presents the implementation
details and experimental results, related work is described in Section 4, and conclusions
are drawn in Section 5.

2. SYSTEM ARCHITECTURE

In this section we first present the general system architecture of the proposed
scheme. To support real-time auditing, a hash values archive (HVA) is installed in the
local machine to store all hash values of executable codes and library files (Fig. 1). An
agent is executed to perform auditing whenever application software is going to be
launched. We assume that the loading, linking, and execution of the application software
are performed and controlled by the agent, and that the agent cannot be hacked3. The
status code is a very small4 and so allows the efficient and secure verification of the
HVA contents.

Local machine

Library files

Hash values
archive (HVA)

S
Status
code

Agent

Executable codes
of applications

Trusted
remote

machine

Fig. 1. The system architecture.

Launching application software in the local machine involves the following consec-

utive steps: (1) the agent downloads a status code S from a trusted remote machine; (2)
the agent calculates a status code S′ from the HVA; (3) the agent compares S and S′5 to
verify if the hash values in the HVA are valid; (4) the corresponding executable codes of

3 Some schemes can prevent the agent from being hacked (e.g., [6]). The executable code of the agent can be

stored in another machine. When the user starts operating the local machine, he/she manually downloads the
executable code of the agent but then can execute the agent only after entering a password. So even if a hack-
er controls the image of the virtual machine of the local machine, he/she cannot restart the agent to load, link,
and execute the application software. The details are beyond the scope of this paper.

4 It comprises 32 bytes if Secure Hash Algorithm (SHA)-256 is used as the hash function.
5 S and S′ should be equal.

GWAN-HWAN HWANG, KUN-YIH HUANG, BO-SIANG LIAO, YI-LING YUAN AND HUNG-FU CHEN

326

the application software and library files that need to be dynamically linked are exam-
ined according to the hash values in the HVA; and (5) if the verification passes, the agent
loads, links, and executes the application software. The key to maximizing the efficiency
of the system is verifying the HVA according to the downloaded status code, since the
HVA stores a huge number of hash values. Two intuitive solutions for real-time auditing
of the HVA are presented in Sections 2.1 and 2.2, and the proposed FBHTree scheme is
presented in Section 2.3.

2.1 Intuitive Solution One: Storing the Hash Values in a Key – Value Pair

The first intuitive solution is to store the pathname and hash value of the corre-
sponding executable code or library file as a key-value pair (Pi, Hi) in the HVA, where Pi
and Hi are the pathname and hash value, respectively, of the ith file. If there is a total of
N executable codes and library files, the status code is the hash value of the concatena-
tion of the hash values of all key-value pairs in the HVA; that is, S = hash(hash(P1|H1)|
hash(P2|H2)| … |hash(PN|HN))6. This intuitive solution is very inefficient because all of
the hash values of the pathname and file hash pairs have to be concatenated in order to
verify if pairs in the HVA are correct. As we have already mentioned, the local machine
contains a huge number of executable codes and library files. It is time-consuming to
calculate S′ according to the HVA, and so we present an improved scheme in section 2.2.

2.2 Intuitive Solution Two: Storing the Hash Values in an m-ary Hash Tree

The second intuitive solution is to represent the HVA in an m-ary hash tree (also
called a Merkle tree). An m-ary tree is a rooted tree in which each node has no more than
m children. A hash tree is a tree of hashes in which the leaves are hash values of files and
the top of the tree is occupied by the root hash (also called the top hash or master hash)
[7]. An example of a file directory is given in Fig. 2 and Fig. 3 illustrate its correspond-
ing hash tree. Each file in a directory is associated with its hash value. We denote h(f) as
the calculated hash value of file or directory f. The hash value of a directory is the hash-
ing of the concatenation of all the hash values of files and directories in it, such as h(d3)
= hash(h(f2) | h(d6) | h(f3)); note that h(f2) = hash(f2). Invocating the hash function may
take a while because f2 could be a large file.

: Directory

: File

d1

d2

d6

d3 d4

d5

f51 f52 f5n
…f53

f1 f2 f3 f4

f61 f62 f6m
…f63

Fig. 2. An example of a file directory.

6 A cryptographic hash function such as SHA-1, Whirlpool, Tiger, or SHA-256 is used for the hashing, and is de-

noted as hash (filename). This is actually an invocation of the hash function, and “|”represents concatenation.

REAL-TIME AUDITING OF THE RUNTIME ENVIRONMENT FOR CLOUD PLATFORMS 327

h(d1)

h(d2) h(d3) h(d4)

h(d5)

h(f51) h(f52) h(f53)
…

h(f5n)

h(f2) h(d6) h(f3)h(f1) h(f4)

h(f61) h(f62) h(f63)
…

h(f6m)
Fig. 3. The hash tree corresponding to the file directory in Fig. 2.

The root hash is the hash value of the root directory; that is, h(d1) = hash(h(d2) |
h(d3) | h(d4)). For an m-ary tree, “m” is actually the maximum number of files and direc-
tories in a single directory.

The root hash is used as the status code. The advantage of using an m-ary hash tree
is only part of the hash tree needs to be retrieved to calculate the root hash. A partial
hash tree is part of the complete hash tree that omits the nodes under some of the directo-
ries [8]. For example, the partial hash tree shown in Fig. 4 (a) omits the nodes under di-
rectories d2 and d3. If the valid root hash is known, we only need to perform the follow-
ing hash calculations to verify if the hash value of f4 is valid in the HVA: (1) retrieve
h(d2), h(d3), and h(f4), and then (2) compute S′ = hash(h(d2), h(d3), hash(h(f4)). If down-
loaded status code S equals S′, the hash value of file f4 [i.e., h(f4)] must be valid. Com-
pared with the intuitive solution presented in Section 2.1, this method only requires a
subset of the hash values in the HVA to be retrieved in order to validate if the hash value
of a file is valid according to a status code. However, since directories may contain many
files, it could be necessary to retrieve many hash values of files and concatenate them
when performing the audit. For example, verifying whether the hash value of file f52 is
valid requires the retrieval of h(f1), h(f51), h(f52), …, h(f5n), h(d3), and h(f4), and then
performing hash (hash(h(f1), hash(h(f51) | h(f52) |…| h(f5n))), h(d3), h(d4)) to obtain the
root hash. Retrieving these hash values has a high overhead associated with traversing
many nodes in an m-ary hash tree, which motivates us to develop a more efficient
scheme.

h(d1)

h(d2) h(d3) h(d4)

h(f4)

h(d1)

h(d2) h(d3) h(d4)

h(d5)

h(f51) h(f52) h(f53)… h(f5n)

h(f1)

(a) (b)

Fig. 4. (a)-(b) Two partial hash trees of the hash tree shown in Fig. 2.

2.2 Proposed Scheme: Storing the Hash Values in an FBHTree

We propose storing the hash values in an FBHTree that is not only a full binary tree
but also a hash tree. The hash value of a file is stored in one of the leaf nodes in the

GWAN-HWAN HWANG, KUN-YIH HUANG, BO-SIANG LIAO, YI-LING YUAN AND HUNG-FU CHEN

328

FBHTree. It is obvious that the structure of an FBHTree is impossible to match that of a
file system in which a single directory always has multiple files and directories. We de-
fine an index function to compute the location of the hash value of a file in the
FBHTree according to the pathname of the file; for example, if (/d1/d2/f1) = 3, then the
hash value of file f1 is stored in the leaf node of the FBHTree with an ID of 3. The core
idea of the proposed scheme is that a slice of an FBHTree is sufficient for deriving its
root hash. In the following, we first define the FBHTree and its slice, and then show how
to derive the root hash from a slice.

Internal Node

Leaf Node

Root Node

Tree Height=4

Leaf node ID0 1 2 3 4 5 6 7

x

Fig. 5. An FBHTree that is four nodes high.

ID 96 97
Fig. 6. A slice of an FBHTree that is nine nodes high.

The hash value of a file is stored in one of the leaf nodes in the FBHTree according
to index function . Fig. 5 shows an FBHTree that is four nodes high and has eight leaf
nodes. Since it must be a full binary tree, it has 2N–1 leaf nodes and is N nodes high. In-
dex function returns the ID of a leaf node, and we propose the following function:

(pathname) = SHA-2567 (pathname) mod 2N–1.

That is, returns 0 to 2N–1–1 if the FBHTree is N nodes high. In Section 3 we show

that this index function can distribute hash values into leaf nodes of an FBHTree quite
evenly. It is obvious that hash values of different files may be stored in the same leaf
node due to collision of the function. In such cases multiple pairs of hash values of
pathnames and binary values of files are stored in the same leaf node. For convenience,
we denote these as PB pairs8. For example, if (/home/doc/t1/f1.txt) = (/home/public/

7 The SHA-256 algorithm generates an almost-unique, fixed-size 256-bit (32-byte) hash.
8 A PB pair is 64 bytes in size because the hash value derived from SHA-256 is 32 bytes.

REAL-TIME AUDITING OF THE RUNTIME ENVIRONMENT FOR CLOUD PLATFORMS 329

img/f2.jpg) = 5, then the two PB pairs [hash(/home/doc/t1/f1.txt), hash(binaries of f1.txt)]
and [hash(/home/public/img/f2.jpg), hash(binaries of f2.jpg)] are stored in the same leaf
node with an ID of 5.

The hash value of a leaf node is computed first by concatenating PB pairs stored in
it and then applying a hash function. The hash value of an internal node and a root node
is the hash of the concatenation of hash values of its two child nodes. Referring to Fig. 5,
the hash value of internal node X is the hash of the concatenation of hash values of child
nodes with leaf node IDs of 2 and 3.

A slice of a leaf node with an ID of i is a binary tree denoted as slice(i), which con-
tains leaf node i, the root node, all the internal nodes between leaf node i and the root
node, and child nodes of all of these internal nodes. Fig. 6 shows slice(96) of the FBH-
Tree that is nine nodes high. We can derive the root hash of an FBHTree if we have one
of its slices. This is because we have the hash values of all the internal nodes from a leaf
node to the root node and all the children of these internal nodes in a slice of an
FBHTree. Therefore, if we have the correct root hash, , of an FBHTree, we can first
verify if the root hash of slice(i) is If slice(i) passes this verification, then PB pairs
stored in leaf node i must be correct.

Tree Height

Leaf node ID 0 1 2 3 4 5 6 7

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

i :Tree node ID

(A)

(B)

h1

h2
h3

h4 h5 h6 h7

h8 h9 h10 h11 h12 h13 h14 h15

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12 h13 h14 h15

Array subscript 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig. 7. (a) An FBHTree that is four nodes high; (b) A one-dimensional array .

We propose storing an FBHTree in a one-dimensional array, with PB pairs of a leaf
node stored in a resizable array. For an FBHTree with a height of N nodes, we employ a
one-dimensional array with 2N1 elements to store hash values of internal and leaf nodes
and 2N1 resizable arrays to store PB pairs of leaf nodes. Fig. 7 shows an FBHTree that
is four nodes high and the corresponding one-dimensional array, , that has 241 = 15
elements. Note that each node has a tree node ID; these IDs are allocated sequentially
according to the search order in a breadth-first search. In addition, each leaf node also
has a leaf node ID, I, that can simply be translated into the tree node ID, X, by X = I +
2N1. The tree node ID is actually the array subscript of the one-dimensional array and
corresponds to the return value of index function . In additional, each leaf node is asso-
ciated with a resizable array to store some PB pairs. Algorithm 1 shows the validity of a
hash value of a file is verified according to a valid status code.

(a)

(b)

GWAN-HWAN HWANG, KUN-YIH HUANG, BO-SIANG LIAO, YI-LING YUAN AND HUNG-FU CHEN

330

Algorithm 1: Verify if a hash value of a file is valid. Assume that the height of the
FBHTree is N nodes.
Input: FPname: The pathname of the file to be verified.

: A one-dimensional array that stores an FBHTree; PB(i) denotes the
PB pairs stored in the leaf node with an ID of i.

S: The latest downloaded status code.
(1) I = (FPname) // Obtain the leaf node ID
(2) X = I + 2N–1 // Translate the leaf node ID, I, into a tree node ID, X
(3) Y = Ψ[X]
(4) WHILE (X 1) DO // From the bottom of the tree up to the root node

 IF X is an even number THEN
 Y = hash(Y | Ψ[X+1])

 ELSE
 Y = hash(Ψ[X–1]) | Y)

 END IF
 X = ⌊ X / 2 ⌋9 // Unconditional rounding

END WHILE
(5) IF (YS) THEN Report “Some hash values are not valid.”

ELSE
 Compute the hash value of PB(I), .
 IF (Ψ[X]) THEN Report “Some hash values are not valid.”

ELSE
Obtain the PB pair of FPname in PB(I). Assume the hash value of
FPname is h.

 Report that h is valid.
END IF

END IF

We employ the FBHTree and the array shown in Fig. 7 to illustrate Algorithm 1.

We assume that the function has I = 3 in step 1, and then X = 11 in step 2 and Y = Ψ[11]
in step 3. The first iteration of the WHILE loop produces Y = hash(Ψ[10]|Y), and the
second and third iterations produce Y = hash(Ψ[4]|Y) and Y = hash(Y|Ψ[3]), respectively.
Finally, after step 4, Y = hash(hash(Ψ[4] | hash(Ψ[10]|Ψ[11])) | Ψ[3]). In step 5 we have
to check if the hash values of PB(11) that stores the PB pair of FPname equal Ψ[11].

3. IMPLEMENTATION AND EXPERIMENTAL RESULTS

We conducted a series of experiments to evaluate the performance of the proposed
scheme, which was implemented using the Java programming language. The digest
function was “java.security.MessageDigest” with the SHA-256 algorithm. The local
machine was a Macbook Air 2014 with a 1.4-GHz Intel Core i5 processor and Mac OS
X El Capitan 10.11.5 as the operating system. The library files were stored in 149,487
directories with 717,976 files. The target application software installed included Face-Time,
LINE, Pages, Mail, Maps, Calendar, Preview, and Photos. This computer setup is repre-
sentative of a contemporary computer system with popular application software installed.

9 ⌊r⌋ means the floor value of r; that is, the largest integer less than or equal to r.

REAL-TIME AUDITING OF THE RUNTIME ENVIRONMENT FOR CLOUD PLATFORMS 331

Before determining the total auditing time, we first investigated if the proposed in-
dex function is good enough to distribute a huge number of library files into the leaf
nodes of an FBHTree evenly. For calculating the root hash of the slice of a leaf node that
stores some PB pairs, we need to compute the hash values of these PB pairs separately,
then concatenate them, derive the hash of the concatenated values, and compute the hash
values of all internal nodes along the path to the root node. If many PB pairs are stored in
a leaf node, it may take too long to compute the root hash from the slice of a leaf node.

We have previously presented some experimental results obtained in a preliminary
investigation [9]. The FBHTree is applied to check for violations in single file operations
in cloud storage. We set the height of the FBHTree from 9 to 17 nodes: the numbers of
leaf nodes were 256, 1024, 4096, 16384, and 65535 for tree heights of 9, 11, 13, 15, and
17 nodes, respectively. We stored different numbers of PB pairs in an FBHTree. The file
stock ratio is calculated as the number of PB pairs divided by the number of leafs. We
monitored for the presence of collisions for stock ratios of 33%, 66%, and 100%. In all
situations the average and maximum numbers of stored PB pairs in a single nonempty
leaf node were less than 2 and 8, respectively. The worst case was for a tree height of 17
nodes and a file stock ratio of 100%, for which the maximum number of PB pairs in
nonempty leaf nodes was 8. Further details are available elsewhere [9].

However, these experimental results are not sufficient to demonstrate that an FBH-
Tree is suitable for auditing the runtime environment. Our target machine contained
717,976 library files, and we stored these files in FBHTrees with different heights. The
total number of stored PB pairs in an FBHTree was also 717,976. This main data struc-
ture is a one-dimensional array, with some resizable arrays used to store PB pairs that
collide. The number of resizable arrays equals the number of leaf nodes. Referring to
Table 1, an FBHTree with a height 10 nodes consists of a one-dimensional array that
stores 210–1 hash values (each one is 32 bytes) and 512 resizable arrays.

Table 1. The collision of index function .
Height No. of leafs

4 8 89747.25 89908
6 32 22436.16 22646
8 128 5609.27 5794
10 512 1402.32 1502
12 2048 350.58 421
14 8192 87.64 127
16 32768 21.91 43
18 131072 5.50 18
20 524288 1.84 10

Height: Height of an FBHTree
No. of leafs: Total number of leaf nodes in the FBHTree
: Average number of stored PB pairs in a nonempty leaf node
: Maximum number of stored PB pairs in a nonempty leaf node

We implemented the following four different schemes for the system architecture
shown in Fig. 1. In addition to the two intuitive solutions and the proposed FBHTree
scheme, we also implemented a simplified scheme of the intuitive solution, in which the
pathname and hash value of a library file is stored in a key-value pair but without veri-

GWAN-HWAN HWANG, KUN-YIH HUANG, BO-SIANG LIAO, YI-LING YUAN AND HUNG-FU CHEN

332

fying that it is correct based on the status code. We denote this last scheme as the pure
integrity check scheme. The key-value pair scheme is presented in Section 2.1. Both the
pure integrity check scheme and key-value pair schemes employ java.util.HashMap to
store the hash value pairs of hashes of the pathname and binaries of a file. The m-ary
hash tree scheme presented in Section 2.2 is constructed using java.util.ArrayList. The
FBHTree is stored in a one-dimensional array and the PB pairs of leaf nodes are stored in
java.util.LinkedHashMap.

We compared different aspects of the four schemes. We first compared the build-up
time and the memory required to store the HVA in the four schemes. Referring to Table
2, the build-up time includes the time required to calculate the hash values for all of the
717,976 files and to store them in the HVA. The hash values for all of the files were
calculated in about 509.2s. The key-value pair scheme is very similar to the pure integri-
ty check scheme; an additional time of 516.1509.2 = 6.9s was required to store 717,976
pairs in a java.util.HashMap object and compute the status code. Thus, the memory re-
quirement of the two schemes was identical. The m-ary hash tree scheme needed to store
the names of 149,487 directories and 717,976 files in elements of the Java java.util.Ar-
rayList object, and so it needed more memory. When the height of the FBHTree increas-
es, the memory required increases because the number of internal and leaf nodes in-
creases.

Table 2. The build-up time and required memory for the HVA.
Scheme Build-up time (s) Memory required (MB)

Pure integrity check 516.1 57.5
Key-value pair 522.6 57.5
m-ary hash tree 566.5 87.2

FBHTree

Height=4 518.0 57.5
Height=6 518.3 57.5
Height=8 518.8 57.6
Height=10 518.6 57.7
Height=12 518.3 58.1
Height=14 518.8 59.9
Height=16 518.9 67.1
Height=18 520.8 133.5
Height=20 520.1 206.9

In the second part of our experiment we measured the running times required to
verify the hash value of a file according to a status code and to calculate the new status
code when a hash value of a file is updated. Referring to Table 3, the number of files in
the HVA was 717,976. The pure integrity check scheme does not need to verify the hash
value of the file according to the status code. In contrast, the key-value pair scheme
needed to concatenate 717,976 hash values in order to verify the hash value of a file. The
average running times required for verifying and deriving a new status code were 17.2
and 18.11 ms, respectively. The m-ary hash tree scheme only needs to calculate a small
portion of hash values of a node, so it takes less time to verify the hash value according
to the status code compared with the key-value pair scheme. For an FBHTree with a
height of at least 12 nodes, the average running times for the two operations were always

REAL-TIME AUDITING OF THE RUNTIME ENVIRONMENT FOR CLOUD PLATFORMS 333

less than 1 and 2 ms, respectively. Although the FBHTree scheme for trees with heights
greater than 10 nodes overwhelms the other three schemes, Table 3 only demonstrates
that the FBHTree scheme is good at auditing a single file. It remains necessary to further
investigate the running time when auditing all the related executable codes and library
files when an application is launched.

Table 3. The running time of operations in FBHTree.

Scheme
Pure integrity check Nil Nil

Key-value pair 17.20 19.11
m-ary hash tree 6.83 18.51

FBHTree

Height=4 27.57 34.81
Height=6 7.10 9.13
Height=8 2.26 9.13
Height=10 0.47 2.18
Height=12 0.22 1.90
Height=14 0.09 1.92
Height=16 0.10 1.64
Height=18 0.07 1.71
Height=20 0.08 1.57

Height: Height of an FBHTree
: Average running time for verifying the hash value of a file according to status code (in ms)
: Average running time for calculating the new status code when a hash value of a file is
updated (in ms)

Table 4 lists the required running time for auditing executable codes and used li-

brary files10 of dynamic linking for some applications. We first show the running time
for calculating the hash values of linked library files. For example, the FaceTime appli-
cation will link 64 files in /System/Library and /usr/lib. We computed the hash values of
these 64 library files and compared them with the corresponding hash values in the HVA.
The overhead of auditing the runtime environment is the additional time required to ver-
ify the hash values in the HVA according to the downloaded status code. Since the status
code comprises only 32 bytes, it was not necessary to add the network transfer time for
downloading the status code.

We present the running time and overhead of performing the auditing of several ap-
plications. The overhead is calculated by dividing the difference between the running
time for auditing using library files according to the status code and the running time of
the pure integrity check scheme by the running time of the pure integrity check scheme.
For example, for the FaceTime application, the pure integrity check scheme required
2114.32 ms and running time for the m-ary hash tree scheme was 2631.32 ms, and hence
the overhead was (2631.32 – 2214.32)/2214.32 = 18.83%. The experimental results show
that the key-value pair scheme is very inefficient, with an overhead ranging from
173.68% to 835.49%. The m-ary hash tree scheme improves the key-value pair scheme,
but the maximum overhead of 138.69% is still high. For an FBHTree with a height
greater than 10 nodes, the overhead was always under 1%, which demonstrates that the
FBHTree scheme is both feasible and efficient. Although collision occurred for the FBH-

10 The used dynamically linked library files can be obtained by executing the “otool” command in Mac OS.

GWAN-HWAN HWANG, KUN-YIH HUANG, BO-SIANG LIAO, YI-LING YUAN AND HUNG-FU CHEN

334

Tree that was 12 nodes high is serious, the overhead is still acceptable because the pure
integrity check needs to hash all binaries of the dynamically linked library files. The re-
quired computation time for the FBHTree with a high number of collisions in leaf nodes is
still small compared with the computational time required to hash the library files.

Table 4. Running time for auditing used library files for selected applications (in ms).
Scheme Facetime Line Pages Mail Maps Calendars Preview Photos

No. of linked
library files

64 26 36 46 37 44 30 68

Pure integrity check 2214.32 1241.71 3283.03 3059.24 767.9 1069.32 703.11 2481.5
Key-value pair

(Overhead)
13251.24
498.43%

5839.72
370.30%

8985.14
173.68%

8985.14
193.70%

7089.80
823.27%

9146.04
755.31%

6577.50
835.49%

13990.68
463.80%

m-ary hash tree
(Overhead)

2631.32
18.83%

1600.37
28.88%

3986.86
21.44%

3986.86
30.32%

1671.14
117.62%

1960.27
83.32%

1623.95
130.97%

5923.20
138.69%

sdfd

Height=4
(Overhead)

3664.80
65.50%

1853.77
49.299%

4031.34
22.79%

4048.33
32.33%

1590.14
107.08%

2081.20
94.63%

1441.42
105.01%

4031.62
62.47%

Height=6
(Overhead)

2649.86
19.67%

1413.86
13.86%

3502.17
6.67%

3356.66
9.73%

1008.40
31.32%

1368.88
28.02%

919.38
30.76%

2922.44
17.77%

Height=8
(Overhead)

2360.94
6.62%

1298.14
4.54%

3353.99
2.16%

3159.45
3.28%

847.26
10.33%

1166.02
9.04%

778.95
10.79%

2626.08
5.83%

Height=10
(Overhead)

2247.48
1.50%

1256.75
1.21%

3296.95
0.42%

3079.50
0.66%

784.00
2.10%

1089.58
1.89%

730.28
3.86%

2515.72
1.38%

Height=12
(Overhead)

2228.88
0.66%

1245.80
0.33%

3287.03
0.12%

3069.25
0.33%

772.44
0.59%

1077.40
0.76%

709.20
0.87%

2490.30
0.35%

Height=14
(Overhead)

2222.06
0.35%

1242.53
0.07%

3285.48
0.07%

3063.10
0.13%

769.72
0.24%

1073.20
0.36%

709.20
0.87%

2487.20
0.23%

Height=16
(Overhead)

2217.72
0.15%

1243.25
0.12%

3286.10
0.09%

3062.69
0.11%

770.40
0.33%

1070.26
0.09%

704.86
0.25%

2488.44
0.28%

Height=18
(Overhead)

2220.82
0.29%

1243.17
0.12%

3285.17
0.07%

3062.69
0.11%

769.04
0.15%

1072.36
0.28%

704.55
0.22%

2485.96
0.18%

Height=20
(Overhead)

2219.58
0.24%

1242.48
0.06%

3285.11
0.06%

3061.05
0.06%

769.72
0.24%

1071.94
0.25%

705.48
0.34%

2485.96
0.18%

4. RELATED WORK

The Trusted Platform Module (TPM) is an international standard for a secure cryp-
toprocessor [10, 11]. A TPM-enabled computer can check the integrity of the machine
during the boot process, enabling protection and detection mechanisms to function in
hardware during the preboot period, in the secure boot process, or even in the application
software. Sule et al. showed a prototype implementation of a trusted cloud computing
deployment on a computer network where both trusted computing integrity measure-
ment/verification are based on the TPM [12]. Berger et al. proposed a solution called
scalable attestation which combines the benefits of secure boot and trusted boot to ad-
dress integrity and monitoring issues of the cloud environment based on TPM [13].
However, performing integrity checking only during boot time is insufficient since mal-
ware and viruses can infect the runtime environment at any time.

Mishra surveyed methods for virus detection and their limitations [5], and discussed
the application and advantage of integrity checking. Integrity checking is called “inocu-

F
B

H
tr

ee

REAL-TIME AUDITING OF THE RUNTIME ENVIRONMENT FOR CLOUD PLATFORMS 335

lation” in the commercial Norton AntiVirus product marketed by Symantec Corporation.
However, this integrity checking cannot defend against a roll-based attack by the service
provider in the IaaS and PaaS service models because the malware and viruses can alter
corresponding hash values stored in the local machine when they infect binary files. Re-
lated work includes advanced intrusion detection environment (AIDE) which is a file and
directory integrity checker [14]. Yue et al. proposed an approach to protect virtual ma-
chine image integrity in the cloud [15]. In order to reduce the starting time, a periodic
scanning program needs to verify the entire image. Wang et al. proposed a dynamic in-
tegrity validation framework which introduces a trusted third party (TTP) to collect the
integrity information and detect remotely the integrity violations on virtual machines
periodically. The attacker may choose the attack time between two consecutive detection
cycles to escape the verification [16]. Kaczmarek and Wrobel proposed a system that
enables file integrity verification implemented as an in-kernel Linux security modules
[17]. Database of initial cryptographic hashes are stored in kernel space. The kernel can
perform integrity verification when a system call is invoked. However, this scheme can-
not apply in cloud computing environment as the image of kernel is controlled by the
cloud service provider.

Intrusion detection systems (IDS) for software applications have drawn much atten-
tion in recent years [18-23]. An IDS is a mechanism used to monitor system and network
situations, collect useful data such as suspicious activities and environmental context,
and analyze such data to detect malicious intentions. The challenge of intrusion detection
is to build effective predictive models with low error rates by utilizing and integrating
various data resources. Some works focus the intrusion detection of virtual machines.
Garfinkel and Rosenblum proposed an approach called virtual machine introspection
[24], in which the activity of the host is analyzed by directly observing hardware states
and inferring software states based on a priori knowledge of its structure by a virtual
machine monitor. Ibrahim et al. presented the CloudSec monitoring appliance that pro-
vides active, transparent, and real-time security monitoring for virtual machines hosted in
an IaaS cloud platform [25]. CloudSec utilizes virtual machine introspection techniques
to provide fine-grained inspection of the physical memory of virtual machines, without
requiring any security code to be installed in the virtual machines. Hizver and Chiueh
developed a real-time kernel data structure monitoring system that leverages the OS
analysis capabilities of volatility, an open source computer forensics framework, to sim-
plify and automate analysis of virtual machine execution states [26]. Garfinkel et al.
presented an architecture for trusted computing, called Terra, that uses a trusted virtual
machine monitor (TVMM) to partition a tamper-resistant hardware platform into multi-
ple isolated virtual machines [27]. The hardware and TVMM can act as a trusted party to
allow closed-box virtual machines to cryptographically identify the software they run.
However, since the virtual machine monitor is maintained and controlled by the service
provider, these schemes do not allow the user to audit an untrusted platform in the cloud.

Wei et al. proposed a management system for images of virtual machines that con-
trols access to images, tracks their provenance, and provides users and administrators
with efficient image filters and scanners for detecting and repairing security violations
[28]. However, in that system it is necessary to periodically perform virus scanning of
the images of virtual machines for detecting and fixing vulnerabilities. Haeberlen et al.
proposed using an accountable virtual machine monitor [29] that can detect a faulty vir-

GWAN-HWAN HWANG, KUN-YIH HUANG, BO-SIANG LIAO, YI-LING YUAN AND HUNG-FU CHEN

336

tual machine by observing the log file and messages sent and received in the virtual ma-
chine. Santos and Lopes proposed an approach to build dependable virtual machines. It
is based on trusted computing and model checking: trusted computing allows for low-
level attestation of the software of a virtual appliance, and model checking provides for
the automatic verification of the software’s high-level configuration properties [30]. Win
et al. proposed a virtualization security solution which aims to provide comprehensive
protection of the virtualization environment. When a virtual machine is first created, the
security monitor calculates the hash value of the memory contents and stores it. It peri-
odically calculates the hash value of the guest virtual machine’s process table and com-
pares it with the stored value. The hash values are then passed to the control monitor,
which compares it with previously obtained values. The results from these analyses will
indicate the presence of a malware attack [31].

Viswanathan and Mishra proposed a software system that utilizes operating sys-
tems’ kernel feature for file system monitoring to detect changes for authenticating mod-
ifications to dynamic and active website contents. SHA-1 hash for every Web element
inside the Web server is stored in NV-RAM memory of the trusted platform module us-
ing TPM owner authorization value. Since NV-RAM is limited, it cannot support run-
time environment for a real computer platform [32].

Our previous study of real-time proof-of-violation auditing for cloud storage sys-
tems employed the FBHTree to audit single file access with the results showing that the
FBHTree can be used to simultaneously and continuously audit file operations and col-
lect cryptographic proofs [9]. This scheme needs less than twice the time to finish a file
operation in all the situations compared with normal file operations without real-time
POV and outperforms previous work [8] with an improvement in performance by one to
two orders of magnitude.

4. CONCLUSION AND FUTURE WORK

Performing only periodic auditing of the runtime environment is deficient because
malware and viruses may be installed in or infected executable codes and library files at
any time. In the cloud environment, users have no control of the images of their own
virtual machines, which makes this problem even more serious. Real-time auditing of the
runtime environment is a solution for obtaining high security. The need to perform au-
diting before every application is launched makes efficiency a crucial factor to consider.

In this paper we have proposed employing the FBHTree to perform real-time audit-
ing. Hash values of executable codes and library files are distributed to the leaf nodes of
an FBHTree by hash values and modular operations, and then efficient searching and
auditing of executable codes and library files are performed. The performance of the
proposed scheme has been evaluated on the Mac OS X platform, with the experimental
results demonstrating that the overhead introduced by the auditing process is always less
than 1% if the FBHTree is at least 12 nodes high.

REFERENCES

1. J. Smith and R. Nair, “The architecture of virtual machines,” IEEE Computer, Vol. 38,

REAL-TIME AUDITING OF THE RUNTIME ENVIRONMENT FOR CLOUD PLATFORMS 337

2015, pp. 32-38,.
2. “VirtualBox,” https://www.virtualbox.org/.
3. J. Feng, Y. Chen, D. Summerville, W. S. Ku, and Z. Su, “Enhancing cloud storage

security against roll-back attacks with a new fair multi-party non-repudiation pro-
tocol,” in Proceedings of IEEE Consumer Communications and Networking Con-
ference, 2011, pp. 521-522.

4. A. Shraer, I. Keidar, C. Cachin, Y. Michalevsky, A. Cidon, and D. Shaket, “Venus:
Verification for untrusted cloud storage,” in Proceedings of ACM Workshop on
Cloud Computing Security, 2010, pp. 19-29.

5. U. Mishra, “Methods of virus detection and their limitations,” SSRN eJournal, 2010,
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1916708.

6. A. M. Dunn, O. S. Hofmann, B. Waters, and E. Witchel, “Cloaking malware with
the trusted platform module,” in Proceedings of the 20th USENIX Conference on
Security, 2011, p. 26.

7. R. C. Merkle, “A digital signature based on a conventional encryption function,” in
Proceedings of Conference on the Theory and Applications of Cryptographic Tech-
niques on Advances in Cryptology, 1987, pp. 369-378.

8. G.-H. Hwang, W.-S. Huang, and J.-Z. Peng, “Real-time proof of violation for cloud
storage,” in Proceedings of the 6th IEEE International Conference on Cloud Com-
puting Technology and Science, 2014, pp. 394-399.

9. G.-H. Hwang and H.-F. Chen, “Efficient real-time auditing and proof of violation
for cloud storage systems,” in Proceedings of the 9th IEEE International Conference
on Cloud Computing, 2016, pp. 132-139.

10. Trusted Computing Group, “TPM main specification,” https://www.trustedcomputing
group.org/tpm-main-specification/.

11. F. Yu, H. Zhang, B. Zhao, J. Wang, L. Zhang, F. Yan, and Z. Chen, “A formal
analysis of Trusted Platform Module 2.0 hash-based message authentication code
authorization under digital rights management scenario,” Security and Communica-
tion Networks, Vol. 9, 2016, pp. 2802-2815.

12. M.-J. Sule, M. Li, G. A. Taylor, and S. Furber, “Deploying trusted cloud computing
for data intensive power system applications,” in Proceedings of the 50th Interna-
tional Universities Power Engineering Conference, 2015, pp. 1-5.

13. S. Berger, K. Goldman, D. Pendarakis, D. Safford, E. Valdez, and M. Zohar, “Scala-
ble attestation: A step toward secure and trusted clouds,” in Proceedings of IEEE In-
ternational Conference on Cloud Engineering, 2015, pp. 185-194.

14. Advanced Intrusion Detection Environment (AIDE), http://aide.sourceforge.net/.
15. X. Yue, L. Xiao, W. Zhan, Z. Xu, L. Ruan, and R. Liu, “An optimized approach to

protect virtual machine image integrity in cloud computing,” in Proceedings of the
7th International Conference on Cloud Computing and Big Data, 2016, pp. 75-80.

16. C. Wang, C. Liu, B. Liu, and Y. Dong, “DIV: Dynamic integrity validation frame-
work for detecting compromises on virtual machine based cloud services in real
time,” China Communications, Vol. 11, 2014, pp. 15-27.

17. J. Kaczmarek and M. R. Wrobel, “Operating system security by integrity checking
and recovery using write-protected storage,” IET Information Security, Vol. 8, 2014,
pp. 122-131.

18. H. Altwaijry and S. Algarny, “Bayesian based intrusion detection system,” Journal

GWAN-HWAN HWANG, KUN-YIH HUANG, BO-SIANG LIAO, YI-LING YUAN AND HUNG-FU CHEN

338

of King Saud University Computer and Information Sciences, Vol. 24, 2012, pp.
1-6.

19. Y. Y. Wee, W. P. Cheah, S. C. Tan, and K. Wee, “Causal discovery and reasoning
for intrusion detection using bayesian network,” International Journal of Machine
Learning and Computing, Vol. 1, 2011, pp. 185-192.

20. L. Xiao, Y. Chen, and C. K. Chang, “Bayesian model averaging of bayesian network
classifiers for intrusion detection,” in Proceedings of IEEE 38th Annual Interna-
tional Computers, Software and Applications Conference Workshops, 2014, pp. 128-
133.

21. W. Hu, J. Gao, Y. Wang, O. Wu, and S. Maybank, “Online adaboost-based para-
meterized methods for dynamic distributed network intrusion detection,” IEEE
Transactions on Cybernetics, Vol. 44, 2014, pp. 66-82.

22. S. Tobiyama, Y. Yamaguchi, H. Shimada, T. Ikuse, and T. Yagi, “Malware
detection with deep neural network using process behavior,” in Proceedings of IEEE
40th Annual Computer Software and Applications Conference, 2016, pp. 577-582.

23. F. Mira, W. Huang, and A. Brown, “Novel malware detection methods by using
LCS and LCSS,” in Proceedings of the 22nd International Conference on Auto-
mation and Computing, 2016, pp. 1-6.

24. T. Garfinkel and M. Rosenblum, “A virtual machine introspection based architecture
for intrusion detection,” in Proceedings of Internet Society Symposium on Network
and Distributed System Security, 2003, pp. 1-16.

25. A. S. Ibrahim, J. Hamlyn-Harris, J. Grundy, and M. Al, “CloudSec: A security moni-
toring appliance for virtual machines in the IaaS cloud model,” in Proceedings of
IEEE 5th International Conference on Network and System Security, 2011, pp. 113-
120.

26. J. Hizver and T.-C. Chiueh, “Real-time deep virtual machine introspection and its
applications,” ACM SIGPLAN Notices, Vol. 49, 2014 , pp. 3-14.

27. G. Tal, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh, “Terra: A virtual machine-
based platform for trusted computing.” ACM SIGOPS Operating Systems Review,
Vol. 37, 2003, pp. 193-206.

28. J. Wei, X. Zhang, G. Ammons, V. Bala, and P. Ning, “Managing security of virtual
machine images in a cloud environment,” in Proceedings of ACM Workshop on
Cloud Computing Security, 2009, pp. 91-96.

29. A. Haeberlen, P. Aditya, R. Rodrigues, and P. Druschel, “Accountable virtual ma-
chines,” in Proceedings of the 9th USENIX Conference on Operating Systems Design
and Implementation, 2010, pp. 119-134.

30. N. Santos and N. P. Lopes, “Leveraging trusted computing and model checking to
build dependable virtual machines,” in Proceedings of the 10th Workshop on Hot
Topics in System Dependability, 2014, pp. 1-6.
T. Y. Win, H. Tianfield, and Q. Mair, “Virtualization security combining mandatory
access control and virtual machine introspection,” in Proceedings of IEEE/ACM 7th
International Conference on Utility and Cloud Computing, 2014, pp. 1004-1009.

31. N. Viswanathan and A. Mishra, “Dynamic monitoring of website content and aler-
ting defacement using trusted platform module,” in N. Shetty, N. Prasad, N. Nalini,
eds., Emerging Research in Computing, Information, Communication and Applica-
tions, Springer, Singapore, 2016, pp. 117-126.

REAL-TIME AUDITING OF THE RUNTIME ENVIRONMENT FOR CLOUD PLATFORMS 339

Gwan-Hwan Hwang (黃冠寰) is a Professor in Department
of Computer Science and Information Engineering at National Tai-
wan Normal University, Taiwan. He received the B.S. and M.S.
degrees while in the Department of Computer Science and Infor-
mation Engineering at National Chiao Tung University, in 1991 and
1993, respectively, and the Ph.D. degree while in the Department of
Computer Science at National Tsing Hua University, Hsinchu, Tai-
wan, in 1998. His research interests include cloud trust, information
security, blockchain technology, software engineering.

Kun-Yih Huang (黃鯤義) is currently a Ph.D. candidate in

Department of Computer Science and Information Engineering at Na-
tional Taiwan Normal University, Taiwan. His research interests in-
clude cloud security, blockchain technology and medical informatics.

Bo-Siang Liao (廖柏翔) received his M.S. from Department

of Computer Science and Information Engineering at National Tai-
wan Normal University in 2016. His research interests include cloud
computing, cloud trust, and blockchain technology.

Yi-Ling Yuan (袁儀齡) received his M.S. from Department of

Computer Science and Information Engineering at National Taiwan
Normal University in 2016. His research interests include cloud trust,
blockchain technology, and software engineering.

Hung-Fu Chen (陳虹甫) received his M.S. from both De-
partment of Computer Science and Information Engineering at Na-
tional Taiwan Normal University, Taiwan, and Department of In-
formation Technology at Uppsala University, Sweden, in 2016. His
research interests include cloud trust and software engineering.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

