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Programs now have more aggressive demands of memory to hold their data than 

before. This paper analyzes the characteristics of memory data by using seven real 
memory traces. It observes that there are a large volume of memory pages with identical 
contents contained in the traces. Furthermore, the unique memory content accessed are 
much less than the unique memory address accessed. This is incurred by the traditional 
address-based cache replacement algorithms that replace memory pages by checking the 
addresses rather than the contents of those pages, thus resulting in many identical 
memory contents with different addresses stored in the memory. For example, in the 
same file system, opening two identical files stored in different directories, or opening 
two similar files that share a certain amount of contents in the same directory, will result 
in identical data blocks stored in the cache due to the traditional address-based cache re-
placement algorithms. Based on the observations, this paper evaluates memory compres-
sion and memory deduplication. As expected, memory deduplication greatly outperforms 
memory compression. For example, the best deduplication ratio is 4.6 times higher than 
the best compression ratio. The deduplication time and restore time are 121 times and 
427 times faster than the compression time and decompression time, respectively. The 
experimental results in this paper should be able to offer useful insights for designing 
systems that require abundant memory to improve the system performance.      
 
Keywords: memory deduplication, address-based cache, content-based cache, memory 
compression, data characteristics 
 
 

1. INTRODUCTION 
 

Memory hierarchy is designed to leverage data access locality to improve the per-
formance of computer systems. Each level in the hierarchy has higher speed, lower la-
tency, and smaller size than lower levels. Over the past decades, the memory hierarchy 
has suffered from significant bandwidth and latency gaps among processor, RAM, and 
disk drive [1, 2]. For example, the performance of processors has continued to double 
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about every 18 months since the number of transistors on a chip has increased exponen-
tially in accordance with Moore’s law. The advent of multi-core processors will further 
facilitate this performance improvement. Unfortunately, disk access time was improved 
only about 8% per year [3], although the internal data transfer rate has been growing at 
an exponential rate of 40% each year over the past 15 years [4]. The performance gap 
between processor and RAM has been alleviated by fast cache memories. However, the 
performance gap of RAM to disk drive has been widened to six orders of magnitude in 
2000 and will continue to widen by about 50% per year [5]. Therefore, a lot of research 
efforts have been invested in alleviating this gap [4, 6, 7]. 

Many programs require more RAM to hold their data than a typical computer has[8, 
9]. Although the amount of RAM in a typical computer has significantly increased due to 
the declining prices, program developers have even more aggressively increased their 
demands [10]. Programs that run entirely in RAM benefit from the improvements of 
processor performance, but the runtime of programs that page or swap is likely to be 
dominated by the disk access time when the amount of physical RAM is less than what 
the programs require [11, 12]. Additionally, due to the development of cloud technology, 
lightweight laptops are widely used as netbooks which are memory constrained but have 
rich CPU capability available [13].  

The traditional cache replacement algorithms including Least Frequently Used 
(LFU), Least Recently Used (LRU), etc. are all address-based approaches. These meth-
ods determine which memory page should be replaced by checking whether the address 
of that page has been accessed. This results in many identical memory pages stored in 
the cache, thus decreasing the effectiveness of the memory. The reason behind this is 
because there are many data blocks that have identical contents but associate with dif-
ferent addresses. For example, in the same file system, opening two identical files stored 
in different directories, or opening two similar files that share a certain amount of con-
tents in the same directory, will result in identical data blocks stored in the cache due to 
the traditional address-based cache replacement algorithms. Another typical example is 
that multiple programs call the same static link library. 

Memory compression has been investigated by a lot of research efforts [11, 12, 14- 
17]. The basic idea is reserving some memory space that would normally be used direct-
ly by programs, compressing relatively unused memory pages, and storing the com-
pressed pages in the reserved space. By compressing those pages, the effective memory 
size available to the programs becomes larger, and some memory paging and swapping 
can be avoided, thus eliminating some expensive disk accesses. Because accessing com-
pressed memory is faster than accessing disk drives, memory compression can over 
commit memory space without significantly reducing performance. For example, when a 
virtual page needs to be swapped, this page can be first compressed and then maintained 
in the memory. When the page is needed again, it is decompressed and given back. This 
process is much faster than swapping those pages to disk drives, although it is slower 
than accessing real memory. Memory compression must employ lossless compression 
algorithms. 

Data deduplication periodically calculates a unique hash number for every chunk of 
data by using hash algorithms such as MD5 and SHA-1. The calculated hash number is 
then compared against other existing hash numbers in a database that dedicates for stor-
ing chunk hash numbers. If the hash number is already in the database, the data chunk 
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does not need to be stored again, a pointer to the first instance is inserted in place of the 
duplicated data chunk. Otherwise, the new hash number is inserted into the database and 
the new data chunk is stored. In this way, data chunks with equal content can be merged 
to a single chunk and shared in a copy-on-write fashion.   

In order to achieve the best effectiveness, compression and deduplication are nor-
mally applied to small data sets and big data sets, respectively. By using seven real 
memory traces, this paper applies deduplication to memory pages against the traditional 
memory compression for increasing the effective memory space. Moreover, this paper 
comprehensively analyzes the characteristics of memory data. Since memory is orga-
nized in pages, we take a single memory page as a basic unit of both compression and 
deduplication. Our experimental results demonstrate that memory deduplication signifi-
cantly outperforms memory compression. Our key contributions are as follows: 
 
(1) This paper reports that there are a large volume of pages with identical contents con-

tained in the running memory system. 
(2) This paper proposes to apply the deduplication technology to alleviate the memory 

bottleneck in modern computer environments. 
(3) This paper analyzes the characteristics of memory data in a great detail and explores 

the impacts of the characteristics on the memory compression and deduplication. 
(4) This paper evaluates memory deduplication against traditional memory compression 

and explores the performance impacts of memory deduplication. 
 
The remainder of this paper is organized as follows. Section 2 introduces the related 

work. Background knowledge is presented in Section 3. Section 4 introduces the exper-
imental environment. The characteristics of memory data are analyzed in Section 5. Sec-
tions 6 and 7 perform a comprehensive evaluation to explore the compression and dedu-
plication behavior of memory data, respectively. Section 8 concludes the paper. 

2. RELATED WORK 

Memory compression has been considered as a technique to utilize memory re-
sources more effectively. The existing technologies can be classified into two categories 
including full memory compression and compressed disk cache. Full memory compres-
sion keeps the entire memory compressed (with the possible exception of some special-
ized regions such as DMA) [11, 14]. For example, Wilson et al. [11] introduced com-
pression algorithms to compress virtual memory. Their approach can adaptively deter-
mine how much memory should be compressed by keeping track of recent program be-
havior. The full memory compression is best illustrated by the MXT (memory extension 
technology) of IBM [18]. Compressed disk cache [17] employs a portion of main 
memory as a buffer between the main memory and the disk drive. The evicted memory 
pages from the regular memory are compressed and stored in the cache, thus alleviating 
the disk accesses. For example, Roy et al. [17] proposed to compress memory pages that 
need to be paged out and store the pages in memory, thus avoiding the large latencies of 
disk accesses.  

However, effectively managing the compressed memory has to handle a few chal-
lenges. First, memory decompression generates significant latency that causes a critical 
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impact on the memory access time. This is because the compressed memory pages have 
to be all decompressed on the fly. Secondly, compressed memory results in variable- 
sized memory pages. This requires complicated design and an efficient method to main-
tain the mapping between the logical and the compressed address space, and reduce the 
memory fragmentation. Hallnor and Reinhardt [15] designed a memory hierarchy that 
employs a unified compression scheme encompassing the last-level on-chip cache, the 
off-chip memory channel, and off-chip main memory. This scheme simultaneously in-
creases the effective on-chip cache capacity, off-chip bandwidth, and main memory size, 
while avoiding compression and decompression overheads between levels. Lee et al. [19] 
suggested several techniques to reduce the decompression overhead and the impact of 
variable-sized compressed blocks including selective compression, fixed space allocation 
for the compressed blocks, parallel decompression, using a decompression buffer, and so 
on. Tuduce and Gross [12] designed a memory compression solution that adapts the al-
location of real memory between uncompressed and compressed pages and also manages 
fragmentation without user involvement. The method dynamically adjusts the size of 
memory allocation for compression based on the resource demands of each application.  

Some other optimization methods are also proposed to alleviate the challenges. 
M.Ekman [14] proposed a main-memory compression scheme to remove decompression 
and translation overhead from the critical memory access path. The scheme employs a 
fast and simple compression algorithm by leveraging an observation that not only 
memory words, but also bytes, and entire blocks and pages frequently contain the value 
zero. X-Match [16] is a compression algorithm that is efficient at compressing small 
blocks of data and suitable for high-speed hardware implementation. 

Recently, some research efforts are invested in using deduplication technology to 
alleviate the memory bottleneck in server virtualization environment, thus maximizing 
the number of virtual machines that can run on a physical machine of a given resource. 
Memory deduplication has to periodically calculate a hash value for every physical 
memory page. The best location to calculate hash values is in the hypervisor of a virtual-
ized server, since only the hypervisor has a full knowledge and access privilege of all 
physical memory pages. Pan et al. [20] proposed a deferrable aggregate hypercall (DAH) 
mechanism to achieve both low invocation overhead and low performance impact of 
memory deduplication on running applications in a virtual server. Memory scanning 
deduplication techniques require very aggressive scan rates to identify sharing opportu-
nities with a short life span of up to about 5 minutes. Miller et al. [21] proposed to use 
the I/O-based hints generated by read and write operations in the virtual file system to 
make the memory scanning process more efficient, and in consequence enable it to find 
and exploit short-lived sharing opportunities without raising the scan rate. In contrast to 
the existing works, this paper will investigate the performance behavior of memory 
deduplication against the traditional memory compression. 

3. BACKGROUND 

3.1 Data Compression 

Compression relies on the fact that the data is redundant, and the redundant data 
follows some rules [22]. The rules can be learned and used to accurately predict the data. 
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By leveraging the rules, compressing a sequence of symbols is obtained by encoding the 
more frequent or likely symbols with shorter code words compared to the less frequent 
or likely symbols. Therefore, Compression can be divided into two phases including 
modeling and encoding that are typically interleaved with each other. Modeling detects 
regularities that allow a more concise representation of the information, and makes a 
probability distribution. Encoding is the construction of that more concise representation 
based on the probabilities assigned by the model [11, 23]. Many coding algorithms have 
been proposed. We only discuss Arithmetic algorithm, Huffman algorithm, LZ77, LZ78, 
LZW, and RLE, since the algorithms will be employed to compress memory data. The 
reader is referred to [22] for a comprehensive understanding of the algorithms. 
 
(1) Arithmetic coding employs an interval between 0 and 1 on the real number line to 

represent a source. Each symbol of the source narrows this interval. The number of 
bits needed to represent the symbol grows with the reducing of the interval. This ap-
proach uses an explicit probabilistic model and adopts the probabilities of the source 
to narrow the interval. It employs an unordered list of source and their probabilities. 
The number line is then partitioned into subintervals on the basis of cumulative 
probabilities. Therefore, a high-probability symbol narrows the interval less than a 
low-probability symbol, so that the high probability symbol contributes fewer bits to 
the coded information.  

(2) Huffman coding takes a list of nonnegative weights that denote the probabilities as-
sociated with the source, and constructs a full binary tree whose leaves are labeled 
with the weights. A set of singleton trees are constructed for each weight in the list. 
At each step the trees that have the two smallest weights Wi and Wj are merged into a 
new tree. The weight of the new tree is Wi + Wj, and the tree has two children repre-
sented by Wi and Wj. The weights Wi and Wj are then deleted from the list, and the 
weight Wi + Wj is added into the list. This process continues until the weight list 
contains a single value. 

(3) LZ77 and LZ88 are both theoretically dictionary coders. LZ77 maintains a sliding 
window to keep track of some amount of the most recent data. The encoder uses this 
data to look for matches, and the decoder employs this data to interpret the matches 
that the encoder refers to. This method compresses data by replacing repeated occur-
rences of data with references to a single copy of that data existing in the sliding 
window. A match is encoded by a pair of numbers (length-offset pair). LZ78 com-
presses data by replacing repeated occurrences of data with references to a dictionary. 
The dictionary is built in terms of the input data stream. LZW (LempelZivWelch) 
is an improved implementation of the LZ78. LZW encodes sequences of 8-bit data as 
fixed-length 12-bit codes. The codes from 0 to 255 denote 1-character sequences, 
and the codes from 256 to 4095 are generated in a dictionary for sequences encoun-
tered in the data as it is encoded. At each phase in compression, input data are 
grouped into a sequence until the next character would make a sequence for which 
there is no code yet in the dictionary. The code for the sequence (without that char-
acter) is removed, and a new code (for the sequence with that character) is inserted to 
the dictionary. 

(4) RLE (Run-length encoding) stores sequences in which the same data value occurs in 
many consecutive data elements as a single data value and count. 
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3.2 Data Deduplication 

Data deduplication is also called intelligent compression or single-instance storage. 
It involves two phases including chunking and deduplication detection [24, 25]. The 
chunking phase splits data into non-overlapping data blocks (chunks). Each of these 
chunks is processed independently afterwards. The duplication detection phase detects if 
another chunk with exactly the same content has already been stored, by using hash al-
gorithms such as MD5 and SHA-1. If a chunk is duplicated, the subsequent deduplicated 
chunks receive a pointer to the original chunk instance. This approach can effectively 
eliminate redundant chunks, and ensure that only the first unique instance of any chunk 
is actually stored. Chunking phase is very important for the quality of redundancy detec-
tion. It can be classified into four categories: 
 
(1) Whole file chunking (WFC): WFC employs a complete file as a basis for the duplica-

tion detection. If two files are exactly the same, the first instance of the file is stored 
and the subsequent deduplicated files are replaced with pointers to the stored file 
copy. Unfortunately, the result of the change of a single bit within a file is in a totally 
different copy of the entire file being stored. Therefore, this method is not very ef-
fective. 

(2) Fixed-size partition (FSP) [26]: FSP splits data into equal chunks that are independ-
ent of the content of the data being stored. The effectiveness of this method is highly 
sensitive to the sequence of data streams. For example, adding a single bit at the be-
ginning of a file can change the boundaries and the content of all chunks in the file. 
This results in a failure of redundancy detection and eliminates any remaining 
matches, although the two file are nearly identical with only one bit shifted. 

(3) Content-defined Chunking (CDC) [24]: CDC employs the data content rather than 
the data position within files to locate the boundaries of chunks, thus avoiding the 
impact of data shifting. This approach computes a hash value F for all substrings 
which are equal in size (usually 48 bytes) of the file. All data between two positions 
for that hash value F of the substring fulfills the equitation F is assigned to one 
chunk. The chunks have a variable size with an expected size N. Minimal and max-
imal chunk sizes are determined to avoid too small and too large chunks. However, 
the expected size N determines the granularity of duplicate elimination, thus deciding 
the storage utilization. 

(4) Sliding Block (SB) [27]: SB divides files into fixed-size and non-overlapping chunks 
and calculates its signatures (4-byte MD4 along with a 2-byte rolling checksum). If 
two files have the same name, each chunk signature of the target file is compared 
against a sliding-block signature of every chunk in the source file. This method has 
to calculate a separate multi-byte checksum for each byte of the data. However, the 
checksum information for all offsets of all files is too large in contrast to the data 
being stored, so this approach normally performs a finer-granularity matching. 

4. EXPERIMENTAL ENVIRONMENT 

Wilson et al. [11] executed a set of real programs on an Intel x86 machine and em-
ployed Vmtrace [28] to collect traces of memory pages. The Vmtrace captures overall 
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amount of live data for a run of the program and writes it into a trace file. Because dif-
ferent program behavior influences the trace results, a specific use case is employed to 
generate to page images. For example, the gcc-2.7.2 compiler compiles the largest file of 
its own source code combine.c to generate the page images of memory [29]. The page 
image traces are LRU behavior sequences that contain the paging traffic for an LRU 
memory of some fixed size. Each record in the behavior sequences contains six fields 
including a compulsory tag, a fetched page number, a fetched page image, a dirtiness tag, 
an evicted page number, an evicted page image. Table 1 summarizes the general infor-
mation of the traces. 

 

Table 1. Features of memory page traces. 
 Trace name Description Size (GByte) 
1 espresso A circuit simulator 1.47 
2 gcc-2.7.2 A GNU C/C++ compiler 1.13 

3 gnuplot A GNU plotting utility 1.47 

4 grobner Calculated Grobner basis functions 3.28 

5 lindsay A hypercube simulator 1.11 

6 p2c A PascalC transformer 1.36 

7 rscheme An implementation of Scheme 0.25 

 

Table 2. Configuration of the experimental platform. 
Components Description

CPU Intel Core2 T6400 (2M Cache, 2.00 GHz, 800 MHz FSB) 
Memory 2G, DDR2 800MHz
Hard disk WDC WD2500BEVT-60ZCT1 (250GB /5400RPM)
Chipset Intel 4 Series-ICH9M

 

    In order to maintain the characteristics of the traces, we also adopted an Intel X86 
machines to process the traces. Table 2 describes the configuration of our experimental 
platform. In order to minimize the impacts of background processes and obtain accurate 
results, we turned off all unnecessary processes and dedicated a partition of 100 GB for 
the evaluation. All the analysis in this paper is based on ASCII characters. 

5. ANALYZING MEMORY DATA CHARACTERISTICS  

5.1 Statistic Results 

Table 3 concludes the statistic results of the page image traces. The results refer to a 
symbol set which has a granularity of one byte. All percentages are of the total memory 
data volume. The Zero column indicates that a large volume of memory data are zero 
bytes across seven traces. The Continuous zero column summarizes the percentage of 
pages that contain continuous zeros longer than 32 bytes. According to the two columns, 
the percentage of zeros ranges between 35.98% and 86%. This means at least one third 
of the memory data is zeroes. Furthermore, most of the zeros occur continuously. The 
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Bound column includes the percentage of memory data which is continuous zeroes long-
er than 32 bytes, and the continuous zeroes start or end at a page boundary. The Low 
column shows percentage of memory data that are low values ranging between 1 and 9. 
Since we use decimal to denote ASCII characters, the low values represent start of head-
ing, start of text, end of text, end of transmission, enquiry, acknowledge, bell, backspace, 
and horizontal tab, respectively [30]. The Power(2, n) column implies the integral pow-
er-of-two values. It indicates the values of 2, 4, 8, 16, 32, 64, 128, 255 using decimal. 

Entropy is normally used to measure redundancy. The entropy of a source means 
the average number of bits required to encode each symbol present in the source. There-
fore, the compressibility grows with the decrease of the entropy value. Entropy is a use-
ful indicator of compression ratio for a compressor. Given a set of symbols and a source 
in which these symbols occur, if each symbol occurs with probability, the zero-order 
entropy is. The Entropy column in Table 3 is calculated with zero-order entropy. 

 

Table 3. Statistic results of the page image traces. 

Trace name Zero (%) 
Continuous 
zeros (%)

Bound (%) Low(%) Power(2,n) (%) Entropy 

Espresso 45.94 14.61 10.34 16.25 16.46 4.19 
gcc-2.7.2 56.09 29.88 6.44 11.13 12.25 3.85 
gnuplot 80.72 44.53 44.50 3.29 4.66 2.01 
grobner 58.34 30.91 19.78 18.62 15.35 3.30 
lindsay 86.00 49.96 25.77 6.40 6.72 1.33 

p2c 59.62 13.87 7.63 6.30 7.89 3.60 
rscheme 35.98 10.75 6.39 17.86 17.85 4.94 

 

5.2 Zero Distribution 

Fig. 1 shows the percentage of continuous zero distribution, where X axis repre-
sents the length of continuous zero byte, and Y axis denotes the percentage. The maxi-
mum value of X axis is 4096 which is equal to one page size. Please note that the Y axes 
across the seven traces are in different scale, in order to have a close observation of the 
percentage. If we assume that the length of continuous zero is K, the number of K is N, 
and the size of trace is C bytes, the percentage is calculated as (KN)/C. 

The compressibility is strongly related to the distribution of zero. Since the value of 
a tick in the X axis represents the length of continuous zero byte, the bigger the value, 
the more compressible the page. For example, if the length of continuous zero is 4096, 
this indicates that the whole page is zero. This page will achieve the highest compression 
ratio. Additionally, if there are more ticks concentrating in the second half of X axis, the 
trace will achieve higher compression ratio than that in the first half of X axis. 

Fig. 1 (a) shows that three continuous zero has the highest percentage (P3 = 0.16, 
where the number 3 indicates three continuous zeros). There are some ticks distributed 
across X axis. For example, P1984 = 0.02. According to Fig. 1 (b), this trace has a larger 
portion of zero than that of Fig. 1 (a). However, the length of continuous zero is very 
short. The length normally ranges between 0 and 10. Therefore, most of the ticks con-
centrate in the beginning of X axis. For example, the highest percentage P3 is 0.07. Alt-
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hough we can observe many ticks in the second half of X axis, the percentage is very 
low. Figs. 1 (c) and (d) demonstrate a similar pattern. Some ticks distribute in the middle 
of X axis (they have a relatively long length of continuous zero), and the percentages are 
also very high. For example, the highest percentage in Figs. 1 (c) and (d) are P2574 = 
0.12 and P3 = 0.15, respectively. The distribution of ticks across Figs. 1 (e)-(g) are very 
much like Fig. 1 (b). Most of the long continuous zero concentrate in the beginning of X 
axis. It is very interesting to observe that P4096 of Figs. 1 (a)-(g) are 0.0056, 0.02, 0.11, 
0.0006, 0.06, 0.005, and 0.09, respectively. This indicates that there are many pages full 
of zeroes across the seven traces. 
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      (g) 

Fig. 1. Percentage of continuous zero bytes. 
 

5.3 Symbol Distribution 

Fig. 2 shows the accumulate percentage of symbol distribution across the seven 
traces. It is easy to observe that zeroes and low values constitute over 50% of the 
memory data. This is consistent with the statistics summarized in Table 3. The percent-
age curves grow with the increase of ASCII values. However, there is a steep growth in 
the very beginning of X axis, and the growth trend gradually slows. This indicates that 
the extended ASCII codes (The decimal of ASCII codes ranges from 128 to 255.) except 
255 are only a small part of the memory data over the seven traces. 
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Fig. 2. Accumulate percentage of symbol distribution. 

 

Fig. 3 deconstructs the symbol distribution across seven traces to get further in-
sights into the distribution pattern as a complement to Fig. 2. The figures demonstrate 
that cluster is the most obvious feature across the seven traces. Most of the clusters are 
short lived at fine granularity and they appear to smooth out gradually. A number of 
spikes can be observed to interrupt the smoothness. Most of the spikes are accumulated 
within a relatively small and specific area. The spikes imply that the corresponding 
symbols occur frequently. The higher the spikes, the more frequent the symbols. There-
fore, according to the figures, only a small number of symbols occur with a high fre-
quency. It indicates a significant temporal locality.  
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Fig. 3. Symbol distribution of seven traces. 
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A similar pattern across the figures is that the high clustered spikes are normally 
accumulated within some specific areas. For example, the beginning of X axis, around 
the decimal value 25, 50, 80,100, and 110. We further analyzed the collected data and 
found that the frequently occurred symbols normally distribute in the intervals of [0, 9], 
[48, 75], [65, 90], and [97, 122]. The intervals correspond to the ASCII characters sum-
marized in Table 4. 

 

Table 4. Some specific ASCII characters and the corresponding decimal. 
Decimal Values 09 4857 6590 97122 

ASCII  
character 

Null, start of heading, start of text, end of text, 
end of transmission, enquiry, acknowledge, 
bell, backspace, and horizontal tab 

09 AZ az 

 

According to the analysis, we have following conclusions: (1) Memory data con-
tains a large portion of zeroes and the zeroes normally occur continuously; (2) A small 
number of symbols occur frequently. This indicates a strong temporal locality; (3) Some 
symbols are normally clustered and appear together. This implies a high spatial locality. 

6. IDENTICAL MEMORY PAGES 

In order to identify the identical memory pages contained in the traces, we calculate 
a hash number for the content of each memory page, and compare the hash numbers 
against each other. The same hash number indicates identical content of memory pages. 
Fig. 4 shows the percentages of identical memory pages of seven traces. It is interesting 
to observe that espresso, gcc-2.7.2, gnuplot, grobner, lindsay, p2c, and rscheme contain 
85%, 91%, 83%, 79%, 55%, 88%, and 75% identical memory pages, respectively. The 
seven traces are all collected when the memory system of the computer employs LRU 
replacement algorithm. LRU decides which page is used least recently by checking the 
address of the page. Therefore, the LRU has no information about the content of the page 
that is replaced. This results in many identical memory pages that are associated with 
different addresses. For example, opening two identical files stored in different directo-
ries, or opening two similar files stored in the same directory, will incur many identical 
memory pages. This result can be applied to the address-based cache replacement algo-
rithms such as LFU, SLRU, etc.  

In order to verify the above observations and analysis, we further investigate the 
number of accesses going to unique page addresses and unique page contents. The traces 
record the information of page hit when performing the page replacement. Each page hit 
indicates an identical page address in the memory in contrast to the current page address. 
Therefore, we can calculate the number of unique address accesses. It is simple to obtain 
the number of unique page content accesses by using the approach employed to calculate 
the identical memory pages. Fig. 5 shows that the number of unique address accesses is 
much higher than the unique content accesses. This confirms what we report in Fig. 4. 
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Fig. 4. Identical memory pages.        Fig. 5. Address access vs. content access. 

7. MEMORY DATA COMPRESSION 

Lossless data compression approaches can be classified as stream compression and 
block compression. The streaming compression continuously accepts a stream of bytes 
as input and produced a compressed stream as output, while block compression accepts 
data block by block and compresses each block separately. Most compression methods 
work in the streaming mode. However, if the entire memory data is compressed as a sin-
gle contiguous stream, it would be very expensive when a few memory pages are read, 
since the entire compressed data has to be decompressed before serving the small read 
requests, and this would incur some memory swapping. Therefore, it is better to com-
press a small group of consecutive blocks at one time. This makes the compression/de- 
compression more efficient. When a read request comes, the system only needs to read 
and decompress a small group of blocks. This optimizes read operation and allows 
greater scalability in the total size of the memory data being compressed. Since the 
memory system is organized in pages, we employ block compression, and the group size 
is defined as an integer times of the memory page size. The compression ratio is defined 
as the size of compressed memory data divided by the size of uncompressed memory 
data. 

We will quantify the benefits achieved by compressing seven memory traces. The 
block size is 8KB equaling to two memory pages. Fig. 6 reveals significant variations of 
system behavior between different compression algorithms. Fig. 6 (a) shows that the LZ 
algorithms (LZ77, LZ78, LZW) obtain the significant compression ratios (around 0.4), 
and gunplot trace achieves the best compression ratio across the six algorithms. Figs. 6 
(b) and (c) demonstrate the compression and decompression time of a single block by 
using different algorithms and traces. It shows that the RLE algorithm performs best, and 
the performance of LZ77 and LZW are not acceptable in contrast to the latest Hitachi 
Ultrastar 15K which has an average access time of 2 milliseconds [31], since the com-
pression time of LZ77 and decompression time of LZW are over 70 milliseconds and 50 
milliseconds, respectively. According to the above discussion, we believe that LZ78 
strikes a good balance between compression ratio, compression time, and decompression 
time. The compression time and decompression time are both less than 4 milliseconds 
across seven traces. Fig. 6 reveals that the compression and decompression performance 
difference under different algorithms can be over 500 times and 300 times, respectively. 

Since we use block compression to perform the evaluation, the block size has a sig-
nificant impact on the system behaviour. Fig. 7 (a) shows a general trend that the com-
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pression ratio decreases with the increase of block size (from 4Kbyte to 128Kbyte) 
across the seven traces. Figs. 7 (b) and (c) reveal that the bigger the block size is, the 
higher the compression and decompression time are. This pattern is reasonable, because 
larger data block is more compressible and requires more time to compress and decom-
press. However, the performance decrease is not linearly proportional to the block size. 
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(a) Compression ratio          (b) Compression time         (c) Decompression time 

Fig. 6. Impact of different algorithms on the memory data compression. 
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(a) Compression ratio.           (b) Compression time.          (c) Decompression time. 

      Fig. 7. Impact of block size on the system behavior (LZ78 algorithm). 

8. MEMORY DATA DEDUPLICATION 

Before the evaluation, we delete the header information as introduced in Section 4 
in the traces and align the boundaries of chunks to the boundaries of memory pages. In 
contrast to the traditional compression methods, data deduplication works at a course- 
grained level. Fig. 8 shows the performance pattern of memory deduplication. The X 
axis denotes different chunking policies as discussed in Section 3.2, where the numbers 
following FSP and SB represent the chunking size. For example, FSP-4K implies that 
fixed-size partition scheme splits data into equal 4KByte chunks. Since the WFC ap-
proach is not suitable for memory deduplication, our evaluation only adopts three 
schemes including FSP, CDC, and SB. Please note that the Y axis of Figs. 8 (b) and (c) 
is in microseconds. Since the page size of the seven memory traces is 4Kbyte, FSP-4K 
covers one memory page, FSP-8K covers two memory pages, and so on. The deduplica-
tion ratio is defined as the size of the data deduplicated divided by the size of the original 
data. 
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(a) Deduplication ratio.        (b) Deduplication time.            (c) Restore time. 

Fig. 8. Performance behavior of memory deduplication. 
 

Fig. 8 (a) shows that FSP-4K and SB-4K achieve the best deduplication ratio across 
the seven traces. The experimental results are very close to each other by using the above 
two algorithms. When the chunking size of FSP is increased from 4Kbyte to 32Kbyte, 
the deduplication ratio is significantly increased. The compression ratio of CDC is close 
to 1. It is not acceptable either. Therefore, from a compression ratio standpoint, FSP-4K 
and SB-4K are the best candidates to perform memory deduplication. Furthermore, we 
believe that the optimal chunking size of memory deduplication is one memory page. 
Unfortunately, according to Figs. 8 (b) and (c), the deduplication time of SB-4K is about 
40 times higher than that of the FSP-4K, although the restore time is comparable. Ac-
cording the above discussion, we believe that FSP-4K is the best candidate policy for 
memory deduplication, since FSP-4K takes less than 50 microseconds and 10 microsec-
onds to deduplicate and restore a single memory page in terms of the experimental re-
sults reported in Figs. 8 (b) and (c). 

According to the evaluation in Sections 6 and 7, the chunking size has an opposite 
impact on the performance of memory compression and memory deduplication. This is 
because the probability of those identical characters contained in a chunk grows with the 
increase of the chunk size, while the probability of two chunks that are exactly the same 
is decreased with the growth of the chunk size. For example, an 8Kbyte chunk would 
involve more compressable characters than that of a 4Kbyte. However, it is more diffi-
cult to find two identical 8Kbyte chunks than 4Kbyte chunks. Furthermore, the memory 
characteristics may have different impacts on the compression and deduplication. For 
example, gunplot trace has the best compression ratio and compression performance. 
However, this advantage disappears when the trace is performed deduplication. 

9. COMPARISON OF MEMORY COMPRESSION AND DEDUPLICATION 

In order to further investigate the performance behaviour of memory deduplication, 
we compare the memory compression against memory deduplication in terms of time 
overhead and data reduction ratio. As discussed in Sections 7 and 8, LZ78 algorithm and 
FSP-4K achieve the best performance in the compression and deduplication, respectively. 
Therefore, we only compare the performance behaviour of LZ78 against FSP-4K. Fig. 9 
(a) shows the compression time against deduplication time. It demonstrates that the 
deduplication time is much faster than that of compression time across seven traces. Fig. 
9 (b) depicts the decompression time against restore time. It shows a similar trend. It 
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indicates that the restore time significantly outperforms the decompression time when 
using the seven traces. For example, it takes only 8.83 microseconds to restore the 
rscheme trace data when employing FSP-4K. However, the decompression time of LZ78 
grows to 4620 microseconds. Fig. 9 (c) demonstrates the compression ratio against de- 
duplication ratio when the seven traces are adopted to perform the evaluation. It shows 
that the deduplication ratio is much better than that of compression ratio. This means that 
there are many identical pages contained in the traces. These pages generate the high 
deduplication ratio. However, this characteristic cannot be leveraged by compression, 
because compression is only performed within every single memory page. 
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Fig. 9. Comparison of memory compression and deduplication. 

10. CONCLUSION 

This paper explores the performance behavior of memory deduplication against 
memory compression by using seven real memory traces. The experimental results give 
the following indications: 
 
(1) There is a large volume of memory pages with identical contents contained in the 

memory system, and the number of unique memory content accessed is much less 
than the unique memory address accessed. Therefore, memory deduplication signif-
icantly outperforms memory compression.  

(2) FSP achieves the best performance in contrast to CDC and SB when performing 
memory deduplication. The optimal chunking size of FSP is equal to the size of a 
memory page. A specific memory data that is very compressable may not be able to 
achieve good deduplication performance. The characteristics of memory data have 
different impacts on compression and deduplication. 
 
The analysis results in this paper should be able to provide useful insights for de-

signing or implementing systems that require abundant memory resources.  
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