
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 33, 1103-1120 (2017)
DOI: 10.6688/JISE.2017.33.5.1

1103

Memory Deduplication: An Effective Approach
to Improve the Memory System*

YUHUI DENG1,2, XINYU HUANG1, LIANGSHAN SONG1,

YONGTAO ZHOU1
AND FRANK WANG3

1Department of Computer Science
Jinan University

Guangzhou, 510632 P.R. China
E-mail: tyhdeng@jnu.edu.cn; huangxinyu@tisson.cn; 710260037@qq.com; y.t.zhou@foxmail.com

2Key Laboratory of Computer System and Architecture
Chinese Academy of Sciences
Beijing, 100190 P.R. China

3School of Computing
University of Kent

Canterbury, CT2 7NZ, UK
E-mail: frankwang@ieee.org

Programs now have more aggressive demands of memory to hold their data than

before. This paper analyzes the characteristics of memory data by using seven real
memory traces. It observes that there are a large volume of memory pages with identical
contents contained in the traces. Furthermore, the unique memory content accessed are
much less than the unique memory address accessed. This is incurred by the traditional
address-based cache replacement algorithms that replace memory pages by checking the
addresses rather than the contents of those pages, thus resulting in many identical
memory contents with different addresses stored in the memory. For example, in the
same file system, opening two identical files stored in different directories, or opening
two similar files that share a certain amount of contents in the same directory, will result
in identical data blocks stored in the cache due to the traditional address-based cache re-
placement algorithms. Based on the observations, this paper evaluates memory compres-
sion and memory deduplication. As expected, memory deduplication greatly outperforms
memory compression. For example, the best deduplication ratio is 4.6 times higher than
the best compression ratio. The deduplication time and restore time are 121 times and
427 times faster than the compression time and decompression time, respectively. The
experimental results in this paper should be able to offer useful insights for designing
systems that require abundant memory to improve the system performance.

Keywords: memory deduplication, address-based cache, content-based cache, memory
compression, data characteristics

1. INTRODUCTION

Memory hierarchy is designed to leverage data access locality to improve the per-
formance of computer systems. Each level in the hierarchy has higher speed, lower la-
tency, and smaller size than lower levels. Over the past decades, the memory hierarchy
has suffered from significant bandwidth and latency gaps among processor, RAM, and
disk drive [1, 2]. For example, the performance of processors has continued to double

Received February 1, 2016; revised February 28, 2016; accepted March 31, 2017.
Communicated by Cho-Li Wang.
* A preliminary version of this paper appears in Proceedings of the 8th IEEE International Conference on NAS

2013.

YUHUI DENG, XINYU HUANG, LIANGSHAN SONG, YONGTAO ZHOU

AND FRANK WANG

1104

about every 18 months since the number of transistors on a chip has increased exponen-
tially in accordance with Moore’s law. The advent of multi-core processors will further
facilitate this performance improvement. Unfortunately, disk access time was improved
only about 8% per year [3], although the internal data transfer rate has been growing at
an exponential rate of 40% each year over the past 15 years [4]. The performance gap
between processor and RAM has been alleviated by fast cache memories. However, the
performance gap of RAM to disk drive has been widened to six orders of magnitude in
2000 and will continue to widen by about 50% per year [5]. Therefore, a lot of research
efforts have been invested in alleviating this gap [4, 6, 7].

Many programs require more RAM to hold their data than a typical computer has[8,
9]. Although the amount of RAM in a typical computer has significantly increased due to
the declining prices, program developers have even more aggressively increased their
demands [10]. Programs that run entirely in RAM benefit from the improvements of
processor performance, but the runtime of programs that page or swap is likely to be
dominated by the disk access time when the amount of physical RAM is less than what
the programs require [11, 12]. Additionally, due to the development of cloud technology,
lightweight laptops are widely used as netbooks which are memory constrained but have
rich CPU capability available [13].

The traditional cache replacement algorithms including Least Frequently Used
(LFU), Least Recently Used (LRU), etc. are all address-based approaches. These meth-
ods determine which memory page should be replaced by checking whether the address
of that page has been accessed. This results in many identical memory pages stored in
the cache, thus decreasing the effectiveness of the memory. The reason behind this is
because there are many data blocks that have identical contents but associate with dif-
ferent addresses. For example, in the same file system, opening two identical files stored
in different directories, or opening two similar files that share a certain amount of con-
tents in the same directory, will result in identical data blocks stored in the cache due to
the traditional address-based cache replacement algorithms. Another typical example is
that multiple programs call the same static link library.

Memory compression has been investigated by a lot of research efforts [11, 12, 14-
17]. The basic idea is reserving some memory space that would normally be used direct-
ly by programs, compressing relatively unused memory pages, and storing the com-
pressed pages in the reserved space. By compressing those pages, the effective memory
size available to the programs becomes larger, and some memory paging and swapping
can be avoided, thus eliminating some expensive disk accesses. Because accessing com-
pressed memory is faster than accessing disk drives, memory compression can over
commit memory space without significantly reducing performance. For example, when a
virtual page needs to be swapped, this page can be first compressed and then maintained
in the memory. When the page is needed again, it is decompressed and given back. This
process is much faster than swapping those pages to disk drives, although it is slower
than accessing real memory. Memory compression must employ lossless compression
algorithms.

Data deduplication periodically calculates a unique hash number for every chunk of
data by using hash algorithms such as MD5 and SHA-1. The calculated hash number is
then compared against other existing hash numbers in a database that dedicates for stor-
ing chunk hash numbers. If the hash number is already in the database, the data chunk

MEMORY DEDUPLICATION: AN EFFECTIVE APPROACH TO IMPROVE THE MEMORY SYSTEM 1105

does not need to be stored again, a pointer to the first instance is inserted in place of the
duplicated data chunk. Otherwise, the new hash number is inserted into the database and
the new data chunk is stored. In this way, data chunks with equal content can be merged
to a single chunk and shared in a copy-on-write fashion.

In order to achieve the best effectiveness, compression and deduplication are nor-
mally applied to small data sets and big data sets, respectively. By using seven real
memory traces, this paper applies deduplication to memory pages against the traditional
memory compression for increasing the effective memory space. Moreover, this paper
comprehensively analyzes the characteristics of memory data. Since memory is orga-
nized in pages, we take a single memory page as a basic unit of both compression and
deduplication. Our experimental results demonstrate that memory deduplication signifi-
cantly outperforms memory compression. Our key contributions are as follows:

(1) This paper reports that there are a large volume of pages with identical contents con-

tained in the running memory system.
(2) This paper proposes to apply the deduplication technology to alleviate the memory

bottleneck in modern computer environments.
(3) This paper analyzes the characteristics of memory data in a great detail and explores

the impacts of the characteristics on the memory compression and deduplication.
(4) This paper evaluates memory deduplication against traditional memory compression

and explores the performance impacts of memory deduplication.

The remainder of this paper is organized as follows. Section 2 introduces the related

work. Background knowledge is presented in Section 3. Section 4 introduces the exper-
imental environment. The characteristics of memory data are analyzed in Section 5. Sec-
tions 6 and 7 perform a comprehensive evaluation to explore the compression and dedu-
plication behavior of memory data, respectively. Section 8 concludes the paper.

2. RELATED WORK

Memory compression has been considered as a technique to utilize memory re-
sources more effectively. The existing technologies can be classified into two categories
including full memory compression and compressed disk cache. Full memory compres-
sion keeps the entire memory compressed (with the possible exception of some special-
ized regions such as DMA) [11, 14]. For example, Wilson et al. [11] introduced com-
pression algorithms to compress virtual memory. Their approach can adaptively deter-
mine how much memory should be compressed by keeping track of recent program be-
havior. The full memory compression is best illustrated by the MXT (memory extension
technology) of IBM [18]. Compressed disk cache [17] employs a portion of main
memory as a buffer between the main memory and the disk drive. The evicted memory
pages from the regular memory are compressed and stored in the cache, thus alleviating
the disk accesses. For example, Roy et al. [17] proposed to compress memory pages that
need to be paged out and store the pages in memory, thus avoiding the large latencies of
disk accesses.

However, effectively managing the compressed memory has to handle a few chal-
lenges. First, memory decompression generates significant latency that causes a critical

YUHUI DENG, XINYU HUANG, LIANGSHAN SONG, YONGTAO ZHOU

AND FRANK WANG

1106

impact on the memory access time. This is because the compressed memory pages have
to be all decompressed on the fly. Secondly, compressed memory results in variable-
sized memory pages. This requires complicated design and an efficient method to main-
tain the mapping between the logical and the compressed address space, and reduce the
memory fragmentation. Hallnor and Reinhardt [15] designed a memory hierarchy that
employs a unified compression scheme encompassing the last-level on-chip cache, the
off-chip memory channel, and off-chip main memory. This scheme simultaneously in-
creases the effective on-chip cache capacity, off-chip bandwidth, and main memory size,
while avoiding compression and decompression overheads between levels. Lee et al. [19]
suggested several techniques to reduce the decompression overhead and the impact of
variable-sized compressed blocks including selective compression, fixed space allocation
for the compressed blocks, parallel decompression, using a decompression buffer, and so
on. Tuduce and Gross [12] designed a memory compression solution that adapts the al-
location of real memory between uncompressed and compressed pages and also manages
fragmentation without user involvement. The method dynamically adjusts the size of
memory allocation for compression based on the resource demands of each application.

Some other optimization methods are also proposed to alleviate the challenges.
M.Ekman [14] proposed a main-memory compression scheme to remove decompression
and translation overhead from the critical memory access path. The scheme employs a
fast and simple compression algorithm by leveraging an observation that not only
memory words, but also bytes, and entire blocks and pages frequently contain the value
zero. X-Match [16] is a compression algorithm that is efficient at compressing small
blocks of data and suitable for high-speed hardware implementation.

Recently, some research efforts are invested in using deduplication technology to
alleviate the memory bottleneck in server virtualization environment, thus maximizing
the number of virtual machines that can run on a physical machine of a given resource.
Memory deduplication has to periodically calculate a hash value for every physical
memory page. The best location to calculate hash values is in the hypervisor of a virtual-
ized server, since only the hypervisor has a full knowledge and access privilege of all
physical memory pages. Pan et al. [20] proposed a deferrable aggregate hypercall (DAH)
mechanism to achieve both low invocation overhead and low performance impact of
memory deduplication on running applications in a virtual server. Memory scanning
deduplication techniques require very aggressive scan rates to identify sharing opportu-
nities with a short life span of up to about 5 minutes. Miller et al. [21] proposed to use
the I/O-based hints generated by read and write operations in the virtual file system to
make the memory scanning process more efficient, and in consequence enable it to find
and exploit short-lived sharing opportunities without raising the scan rate. In contrast to
the existing works, this paper will investigate the performance behavior of memory
deduplication against the traditional memory compression.

3. BACKGROUND

3.1 Data Compression

Compression relies on the fact that the data is redundant, and the redundant data
follows some rules [22]. The rules can be learned and used to accurately predict the data.

MEMORY DEDUPLICATION: AN EFFECTIVE APPROACH TO IMPROVE THE MEMORY SYSTEM 1107

By leveraging the rules, compressing a sequence of symbols is obtained by encoding the
more frequent or likely symbols with shorter code words compared to the less frequent
or likely symbols. Therefore, Compression can be divided into two phases including
modeling and encoding that are typically interleaved with each other. Modeling detects
regularities that allow a more concise representation of the information, and makes a
probability distribution. Encoding is the construction of that more concise representation
based on the probabilities assigned by the model [11, 23]. Many coding algorithms have
been proposed. We only discuss Arithmetic algorithm, Huffman algorithm, LZ77, LZ78,
LZW, and RLE, since the algorithms will be employed to compress memory data. The
reader is referred to [22] for a comprehensive understanding of the algorithms.

(1) Arithmetic coding employs an interval between 0 and 1 on the real number line to

represent a source. Each symbol of the source narrows this interval. The number of
bits needed to represent the symbol grows with the reducing of the interval. This ap-
proach uses an explicit probabilistic model and adopts the probabilities of the source
to narrow the interval. It employs an unordered list of source and their probabilities.
The number line is then partitioned into subintervals on the basis of cumulative
probabilities. Therefore, a high-probability symbol narrows the interval less than a
low-probability symbol, so that the high probability symbol contributes fewer bits to
the coded information.

(2) Huffman coding takes a list of nonnegative weights that denote the probabilities as-
sociated with the source, and constructs a full binary tree whose leaves are labeled
with the weights. A set of singleton trees are constructed for each weight in the list.
At each step the trees that have the two smallest weights Wi and Wj are merged into a
new tree. The weight of the new tree is Wi + Wj, and the tree has two children repre-
sented by Wi and Wj. The weights Wi and Wj are then deleted from the list, and the
weight Wi + Wj is added into the list. This process continues until the weight list
contains a single value.

(3) LZ77 and LZ88 are both theoretically dictionary coders. LZ77 maintains a sliding
window to keep track of some amount of the most recent data. The encoder uses this
data to look for matches, and the decoder employs this data to interpret the matches
that the encoder refers to. This method compresses data by replacing repeated occur-
rences of data with references to a single copy of that data existing in the sliding
window. A match is encoded by a pair of numbers (length-offset pair). LZ78 com-
presses data by replacing repeated occurrences of data with references to a dictionary.
The dictionary is built in terms of the input data stream. LZW (LempelZivWelch)
is an improved implementation of the LZ78. LZW encodes sequences of 8-bit data as
fixed-length 12-bit codes. The codes from 0 to 255 denote 1-character sequences,
and the codes from 256 to 4095 are generated in a dictionary for sequences encoun-
tered in the data as it is encoded. At each phase in compression, input data are
grouped into a sequence until the next character would make a sequence for which
there is no code yet in the dictionary. The code for the sequence (without that char-
acter) is removed, and a new code (for the sequence with that character) is inserted to
the dictionary.

(4) RLE (Run-length encoding) stores sequences in which the same data value occurs in
many consecutive data elements as a single data value and count.

YUHUI DENG, XINYU HUANG, LIANGSHAN SONG, YONGTAO ZHOU

AND FRANK WANG

1108

3.2 Data Deduplication

Data deduplication is also called intelligent compression or single-instance storage.
It involves two phases including chunking and deduplication detection [24, 25]. The
chunking phase splits data into non-overlapping data blocks (chunks). Each of these
chunks is processed independently afterwards. The duplication detection phase detects if
another chunk with exactly the same content has already been stored, by using hash al-
gorithms such as MD5 and SHA-1. If a chunk is duplicated, the subsequent deduplicated
chunks receive a pointer to the original chunk instance. This approach can effectively
eliminate redundant chunks, and ensure that only the first unique instance of any chunk
is actually stored. Chunking phase is very important for the quality of redundancy detec-
tion. It can be classified into four categories:

(1) Whole file chunking (WFC): WFC employs a complete file as a basis for the duplica-

tion detection. If two files are exactly the same, the first instance of the file is stored
and the subsequent deduplicated files are replaced with pointers to the stored file
copy. Unfortunately, the result of the change of a single bit within a file is in a totally
different copy of the entire file being stored. Therefore, this method is not very ef-
fective.

(2) Fixed-size partition (FSP) [26]: FSP splits data into equal chunks that are independ-
ent of the content of the data being stored. The effectiveness of this method is highly
sensitive to the sequence of data streams. For example, adding a single bit at the be-
ginning of a file can change the boundaries and the content of all chunks in the file.
This results in a failure of redundancy detection and eliminates any remaining
matches, although the two file are nearly identical with only one bit shifted.

(3) Content-defined Chunking (CDC) [24]: CDC employs the data content rather than
the data position within files to locate the boundaries of chunks, thus avoiding the
impact of data shifting. This approach computes a hash value F for all substrings
which are equal in size (usually 48 bytes) of the file. All data between two positions
for that hash value F of the substring fulfills the equitation F is assigned to one
chunk. The chunks have a variable size with an expected size N. Minimal and max-
imal chunk sizes are determined to avoid too small and too large chunks. However,
the expected size N determines the granularity of duplicate elimination, thus deciding
the storage utilization.

(4) Sliding Block (SB) [27]: SB divides files into fixed-size and non-overlapping chunks
and calculates its signatures (4-byte MD4 along with a 2-byte rolling checksum). If
two files have the same name, each chunk signature of the target file is compared
against a sliding-block signature of every chunk in the source file. This method has
to calculate a separate multi-byte checksum for each byte of the data. However, the
checksum information for all offsets of all files is too large in contrast to the data
being stored, so this approach normally performs a finer-granularity matching.

4. EXPERIMENTAL ENVIRONMENT

Wilson et al. [11] executed a set of real programs on an Intel x86 machine and em-
ployed Vmtrace [28] to collect traces of memory pages. The Vmtrace captures overall

MEMORY DEDUPLICATION: AN EFFECTIVE APPROACH TO IMPROVE THE MEMORY SYSTEM 1109

amount of live data for a run of the program and writes it into a trace file. Because dif-
ferent program behavior influences the trace results, a specific use case is employed to
generate to page images. For example, the gcc-2.7.2 compiler compiles the largest file of
its own source code combine.c to generate the page images of memory [29]. The page
image traces are LRU behavior sequences that contain the paging traffic for an LRU
memory of some fixed size. Each record in the behavior sequences contains six fields
including a compulsory tag, a fetched page number, a fetched page image, a dirtiness tag,
an evicted page number, an evicted page image. Table 1 summarizes the general infor-
mation of the traces.

Table 1. Features of memory page traces.
 Trace name Description Size (GByte)
1 espresso A circuit simulator 1.47
2 gcc-2.7.2 A GNU C/C++ compiler 1.13

3 gnuplot A GNU plotting utility 1.47

4 grobner Calculated Grobner basis functions 3.28

5 lindsay A hypercube simulator 1.11

6 p2c A PascalC transformer 1.36

7 rscheme An implementation of Scheme 0.25

Table 2. Configuration of the experimental platform.
Components Description

CPU Intel Core2 T6400 (2M Cache, 2.00 GHz, 800 MHz FSB)
Memory 2G, DDR2 800MHz
Hard disk WDC WD2500BEVT-60ZCT1 (250GB /5400RPM)
Chipset Intel 4 Series-ICH9M

 In order to maintain the characteristics of the traces, we also adopted an Intel X86
machines to process the traces. Table 2 describes the configuration of our experimental
platform. In order to minimize the impacts of background processes and obtain accurate
results, we turned off all unnecessary processes and dedicated a partition of 100 GB for
the evaluation. All the analysis in this paper is based on ASCII characters.

5. ANALYZING MEMORY DATA CHARACTERISTICS

5.1 Statistic Results

Table 3 concludes the statistic results of the page image traces. The results refer to a
symbol set which has a granularity of one byte. All percentages are of the total memory
data volume. The Zero column indicates that a large volume of memory data are zero
bytes across seven traces. The Continuous zero column summarizes the percentage of
pages that contain continuous zeros longer than 32 bytes. According to the two columns,
the percentage of zeros ranges between 35.98% and 86%. This means at least one third
of the memory data is zeroes. Furthermore, most of the zeros occur continuously. The

YUHUI DENG, XINYU HUANG, LIANGSHAN SONG, YONGTAO ZHOU

AND FRANK WANG

1110

Bound column includes the percentage of memory data which is continuous zeroes long-
er than 32 bytes, and the continuous zeroes start or end at a page boundary. The Low
column shows percentage of memory data that are low values ranging between 1 and 9.
Since we use decimal to denote ASCII characters, the low values represent start of head-
ing, start of text, end of text, end of transmission, enquiry, acknowledge, bell, backspace,
and horizontal tab, respectively [30]. The Power(2, n) column implies the integral pow-
er-of-two values. It indicates the values of 2, 4, 8, 16, 32, 64, 128, 255 using decimal.

Entropy is normally used to measure redundancy. The entropy of a source means
the average number of bits required to encode each symbol present in the source. There-
fore, the compressibility grows with the decrease of the entropy value. Entropy is a use-
ful indicator of compression ratio for a compressor. Given a set of symbols and a source
in which these symbols occur, if each symbol occurs with probability, the zero-order
entropy is. The Entropy column in Table 3 is calculated with zero-order entropy.

Table 3. Statistic results of the page image traces.

Trace name Zero (%)
Continuous
zeros (%)

Bound (%) Low(%) Power(2,n) (%) Entropy

Espresso 45.94 14.61 10.34 16.25 16.46 4.19
gcc-2.7.2 56.09 29.88 6.44 11.13 12.25 3.85
gnuplot 80.72 44.53 44.50 3.29 4.66 2.01
grobner 58.34 30.91 19.78 18.62 15.35 3.30
lindsay 86.00 49.96 25.77 6.40 6.72 1.33

p2c 59.62 13.87 7.63 6.30 7.89 3.60
rscheme 35.98 10.75 6.39 17.86 17.85 4.94

5.2 Zero Distribution

Fig. 1 shows the percentage of continuous zero distribution, where X axis repre-
sents the length of continuous zero byte, and Y axis denotes the percentage. The maxi-
mum value of X axis is 4096 which is equal to one page size. Please note that the Y axes
across the seven traces are in different scale, in order to have a close observation of the
percentage. If we assume that the length of continuous zero is K, the number of K is N,
and the size of trace is C bytes, the percentage is calculated as (KN)/C.

The compressibility is strongly related to the distribution of zero. Since the value of
a tick in the X axis represents the length of continuous zero byte, the bigger the value,
the more compressible the page. For example, if the length of continuous zero is 4096,
this indicates that the whole page is zero. This page will achieve the highest compression
ratio. Additionally, if there are more ticks concentrating in the second half of X axis, the
trace will achieve higher compression ratio than that in the first half of X axis.

Fig. 1 (a) shows that three continuous zero has the highest percentage (P3 = 0.16,
where the number 3 indicates three continuous zeros). There are some ticks distributed
across X axis. For example, P1984 = 0.02. According to Fig. 1 (b), this trace has a larger
portion of zero than that of Fig. 1 (a). However, the length of continuous zero is very
short. The length normally ranges between 0 and 10. Therefore, most of the ticks con-
centrate in the beginning of X axis. For example, the highest percentage P3 is 0.07. Alt-

MEMORY DEDUPLICATION: AN EFFECTIVE APPROACH TO IMPROVE THE MEMORY SYSTEM 1111

hough we can observe many ticks in the second half of X axis, the percentage is very
low. Figs. 1 (c) and (d) demonstrate a similar pattern. Some ticks distribute in the middle
of X axis (they have a relatively long length of continuous zero), and the percentages are
also very high. For example, the highest percentage in Figs. 1 (c) and (d) are P2574 =
0.12 and P3 = 0.15, respectively. The distribution of ticks across Figs. 1 (e)-(g) are very
much like Fig. 1 (b). Most of the long continuous zero concentrate in the beginning of X
axis. It is very interesting to observe that P4096 of Figs. 1 (a)-(g) are 0.0056, 0.02, 0.11,
0.0006, 0.06, 0.005, and 0.09, respectively. This indicates that there are many pages full
of zeroes across the seven traces.

0 500 1000 1500 2000 2500 3000 3500 4000
0.000

0.005

0.010

0.015

0.020

0.025

0.030

4096

0.005

0.010

0.015

0.020

0.025

0.030

P
er

ce
nt

ag
e

Number of continuous zero

 espresso

0 500 1000 1500 2000 2500 3000 3500 4000

0.000

0.005

0.010

0.015

0.020

0.025

0.030

4096

0.005

0.010

0.015

0.020

0.025

0.030

Pe
rc

en
ta

ge

Number of continuous zero

 gcc-2.7.2

0 500 1000 1500 2000 2500 3000 3500 4000

0.00

0.02

0.04

0.06

0.08

0.10

0.12

4096

0.02

0.04

0.06

0.08

0.10

0.12

P
er

ce
nt

ag
e

Number of continuous zero

 gnuplot

(a) (b) (c)

0 500 1000 1500 2000 2500 3000 3500 4000
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

4096

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

Pe
rc

en
ta

ge

Number of continuous zero

 grobner

0 500 1000 1500 2000 2500 3000 3500 4000

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

4096

0.01

0.02

0.03

0.04

0.05

0.06

0.07

P
er

ce
nt

ag
e

Number of continuous zero

 lindsay

0 500 1000 1500 2000 2500 3000 3500 4000
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

4096

0.01

0.02

0.03

0.04

0.05

0.06

0.07

P
er

ce
nt

ag
e

Number of continuous zero

 p2c

(d) (e) (f)

0 500 1000 1500 2000 2500 3000 3500 4000
0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.010

4096

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.010

P
er

ce
nt

ag
e

Number of continuous zero

 rscheme

 (g)

Fig. 1. Percentage of continuous zero bytes.

5.3 Symbol Distribution

Fig. 2 shows the accumulate percentage of symbol distribution across the seven
traces. It is easy to observe that zeroes and low values constitute over 50% of the
memory data. This is consistent with the statistics summarized in Table 3. The percent-
age curves grow with the increase of ASCII values. However, there is a steep growth in
the very beginning of X axis, and the growth trend gradually slows. This indicates that
the extended ASCII codes (The decimal of ASCII codes ranges from 128 to 255.) except
255 are only a small part of the memory data over the seven traces.

YUHUI DENG, XINYU HUANG, LIANGSHAN SONG, YONGTAO ZHOU

AND FRANK WANG

1112

0 25 50 75 100 125 150 175 200 225 250
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

255

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
er

ce
nt

ag
e

Symbol distribution

 espresso
 gcc-2.7.2
 gnuplot
 grobner
 lindsay
 p2c
 rscheme

Fig. 2. Accumulate percentage of symbol distribution.

Fig. 3 deconstructs the symbol distribution across seven traces to get further in-
sights into the distribution pattern as a complement to Fig. 2. The figures demonstrate
that cluster is the most obvious feature across the seven traces. Most of the clusters are
short lived at fine granularity and they appear to smooth out gradually. A number of
spikes can be observed to interrupt the smoothness. Most of the spikes are accumulated
within a relatively small and specific area. The spikes imply that the corresponding
symbols occur frequently. The higher the spikes, the more frequent the symbols. There-
fore, according to the figures, only a small number of symbols occur with a high fre-
quency. It indicates a significant temporal locality.

0 25 50 75 100 125150175 200225 250
0.00
0.01
0.02
0.03
0.04

10
20
30
40
50
60
70

255
0.01
0.02
0.03
0.04

10
20
30
40
50
60
70

Pe
rc

en
ta

ge
(%

)

Symbol distribution

 espresso

0 25 50 75 100 125 150 175 200 225 250
0.00
0.01
0.02
0.03
0.04

10
20
30
40
50
60
70

255
0.01
0.02
0.03
0.04

10
20
30
40
50
60
70

P
er

ce
nt

ag
e(

%
)

Symbol distribution

 gcc-2.7.2

0 25 50 75 100 125 150 175 200 225 250
0.00
0.01
0.02
0.03
0.04

10
20
30
40
50
60
70

255
0.01
0.02
0.03
0.04

10
20
30
40
50
60
70

P

er
ce

nt
ag

e(
%

)

Symbol distribution

 gnuplot

0 25 50 75 100 125 150 175 200 225 250
0.00
0.01
0.02
0.03
0.04

10
20
30
40
50
60
70

255
0.01
0.02
0.03
0.04

10
20
30
40
50
60
70

P
er

ce
nt

ag
e(

%
)

Symbol distribution

 grobner

0 25 50 75 100 125 150 175 200 225 250
0.00
0.01
0.02
0.03
0.04

10
20
30
40
50
60
70

255
0.01
0.02
0.03
0.04

10
20
30
40
50
60
70

Pe
rc

en
ta

ge
(%

)

Symbol distribution

 lindsay

0 25 50 75 100 125 150 175 200 225 250
0.00
0.01
0.02
0.03
0.04

10
20
30
40
50
60
70

255
0.01
0.02
0.03
0.04

10
20
30
40
50
60
70

P
er

ce
nt

ag
e(

%
)

Symbol distribution

 p2c

0 25 50 75 100 125 150 175 200 225 250
0.00
0.01
0.02
0.03
0.04

10
20
30
40
50
60
70

255
0.01
0.02
0.03
0.04

10
20
30
40
50
60
70

Pe
rc

en
ta

ge
(%

)

Symbol distribution

 rscheme

Fig. 3. Symbol distribution of seven traces.

MEMORY DEDUPLICATION: AN EFFECTIVE APPROACH TO IMPROVE THE MEMORY SYSTEM 1113

A similar pattern across the figures is that the high clustered spikes are normally
accumulated within some specific areas. For example, the beginning of X axis, around
the decimal value 25, 50, 80,100, and 110. We further analyzed the collected data and
found that the frequently occurred symbols normally distribute in the intervals of [0, 9],
[48, 75], [65, 90], and [97, 122]. The intervals correspond to the ASCII characters sum-
marized in Table 4.

Table 4. Some specific ASCII characters and the corresponding decimal.
Decimal Values 09 4857 6590 97122

ASCII
character

Null, start of heading, start of text, end of text,
end of transmission, enquiry, acknowledge,
bell, backspace, and horizontal tab

09 AZ az

According to the analysis, we have following conclusions: (1) Memory data con-
tains a large portion of zeroes and the zeroes normally occur continuously; (2) A small
number of symbols occur frequently. This indicates a strong temporal locality; (3) Some
symbols are normally clustered and appear together. This implies a high spatial locality.

6. IDENTICAL MEMORY PAGES

In order to identify the identical memory pages contained in the traces, we calculate
a hash number for the content of each memory page, and compare the hash numbers
against each other. The same hash number indicates identical content of memory pages.
Fig. 4 shows the percentages of identical memory pages of seven traces. It is interesting
to observe that espresso, gcc-2.7.2, gnuplot, grobner, lindsay, p2c, and rscheme contain
85%, 91%, 83%, 79%, 55%, 88%, and 75% identical memory pages, respectively. The
seven traces are all collected when the memory system of the computer employs LRU
replacement algorithm. LRU decides which page is used least recently by checking the
address of the page. Therefore, the LRU has no information about the content of the page
that is replaced. This results in many identical memory pages that are associated with
different addresses. For example, opening two identical files stored in different directo-
ries, or opening two similar files stored in the same directory, will incur many identical
memory pages. This result can be applied to the address-based cache replacement algo-
rithms such as LFU, SLRU, etc.

In order to verify the above observations and analysis, we further investigate the
number of accesses going to unique page addresses and unique page contents. The traces
record the information of page hit when performing the page replacement. Each page hit
indicates an identical page address in the memory in contrast to the current page address.
Therefore, we can calculate the number of unique address accesses. It is simple to obtain
the number of unique page content accesses by using the approach employed to calculate
the identical memory pages. Fig. 5 shows that the number of unique address accesses is
much higher than the unique content accesses. This confirms what we report in Fig. 4.

YUHUI DENG, XINYU HUANG, LIANGSHAN SONG, YONGTAO ZHOU

AND FRANK WANG

1114

espresso gcc gnuplotgrobner lindsay p2c rscheme
0.0

0.2

0.4

0.6

0.8

P
er

ce
nt

ag
e

of
 id

en
ti

ca
l m

em
or

y
pa

ge
s

Memory Data Traces
espresso gcc gnuplot grobner lindsay p2c rscheme

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

N
um

be
r

of
 a

cc
es

se
s

Memory Data Traces

 Address access
 Content access

Fig. 4. Identical memory pages. Fig. 5. Address access vs. content access.

7. MEMORY DATA COMPRESSION

Lossless data compression approaches can be classified as stream compression and
block compression. The streaming compression continuously accepts a stream of bytes
as input and produced a compressed stream as output, while block compression accepts
data block by block and compresses each block separately. Most compression methods
work in the streaming mode. However, if the entire memory data is compressed as a sin-
gle contiguous stream, it would be very expensive when a few memory pages are read,
since the entire compressed data has to be decompressed before serving the small read
requests, and this would incur some memory swapping. Therefore, it is better to com-
press a small group of consecutive blocks at one time. This makes the compression/de-
compression more efficient. When a read request comes, the system only needs to read
and decompress a small group of blocks. This optimizes read operation and allows
greater scalability in the total size of the memory data being compressed. Since the
memory system is organized in pages, we employ block compression, and the group size
is defined as an integer times of the memory page size. The compression ratio is defined
as the size of compressed memory data divided by the size of uncompressed memory
data.

We will quantify the benefits achieved by compressing seven memory traces. The
block size is 8KB equaling to two memory pages. Fig. 6 reveals significant variations of
system behavior between different compression algorithms. Fig. 6 (a) shows that the LZ
algorithms (LZ77, LZ78, LZW) obtain the significant compression ratios (around 0.4),
and gunplot trace achieves the best compression ratio across the six algorithms. Figs. 6
(b) and (c) demonstrate the compression and decompression time of a single block by
using different algorithms and traces. It shows that the RLE algorithm performs best, and
the performance of LZ77 and LZW are not acceptable in contrast to the latest Hitachi
Ultrastar 15K which has an average access time of 2 milliseconds [31], since the com-
pression time of LZ77 and decompression time of LZW are over 70 milliseconds and 50
milliseconds, respectively. According to the above discussion, we believe that LZ78
strikes a good balance between compression ratio, compression time, and decompression
time. The compression time and decompression time are both less than 4 milliseconds
across seven traces. Fig. 6 reveals that the compression and decompression performance
difference under different algorithms can be over 500 times and 300 times, respectively.

Since we use block compression to perform the evaluation, the block size has a sig-
nificant impact on the system behaviour. Fig. 7 (a) shows a general trend that the com-

MEMORY DEDUPLICATION: AN EFFECTIVE APPROACH TO IMPROVE THE MEMORY SYSTEM 1115

pression ratio decreases with the increase of block size (from 4Kbyte to 128Kbyte)
across the seven traces. Figs. 7 (b) and (c) reveal that the bigger the block size is, the
higher the compression and decompression time are. This pattern is reasonable, because
larger data block is more compressible and requires more time to compress and decom-
press. However, the performance decrease is not linearly proportional to the block size.

ArithmeticHuffman LZ77 LZ78 LZW RLE
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

C
om

pr
es

si
on

 r
at

io

Algorithms

 espresso gcc-2.7.2 gnuplot
 grobner lindsay p2c
 rscheme

ArithmeticHuffman LZ77 LZ78 LZW RLE
0
1
2
3
4
5
6
7

40
50
60
70
80
90

100
110

0
1
2
3
4
5
6
7
40
50
60
70
80
90
100
110

C
om

pr
es

si
on

 ti
m

e
(m

il
li

se
co

nd
)

Algorithms

 espresso
 gcc-2.7.2
 gnuplot
 grobner
 lindsay
 p2c
 rscheme

ArithmeticHuffman LZ77 LZ78 LZW RLE
0

5

40

45

50

55

0

5

40

45

50

55

D
ec

om
pr

es
si

on
 ti

m
e

(m
il

li
se

co
nd

)

Algorithms

 espresso
 gcc-2.7.2
 gnuplot
 grobner
 lindsay
 p2c
 rscheme

(a) Compression ratio (b) Compression time (c) Decompression time

Fig. 6. Impact of different algorithms on the memory data compression.

4 8 16 32 64 128

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

C
om

pr
es

si
on

 r
at

io

Block size(KB)

 espresso gcc-2.7.2 gnuplot
 grobner lindsay p2c
 rscheme

4 8 16 32 64 128

0
20
40
60
80

100
120
140
160
180
200

0
20
40
60
80
100
120
140
160
180
200

C
om

pr
es

si
on

 ti
m

e(
m

illi
se

co
nd

)

Block size(KB)

 espresso
 gcc-2.7.2
 gnuplot
 grobner
 lindsay
 p2c
 rscheme

4 8 16 32 64 128

0

20

40

60

80

100

120

140

0

20

40

60

80

100

120

140

D
ec

om
pr

es
si

on
 ti

m
e(

m
il

li
se

co
nd

)

Block size(KB)

 espresso
 gcc-2.7.2
 gnuplot
 grobner
 lindsay
 p2c
 rscheme

(a) Compression ratio. (b) Compression time. (c) Decompression time.

 Fig. 7. Impact of block size on the system behavior (LZ78 algorithm).

8. MEMORY DATA DEDUPLICATION

Before the evaluation, we delete the header information as introduced in Section 4
in the traces and align the boundaries of chunks to the boundaries of memory pages. In
contrast to the traditional compression methods, data deduplication works at a course-
grained level. Fig. 8 shows the performance pattern of memory deduplication. The X
axis denotes different chunking policies as discussed in Section 3.2, where the numbers
following FSP and SB represent the chunking size. For example, FSP-4K implies that
fixed-size partition scheme splits data into equal 4KByte chunks. Since the WFC ap-
proach is not suitable for memory deduplication, our evaluation only adopts three
schemes including FSP, CDC, and SB. Please note that the Y axis of Figs. 8 (b) and (c)
is in microseconds. Since the page size of the seven memory traces is 4Kbyte, FSP-4K
covers one memory page, FSP-8K covers two memory pages, and so on. The deduplica-
tion ratio is defined as the size of the data deduplicated divided by the size of the original
data.

YUHUI DENG, XINYU HUANG, LIANGSHAN SONG, YONGTAO ZHOU

AND FRANK WANG

1116

FSP-4K FSP-8K FSP-16KFSP-32K CDC SB-4K
0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

 espresso gcc-2.7.2 gnuplot
 grobner lindsay p2c
 rscheme

D
ed

up
li

ca
ti

on
 r

at
io

Algorithms
FSP-4K FSP-8K FSP-16KFSP-32K CDC SB-4K

0

100

200

1200

1400

1600

1800

0

100

200

1200

1400

1600

1800

D
ed

up
li

ca
ti

on
 ti

m
e(

m
ic

ro
se

co
nd

s)

Algorithms

 espresso
 gcc-2.7.2
 gnuplot
 grobner
 lindsay
 p2c
 rscheme

FSP-4K FSP-8K FSP-16KFSP-32K CDC SB-4K

0
10
20
30
40
50
60
70
80

0

10

20

30

40

50

60

70

80

R
es

to
re

 ti
m

e(
m

ic
ro

se
co

nd
s)

Algorithms

 espresso
 gcc-2.7.2
 gnuplot
 grobner
 lindsay
 p2c
 rscheme

(a) Deduplication ratio. (b) Deduplication time. (c) Restore time.

Fig. 8. Performance behavior of memory deduplication.

Fig. 8 (a) shows that FSP-4K and SB-4K achieve the best deduplication ratio across
the seven traces. The experimental results are very close to each other by using the above
two algorithms. When the chunking size of FSP is increased from 4Kbyte to 32Kbyte,
the deduplication ratio is significantly increased. The compression ratio of CDC is close
to 1. It is not acceptable either. Therefore, from a compression ratio standpoint, FSP-4K
and SB-4K are the best candidates to perform memory deduplication. Furthermore, we
believe that the optimal chunking size of memory deduplication is one memory page.
Unfortunately, according to Figs. 8 (b) and (c), the deduplication time of SB-4K is about
40 times higher than that of the FSP-4K, although the restore time is comparable. Ac-
cording the above discussion, we believe that FSP-4K is the best candidate policy for
memory deduplication, since FSP-4K takes less than 50 microseconds and 10 microsec-
onds to deduplicate and restore a single memory page in terms of the experimental re-
sults reported in Figs. 8 (b) and (c).

According to the evaluation in Sections 6 and 7, the chunking size has an opposite
impact on the performance of memory compression and memory deduplication. This is
because the probability of those identical characters contained in a chunk grows with the
increase of the chunk size, while the probability of two chunks that are exactly the same
is decreased with the growth of the chunk size. For example, an 8Kbyte chunk would
involve more compressable characters than that of a 4Kbyte. However, it is more diffi-
cult to find two identical 8Kbyte chunks than 4Kbyte chunks. Furthermore, the memory
characteristics may have different impacts on the compression and deduplication. For
example, gunplot trace has the best compression ratio and compression performance.
However, this advantage disappears when the trace is performed deduplication.

9. COMPARISON OF MEMORY COMPRESSION AND DEDUPLICATION

In order to further investigate the performance behaviour of memory deduplication,
we compare the memory compression against memory deduplication in terms of time
overhead and data reduction ratio. As discussed in Sections 7 and 8, LZ78 algorithm and
FSP-4K achieve the best performance in the compression and deduplication, respectively.
Therefore, we only compare the performance behaviour of LZ78 against FSP-4K. Fig. 9
(a) shows the compression time against deduplication time. It demonstrates that the
deduplication time is much faster than that of compression time across seven traces. Fig.
9 (b) depicts the decompression time against restore time. It shows a similar trend. It

MEMORY DEDUPLICATION: AN EFFECTIVE APPROACH TO IMPROVE THE MEMORY SYSTEM 1117

indicates that the restore time significantly outperforms the decompression time when
using the seven traces. For example, it takes only 8.83 microseconds to restore the
rscheme trace data when employing FSP-4K. However, the decompression time of LZ78
grows to 4620 microseconds. Fig. 9 (c) demonstrates the compression ratio against de-
duplication ratio when the seven traces are adopted to perform the evaluation. It shows
that the deduplication ratio is much better than that of compression ratio. This means that
there are many identical pages contained in the traces. These pages generate the high
deduplication ratio. However, this characteristic cannot be leveraged by compression,
because compression is only performed within every single memory page.

espressogcc-2.7.2 gnuplot grobner lindsay p2c rscheme
0

20

40

60

80

2000

4000

6000

T
im

e(
m

ic
ro

se
co

nd
s)

 Compression(LZ78)
 Deduplication(FSP-4K)

 espressogcc-2.7.2 gnuplot grobner lindsay p2c rscheme
0
2
4
6
8

10

2000

3000

4000

5000

T
im

e(
m

ic
ro

se
co

nd
s)

 Compression(LZ78)
 Deduplication(FSP-4K)

espressogcc-2.7.2 gnuplot grobner lindsay p2c rscheme
0.0

0.1

0.2

0.3

0.4

0.5

0.6
 Compression(LZ78)
 Deduplication(FSP-4K)

co
m

pr
es

si
on

 /
de

du
pl

ic
at

io
n

ra
ti

o

 (a) (b) (c)

Fig. 9. Comparison of memory compression and deduplication.

10. CONCLUSION

This paper explores the performance behavior of memory deduplication against
memory compression by using seven real memory traces. The experimental results give
the following indications:

(1) There is a large volume of memory pages with identical contents contained in the

memory system, and the number of unique memory content accessed is much less
than the unique memory address accessed. Therefore, memory deduplication signif-
icantly outperforms memory compression.

(2) FSP achieves the best performance in contrast to CDC and SB when performing
memory deduplication. The optimal chunking size of FSP is equal to the size of a
memory page. A specific memory data that is very compressable may not be able to
achieve good deduplication performance. The characteristics of memory data have
different impacts on compression and deduplication.

The analysis results in this paper should be able to provide useful insights for de-

signing or implementing systems that require abundant memory resources.

ACKNOWLEDGMENT

This work is supported by the NSFC (61572232, 61272073), Science and Technol-
ogy Planning Project of Guangzhou (201604016100), NSF of Guangdong Province
(S2013020012865), and Open Research Fund of Key Laboratory of Computer System

YUHUI DENG, XINYU HUANG, LIANGSHAN SONG, YONGTAO ZHOU

AND FRANK WANG

1118

and Architecture, Institute of Computing Technology, Chinese Academy of Sciences
(CARCH201401).

REFERENCES

1. Y. Deng, “Exploiting the performance gains of modern disk drives by enhancing
data locality,” Information Sciences, Vol. 179, 2009, pp. 2494-2511.

2. Y. Deng, “What is the future of disk drives, death or rebirth?” ACM Computing
Surveys, Vol. 43, 2011, Article 23.

3. Hitachi Global Storage Technologies – HDD Technology Overview Charts, http://
www.hitachigst.com/hdd/technolo/overview/storagetechchart.html.

4. W. W. Hsu and A. J. Smith, “The performance impact of I/O optimizations and disk
improvements,” IBM Journal of Research and Development, Vol. 48, 2004, pp. 255-
289.

5. S. Schlosser, J. Griffin, et al., “Designing computer systems with MEMS-based
storage,” in Proceedings of the 9th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, 2000, pp. 1-12.

6. Y. Deng, F. Wang, and N. Helian, “EED: energy efficient disk drive architecture,”
Information Sciences, Vol. 178, 2008, pp. 4403-4417.

7. Y. Deng, J. Cai, W. Jiang, and X. Qin, “Employing dual-block correlations to reduce
the energy consumption of disk drives,” Computing, Vol. 99, 2017, pp. 235-253.

8. K. Zhou, Y. Liu, et al., “Deep self-taught hashing for image retrieval,” in Proceed-
ings of the 23rd ACM International Conference on Multimedia, 2015, pp. 1215-
1218.

9. Z. Huang, H. Jiang, et al., “XI-Code: A family of practical lowest density MDS ar-
ray codes of distance 4,” IEEE Transactions on Communications, Vol. 64, 2016, pp.
2707-2718.

10. J. M. Rodriguez, C. Mateos, et al., “Energy-efficient job stealing for CPU-intensive
processing in mobile devices,” Computing, Vol. 96, 2014, pp. 87-117.

11. P. R. Wilson, S. F. Kaplan, et al., “The case for compressed caching in virtual
memory systems,” in Proceedings of Annual Conference on USENIX ATC, 1999, pp.
1-16.

12. I. Tuduce and T. Gross, “Adaptive main memory compression,” in Proceedings of
Annual Conference on USENIX ATC, 2005, pp. 237-250.

13. Y. Zhao, H. Jiang, et al., “DREAM-(L)G: A distributed grouping-based algorithm
for resource assignment for bandwidth-intensive applications in the cloud,” IEEE
Transactions on Parallel and Distributed Systems, Vol. 27, 2016, pp. 3469-3484.

14. M. Ekman and P. Stenstrom, “A robust main-memory compression scheme,” in
Proceedings of the 32nd Annual International Symposium on Computer Architecture,
2005, pp. 1-12.

15. E. G. Hallnor and S. K. Reinhardt, “A unified compressed memory hierarchy,” in
Proceedings of the 11th International Symposium on High-Performance Computer
Architecture, 2005, pp. 1-12.

16. M. Kjelsg, M. Gooch, and S. Jones, “Design and performance of a main memory
hardware data compressor,” in Proceedings of the 22nd Euromicro Conference,
1996, pp. 423-430.

MEMORY DEDUPLICATION: AN EFFECTIVE APPROACH TO IMPROVE THE MEMORY SYSTEM 1119

17. S. Roy, R. Kumar, and M. Prvulovic, “Improving system performance with com-
pressed memory,” in Proceedings of the 15th International Parallel and Distributed
Processing Symposium, 2001, pp. 1-7.

18. B. Abali, H. Franke, S. Xiaowei, et al., “Performance of hardware compressed main
memory,” in Proceedings of the 7th International Symposium on H High-Perfor-
mance Computer Architecture, 2001.

19. J. Lee, W. Hong, and S. Kim, “Design and evaluation of a selective compressed
memory system,” in Proceedings of International Conference on Computer Design,
1999, pp. 1-8.

20. Y. Pan, J. Chiang, et al., “Hypervisor support for efficient memory de-duplication,”
in Proceedings of the 17th IEEE International Conference on Parallel and Distrib-
uted Systems, 2011, pp. 33-39.

21. K. Miller, et al., “KSM++: Using I/O-based hints to make memory-deduplication
scanners more efficient,” in Proceedings of RESoLVE12, 2012, pp. 1-12.

22. D. A. Lelewer and D. S. Hirschberg, “Data compression,” ACM Computing Surveys,
Vol. 19, 1987, pp. 261-296.

23. M. Nelson, et al., The Data Compression Book, M&T Books, NY, 1995.
24. D. Meister and A. Brinkmann, “Multi-Level comparison of data deduplication in a

backup scenario,” in Proceedings of the Israeli Experimental Systems Conference,
2009, pp. 1-12.

25. B. Zhu, K. Li, and H. Patterson. “Avoiding the disk bottleneck in the data domain
deduplication file system,” in Proceedings of the 6th USENIX FAST, 2008, pp. 269-
282.

26. D. Bobbarjung, S. Jagannathan, and C. Dubnicki, “Improving duplicate elimination
in storage systems,” ACM Transactions on Storage, Vol. 2, 2006, pp. 424-448.

27. N. Jain, M. Dahlin, and R. Tewari, “Taper: Tiered approach for eliminating redun-
dancy in replica synchronization,” in Proceedings of the 4th USENIX FAST, 2005,
pp. 281-294.

28. VMTrace, http://linux-mm.org/VmTrace.
29. P. Wilson, M. Johnstone, M. Neely, and D. Boles, “Dynamic storage allocation: a

survey and critical review,” in Proceedings of International Workshop on Memory
Management, 1995, pp. 1-78.

30. Ascii table, http://www.asciitable.com/.
31. Ultrastar 15K147, 2009, “Ultrastar 15K147 hard disk drives specifications,” http://

www.hitachigst.com/hdd/support/15k147/15k147.htm.

YuHui Deng is a Professor at the Computer Science Depart-
ment of Jinan University. Before joining Jinan University, he
worked at EMC Corporation as a senior research scientist from
2008 to 2009. He worked as a research officer at Cranfield Uni-
versity in the United Kingdom from 2005 to 2008. He has authored
and coauthored more than 60 refereed papers. His research inter-
ests cover information storage, cloud computing, green computing,
computer architecture, etc.

YUHUI DENG, XINYU HUANG, LIANGSHAN SONG, YONGTAO ZHOU

AND FRANK WANG

1120

XinYu Huang was a master student at the Data Storage and
Cluster Computing Lab, Computer Science Department of Jinan
University. He received his ME degree from Jinan University in
2012. His research interests include information storage and sys-
tem security.

LiangShan Song was a master student at the Data Storage
and Cluster Computing Lab, Computer Science Department of
Jinan University. He received his ME degree from Jinan Universi-
ty in 2013. He is currently a software engineer at Tencent. His re-
search interests include information storage and data deduplica-
tion.

YongTao Zhou was a master student at the Data Storage and
Cluster Computing Lab, Computer Science Department of Jinan
University. He received his ME degree from Jinan University in
2016. He is currently a software engineer at Tencent Holdings Ltd.
His research interests include data storage, data deduplication, file
system, and cloud.

Frank Wang is Head of School, School of Computing, Uni-
versity of Kent, UK. He was the director of Centre for Grid Com-
puting, Cambridge-Cranfield High Performance Computing Facil-
ity (CCHPCF), Cranfield University. He was Chair in e-Science
and Grid Computing. He is on the High End Computing Panel for
the Science Foundation Ireland (SFI). He was the Chair (UK &
Republic of Ireland Chapter) of the IEEE Computer Society.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

