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To address the empty and/or many answer problem of Web database query, this pa-

per proposes a general framework to enable automatically query relaxation and result 
categorization. The framework consists of two processing parts. The first is query relaxa-
tion. In this part, each specified attribute is assigned a weight by measuring the query 
value distribution in the database. The rarely distribution of the query value of the attrib-
ute indicates the attribute may important for the user. The original query is then rewritten 
as a relaxed query by expanding each specified attribute according to its weight. The 
second part is result categorization. In this step, we first speculate how much the user 
cares about all attributes (including specified and unspecified attributes) under the query 
context by using the KL-divergence. Then, the categorizing attribute in each level of the 
tree can be determined according to its importance for the user. The most important at-
tribute should be the categorizing attribute for the first level of the navigational tree. 
Lastly, the navigational tree is generated automatically and presented to the user so that 
the user can easily select the relevant tuples matching his/her needs. Experimental results 
demonstrated that the query relaxation method can achieve the Precision of 78% and 
75% for UsedCarDB (used car dataset) and HouseDB (real estate dataset), respectively, 
and the result categorization method can also achieve the lowest total and averaged nav-
igational costs than the existing categorization methods. 

 
 
Keywords: web database, query relaxation, contextual preferences, result categorization, 
data distribution 

1. INTRODUCTION 

With the expansion of the size of Web databases and the universe use of the internet, 
accessing the Web database is becoming an important way for people to obtain the in-
formation. Users can only access the Web databases via their query interfaces and most 
of the underlying databases are usually the relational databases. In real applications, 
however, a user query is generally consists of several conjunctive predicates, and the 
traditional RDBMS (relational database management system) only support the Boolean 
query matching mechanism which usually causes the empty or too little answer problem 
when the predicates of the query are incompatible with each other or the query is very 
selective. In such a context, the user may hope the system can automatically relax the 
original query for presenting more relevant items. To deal with this problem, several ap- 
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proaches [1-4] have been proposed and the basic idea of which is based on reducing the 
constraints on the original query in order to expand the scope of the query. However, 
most of the existing work does not consider the query value distribution in the database 
when relaxing the original query even though the relaxation efficiency is greatly affected 
by the distribution of the specified values in database. 

In this paper, we propose a Query Relaxation and Result Categorization approach 
(hereafter referred to as QRRC) which can relax the original query and categorize the 
relaxed query results in a domain and user independent way. We will use the toy exam-
ples below to motivate and provide an overview of our solution. 
 
Example 1: Consider a house selling Web database HouseDB (City, Price, SqFt, Bed-
rooms, Livingarea, View, Buildyear).  

Table 1. An instance of HouseDB. 
City Price SqFt Bedrooms Livingarea View Buildyear 

Seattle 364900 2208 4 Burien Park Street 1998 
Seattle 226500 1160 2 Bayshore Greenbelt 2010 

Kirkland 389900 850 2 Skyway Area Water 2006 
Kirkland 556800 1450 3 Lake Forest Water 2012 
Bellevue 395000 1930 4 Richmond Street 2008 
Bellevue 466980 1608 3 Des Moines Greenbelt 2005 

 

Each tuple in HouseDB represents a house for sale. Based on the HouseDB the 
house buyer may issue the following query:  
 
Q: HouseDB(Price between 350k and 400k View = Water) 

On receiving the query, HouseDB will provide a list of a few houses with water 
view that are priced between $350k and $400k since there are very few houses that are 
priced between $350k and $400k and have the water view. In such a case, the traditional 
query relaxation methods will expand all basic conditions (i.e., “Price between 350k and 
400k” and “View = Water”) of the query with same relaxation degree or eliminate one (or 
some) of them to provide relevant answer items. However, in reality there are lots of 
houses priced between $350k and $400k while few houses with Water view in the data-
base, which indicates that the view of “water” is rarely occurred in the database. As the 
traditional IDF (Inverse Document Frequency) method suggested the words rarely oc-
curred in document usually convey more information about user’s needs, and thus should be 
weighted higher. Hence, we can speculate that the user may concern more about the at-
tribute View than Price and thus the relaxation degree of the query criterion on the attrib-
ute View should be relaxed smaller than that on Price so that the returned answers can be 
more relevant to the original query.  

After query relaxation, the too many answer problem (i.e., “information overload”) 
will be faced by users. To resolve this problem, two types of solutions have been pro-
posed. The first type [5, 6] is to categorize the query results into a navigational tree, and 
the second type [7, 8] ranks the query results and finds the top-k items. The success of 
both approaches depends on the utilization of user preferences to filter the query results. 
But these approaches always assume that all users have the same preferences and they do 
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not consider the contexts in which the preferences appear as well. However, different 
users usually have different preferences on the attributes and the preferences are also 
associated to the specified contexts. The contextual preference, which takes the form of 
{(A1: w1), (A2: w2), …, (Am:wm))|X}, meaning that attributes (A1, …, Am) are cared by the 
user with the weight (w1,…, wm) in the context of X.  
 
Example 2: Consider the HouseDB mentioned above. Assume we only computed the 
user preferences on the attributes “SqFt” and “View” for the following two contexts: 

 
{(SqFt: 0.26), (View: 0.09) | Price between 350k and 400k} 
{(SqFt: 0.05), (View: 0.41) | Price between 350k and 400kCity = Kirkland} 
 
These preferences illustrate that the user preferences are associated to the specified 

context. In the context of a house that is priced between $350k and $400k, people may 
care more about the attribute SqFt than View, since many people wants a relative large 
house within this price range. In contrast, in the context of a house that is priced between 
$350k and $400k in Kirkland, people may care much more about the attribute View than 
SqFt. The reason is that, Kirkland is a city close to lake and most of the houses are there 
have the water view, thus the buyer who wants to buy a house over there may care more 
about view than the size (i.e., SqFt) of the house. In this paper, we tackle the “infor-
mation overload” problem for a relaxed query by proposing a categorization approach. 
The basic idea is to generate a navigational tree over the query results, in which the first 
categorizing attribute of the tree is the most important attribute for the user. Our contri-
butions are summarized as follows: 
 
 We propose a query relaxation method, which considers the weight of each specified 

attribute in the query by analyzing its specified value distribution in the database, to 
resolve the empty answer problem.  

 We propose a novel algorithm to generate a navigational tree for categorizing the query 
results. This algorithm considers both the user contextual preferences and the naviga-
tional cost. 

 
The rest of this paper is organized as follows. Section 2 reviews related work. Sec-

tion 3 gives the definitions of query relaxation and result categorization and presents the 
framework of our solution. Section 4 describes how to relax the original query while 
Section 5 proposes how to categorize the query results. The experiment results are pre-
sented in Section 6 and the paper is concluded in Section 7. 

2. RELATED WORK 

The problems of empty answers are discussed by several researches. These re-
searches can be classified into two main categories. The first one is based on fuzzy set 
theory such as [2, 9, 10], in which the query criteria is relaxed by using membership 
functions, domain knowledge and -cut operation of fuzzy number. The second category 
focuses on the development of cooperative database systems such as [1, 3, 4, 11] which 
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handle the query relaxation based on domain’s causal structure, user feedback, taxonomy, 
functional dependencies, and etc. However, the approaches based on fuzzy sets are 
mainly useful in expanding the numeric query conditions while the cooperative database 
system usually requires the user feedback and domain knowledge. Compared with the 
above work, our solution is fully automatic and does not require the domain knowledge. 
Our solution also considers the value distribution in the dataset for relaxing the query and 
incorporates the user preferences for categorizing the query results. 

For query results categorization, there are many researches focus on categorizing the 
text documents [12-14] and web search results [15, 16]. However, categorizing relational 
data presents unique challenges and opportunities. First, relational data contains both 
numerical and categorical values while the text categorization methods treat documents 
as bags of words. Further, our objective in this paper is to minimize the overhead for us-
ers to navigate the generated tree, which is not considered by existing text categorization 
methods. The work that are most similar to our categorization method are the methods 
proposed in [5, 6], respectively. In [5], Chakrabarti proposed a greedy algorithm to gen-
erate a category tree. This algorithm uses query history of all users in the system to infer 
an overall user preference as the probabilities of users are interested in each attribute. As 
explained in Section 1, it does not consider the diversity issue of user preferences. The 
different kinds of user preferences is considered by the algorithm proposed in [6], which 
takes advantages of the query history to infer the current user’s preferences. However, 
the algorithm proposed in [6] does not consider the contexts in which the preferences 
appear. Hence, this approach may not capture the current user’s preferences efficiently. 
Furthermore, these two approaches only consider the query history to speculate the user 
preferences but neglect the attribute value distribution both in the database and the query 
results when generating the navigational tree. Compared with the above work, our ap-
proach considers both the user’s contextual preferences and the data distribution of the 
database and the query results.  

There is also recent work on ranking query results and finding the top-k best match-
es from a database [17-19]. Ranking is complementary to categorization for resolving the 
information overload problem and we could use ranking strategy in addition to our tech-
niques (for example, we could rank tuples in the leaf nodes of the tree).  

3. PROBLEM DEFINITION AND FRAMEWORK 

3.1 Problem Definitions 
 
Consider an autonomous Web database consists of a single relational table D with m 

attributes {A1, A2, …, Am} and n tuples t1, …, tn. Let 1= m
j jV   is a set of all attribute 

values, where Vj is the set of attribute values of attribute Aj.  
 
Definition 1: (Query relaxation). Let Q be a query over D with a conjunctive predicates 
of the form Q = i{1,…, k}qi, where k  m, qi = (Aiθai), θ{>, <, =, , , , between}, qi 
is a predicate of Q. Each Ai in qi is a specified attribute and ai is a value (or interval) in its 
domain. By relaxing Q, a relaxed query which is used to find all tuples of D that show 
similarity to Q above a pre-defined similarity threshold (0, 1] is obtained, i.e., 
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Q(D) = {t|tD, Sim(Q, t)  }.   (1) 

In this paper, our solution for relaxing a given query Q is to generate a relaxed que-
ry by reducing the constraints of Q. The relaxed query Q should be similar to Q so that 
the matched tuples of Q can satisfy the user original query intention closely. In other 
words, the answer tuples most related to the original query will have differences only in 
the least important specified attribute. 

After obtaining the relaxed query results, a navigational tree will be generated for 
the user by considering the query context and user preferences. Let R be a set of result 
tuples returned by the relaxed query Q. Fig. 1 (generated by using our algorithm) shows 
an example of a navigational tree of the results of query Q relaxed from the query Q pre-
sented in example 1. Then, we define a navigational tree T over R as follows. 

 

 
Fig. 1. An example of the navigational tree. 

  

Definition 2: (Navigational tree) A navigational tree T(V, E, L) contains a node set V, an 
edge set E, and a label set L. Each node vV has a label lab(v)L which specifies the 
condition on an attribute such that the following should be satisfied: (i) such conditions 
are point or range conditions, and the bounds in the range conditions are called partition 
points; (ii) v contains a set of tuples N(v) that satisfy all conditions on its ancestors in-
cluding itself; (iii) conditions associated with subcategory of a intermediate node v are on 
the same attribute (i.e., categorizing attribute), and define a partition of the tuples in v. 

Let vj be a leaf node of T with N(vj) tuples. Anc(vj) denotes the set of ancestors of vj 
including vj itself, but excluding the root. Sib(vi) denotes the set of sibling nodes of node 
vi including itself. Let K1 and K2 represent the unit costs of visiting a tuples in the leaf 
and visiting an intermediate node, respectively. Let Pj be the probability that users will be 
interested in the tuples of the leaf node vj. Specifically, Pj is the product of the probability 
that user explores each ancestor of leaf vj and itself, that is,  
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Fig. 2. The framework of query relaxation and result categorization. 

( )
( ) ( )

i j
j j iv Anc v

P P v P v


     (2) 

where, P(vj) denotes the probability that the user explores the leaf vj and P(vi) (which will 
be discussed how to compute in Section 5.2) denotes the probability that user explores 
the intermediate node vi that is the ancestor of vj.  
 
Definition 3 (Estimated navigational cost): The estimated navigational cost (ECost) for 
visiting a navigational tree is defined as, 

1 2
( ) ( )

( ) ( ( ) | ( ) |).
j i j

j j i
v Leaf T v Anc v

ECost T P K N v K sib v
 

      (3) 

The estimated navigational cost of a leaf node vj consists of two terms: the cost of 
visiting tuples in leaf vj (i.e., K1N(vj)), and the cost of visiting intermediate nodes (i.e., 

2 ( )
| ( ) |

i j
iv Anc v

K sib v
 ). For a given navigational tree, a user need to examine the labels  

of all sibling nodes to select a node on the path from the root to vj, thus the user has to 
visit 

( )
| ( ) |

i j
iv Anc v

sib v
  intermediate tree nodes. The cost of visiting the root is excluded  

because every tree has a root. When the user reach the leaf vj, she has to look at N(vj) 
tuples in vj. For example, in Fig. 1, suppose a user is interested in the node of the top rec-
tangle with 100% probability (i.e., PPrice:300k-350k = P(View: Water)P(SqFt: 10001500)P 
(Price: 300k350k) = 1), and then we let K1 = K2 = 1. After this, we can compute the cost 
of examining all the tuples under the leaf “Price: 300k-350k” is 3 (for examining the la-
bels of the 3 first-level nodes)+2(for examining the labels of the 2 subcategories of 
“View: Water”)+2 (for examining the labels of the 2 subcategories of “SqFt: 1000 
1500”)+15 (examining the tuples under the leaf “Price: 300k350k”) = 22. 
 
3.2 Framework 
 

The framework of our solution is shown in Fig. 2. 
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The first step is to relax the original query. It computes the IDF weight for all dis-
tinct categorical values in the database and the similarity between all different pairs of 
categorical values during the offline time. These quantities are stored as database auxil-
iary tables, which are used for relaxing the original query. When a new query is coming, 
it first decomposes the query into several predicates, following which the IDF weight of 
each specified value of the query are retrieved from the IDF weight table. Then, the 
original query could be rewritten as a relaxed query according to the attribute weights 
and the attribute value similarities. Lastly, the relevant answers, which have the similari-
ty to the original query not below the given relaxation threshold, would be returned. 

The second step is to categorize the query results. Based on the relaxed query, it 
speculates how much the user cares about each attribute in context of the relaxed query 
and assigns a weight to it by using the KL (Kullback-Leibler) divergence. Then, the cat-
egorizing attribute in each level of the tree can be determined according to the weight of 
the attribute. The larger the attribute weight is the former level of the tree the attribute is 
located in. Based on the relaxed query results, it next generates a navigational tree by 
taking advantages of the categorizing attributes determined before and the partition crite-
ria of the histogram construction. Lastly, this tree is presented to the user, such that the 
user can easily select the relevant tuples matching his/her needs by exploring the tree. 

4. QUERY RELAXATION 

This section describes the attribute weighting, categorical value similarity measur-
ing and query writing methods. 

 
4.1 Attribute Weight Assignment 

 
4.1.1 Importance of specified categorical attribute 

 
The traditional IDF method suggested that the words commonly occurred in the docu-

ment usually convey less information about user’s needs than the words rarely occurred, and 
thus should be weighted less. Each tuple in the database can be treated as a small document if 
the database only consists of text attributes. Thus, the traditional IDF method can be borrowed 
to solve our problem. For a point query condition “Ai = v”, the IDFi(v) = log(n/Fi(v)) de-
notes the importance of attribute value v, where n is the total number of tuples and Fi(v) is the 
number of tuples containing Ai = v in the database. Consequently, the IDFi(v) can be treated as 
the importance of its corresponding attribute Ai. 

 
4.1.2 Importance of specified numerical attribute 
 

The traditional IDF method cannot be directly used for evaluating the importance of 
numeric values because of their binary nature. For example, given two numeric values u 
and v are close to each other in numeric, they would be treated as two distinct values in 
traditional IDF. In fact, the “IDF” of a numeric value is affected by their nearby values.  

In this paper, we adopt the definition of IDF given in [20] to measure the im-
portance of numeric attribute values. Let {v1, v2, …, vn} be the values of Dom(Ai). For a 
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numeric value vDom(Ai), it defined IDFi(v) as shown in Eq. (4), where h is the band-
width parameter. 
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The bandwidth is h = 1.06n−1/5, where  is the standard deviation of {v1, v2, …, vn} 
of the Dom(Ai). Actually, for v, the denominator in Eq. (4) represents the sum of “con-
tributions” to v from every other point vi in the Dom(Ai). These contributions can be 
modeled by Gaussian distribution, which indicate that the further v is from vi, the smaller 
is the contribution from vi to v. The importance of numeric value is also treated as the im-
portance of its corresponding attribute. 

Besides the point query, there also exists the range query which is generalized as “Ai 
in ”, where  is a set of values for categorical attributes, or a range [lb, ub] for numeric 
attributes. We define the “IDF” of range queries as the minimum log(n/Fi(v)) of each 
different value v in . The importance measuring function is shown in Eq. (5).  

( ) min ( )i iv
IDF v IDF v


    (5) 

By normalized processing, the weight wi to attribute Ai can be calculated by Eq. (6), 
where k is the number of attributes specified by the query. 
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According to the attribute weights and the threshold , the sub-threshold for every 
specified attribute can be computed by Eq. (7), where k is the number of specified attrib-
utes,  is a given threshold, and i is the sub-threshold for specified attribute Ai.  
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4.2 Attribute Value Similarity Measuring  
 

4.2.1 Similarity of categorical attribute values 
 
We discuss a coupling relationship measure which is an adaptation of the method 

proposed in [21] to capture the similarity coefficient between two categorical values. 
Given a pair of values binding the same categorical attribute, the intra-coupling between 
them indicates the involvement of their occurrence frequencies within the attribute they 
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belong to, while the inter-coupling means the interaction of other attributes with this at-
tribute. The intra-coupling and inter-coupling of a pair of values are combined as their 
coupling relationship to reflect the relative semantic similarity.  

To estimate the intra-coupling relationship between a pair of values, we use fre-
quency of occurrence of values in the attribute domain to compute their similarity. The 
intra-coupling relationship between a pair of values that binding on a categorical attribute, 
for example Aj, of relational table D can be calculated as follows, 

( ) ( )
( , )

( ) ( ) ( ) ( )
j j

j

j j j j

A AIaR
A

A A A A

N x N y
x y

N x N y N x N y





  
   (8) 

where NAj(x) and NAj(y) denote the number of tuples that contain values x and y on the 
attribute Aj, respectively. The bound of the Eq. (8) is ( , )

j

IaR
A x y [1/3, m/(m+2)] when 1  

NAj(x), NAj(y)  m. For instance, the two values “water” and “greenbelt” in Table 1 belong 
to the attribute View, ( , ) 0.5IaR

View Water Greenbelt   since they both appeared two times in 
Dom(View).  

To estimate the inter-coupling relationship between values, we need to introduce the 
information conditional probability which was proposed in [23]. Given the attribute value 
subset WVk of attribute Ak, and the value xVj of attribute Aj, the Information Condi-
tional Probability (ICP) of W with respect to x is PAk|Aj(W|x) can be computed as, 

*

|

( ) ( )
( | )=

( )
k j

k j

j

A A

A A
A

N W N x
P W x

N x


    (9) 

where NAj(x) is defined as the same as above and N*
Ak(W) denotes the number of tuples 

that contain values in W on the attribute Ak. Intuitively, when given all the tuples with the 
value x on attribute Aj, ICP is the percentage of the common tuples whose values of at-
tribute Ak fall in subset W and values in attribute Aj is x as well. 

After this, we can define the inter-coupling relationship between two different val-
ues belong to attribute Aj based on the ICP conception, 

| | |( , ) { ({ } | ), ({ } | )}
j k k j k j

Is
A A A A A Aw

x y P w x P w y


 
    (10) 

where w  denotes the intersection of the set of values on attribute Ak when the value 
on Aj is x and the set of values on Ak when the value on Aj is y. 

According to the above discussion, the inter-coupling relationship between values x 
and y on attribute Aj, ( , )

j

IeR
A x y , can be computed as, 

|
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where | ( , )
j k

Is
A A x y  is defined in Eq. (10), 

1
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m
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
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Based on the intra- and inter-coupling measuring method, given a pair of values (x, 
y) on categorical attribute Aj, the coupling relationship between them is defined as, 

( , ) (1 ) ( , ) ( , )
j j j

IaR IeR
A A ACSim x y a x y a x y       (12) 
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where [0, 1] is an adjust parameter which is used to determine the weight of intra- and 
inter-coupling. It is clearly that the higher the coupling relationship coefficient, the more 
similar is the two attribute values. 

 
4.2.2 Similarity of numerical attribute values 

 
We propose a fuzzy set-based approach to estimate the similarity between two nu-

merical values. In [2], the fuzzy relation “close to” is presented to estimate the similarity 
between two numerical values. The membership function of “close to” is showed as fol-
lows, 

2Y  toclose
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1
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


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

 







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u .    (13) 

The membership function of the fuzzy number “close to Y” is shown in Fig. 3. Here 
larger values of  correspond to a wide curve and smaller values of  correspond to a more 
narrow curve. It can be seen that the membership function has the crossover points at u = Y. 
We will use the bandwidth h defined in Eq. (4) as the parameter  in this paper. 

 

 
Fig. 3. The membership function of fuzzy relation “close to”. 

 

Accordingly, let {v1, v2, …, vn} be the values of numerical attribute Ak and then the sim-
ilarity coefficient NSimAk(vi, vj) between vi and vj can be defined as,  
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Based on the numerical value similarity, given a numerical condition Ak = q, let i be a 
sub-threshold for Ak, according to Eq. (14), we can then get the relaxation range of numeric 
query criterion corresponding to attribute Ak as,  
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Furthermore, the condition specified on a numerical attribute is usually an interval, 
i.e., Ak between qmin and qmax. For such a case, the original condition can be relaxed as, 

min max

1 1
,k k

k k

q h q h
 

 
  

  
  

.  

4.3 Query Rewriting  
 
Given a query Q = {q1…qk}, relaxation threshold , attribute weights W = {w1, …, 

wk}, and the attribute value similarities, the query rewriting procedure works as follows. 
 
(i) For each predicate qi in Q, gets the relaxed condition qi by extracting values that are 

from its corresponding attribute domain Dom(Ai) having similarity above the sub- 
threshold i and adding them into its query range.  

(ii) By join all the relaxed predicates qi, the relaxed query Q is formed. 
(iii) If the result of the relaxed query is not null, the algorithm terminates; otherwise, the 

current threshold  decreases with the step 0.1, and the algorithm continues.  
 
The complexity of the algorithm is O(kn) where k is the number of attributes speci-

fied by the query and n is the averaged number of distinct values in the value range of all 
attributes.  

There may too many result tuples satisfying the relaxed query. Thus, we next need 
to generate a navigational tree to categorize the query results. 

5. QUERY RESULT CATEGORIZATION 

In this section, we firstly discuss how to capture the user’s contextual preferences 
and then present the navigational tree generating algorithm. 

 
5.1 The Optimal Tree  

 
The navigational tree and the navigational cost are fully defined in Section 3.1. 

However, in reality we want to generate an optimal tree Topt such that the Topt has the low 
information overload to the user. For the purpose, we need to do the following for each 
level l of the navigational tree:  
 
(i) Determine the categorizing attribute A for the level l, and  
(ii) Given the choice A of categorizing attribute for level l, for each intermediate node v 

in level (l  1), determine how to partition the domain of values of A in v into disjoint 
groups and how to order those groups. 
 
Intuitively, if the categorizing attribute in each level and the partition of domain 

values of the categorizing attribute can meet the user preferences closely, the cost of 
navigational tree will be minimized. That is, for the categorizing attributes, the catego-
rizing attribute in the first level of the tree should be the most important attribute for the 
user under the given context, and so forth. 
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5.2 User Contextual Preferences on Categorizing Attributes  
 
In reality the user often has different preferences under different contexts. Hence, 

we need to surmise the user’s contextual preference when we determine the categorizing 
attribute for each level of the tree. The difficulty of this problem is how to determine the 
user’s contextual preference (i.e., which attributes are more important for the user under 
the given query context) when no user feedback is provided. To address this problem, 
unlike the methods proposed in [5, 6] which leverage the query history to speculate the 
user preferences, we assume that the user’s contextual preference is reflected in the query 
he submitted and, hence, we use the user query as a context and hint for assigning 
weights to attributes (including the specified and unspecified attributes).  

Since the query results binding the same values on the specified attributes, they only 
have differences on unspecified attributes. Thus, the problem is how two measure the 
correlation between the query and unspecified attributes. As pointed out by the [22], the 
correlation between attribute Ai and query Q can be estimated by the difference between 
the distributions of attribute Ai’s values in the query results and their distribution in the 
database. The bigger the difference indicates the more Ai correlates to the query (and also 
the specified attribute values). KL-distance [23] is a common-used method for measuring 
the distribution differences. Suppose Aj is a categorical attribute of relational table D and 
Dom(Aj) contains values {aj1, aj2, …, ajk}, R is the result set for query Q. Then the KL- 
distance of Aj from D to R is:  

1

( | )
( || ) ( | ) log

( | )

k
j ji

KL j ji
i j ji

P A a D
D D R P A a D

P A a R


 

  (15) 

where P(Aj = aji | D) (resp. P(Aj = aji | R)) refers to the probability that Aj = aji in D (resp. 
in R). If Aj is a numerical attribute, the Dom(Aj) should be first discretized into a few in-
tervals, where each interval represents a category, and then the KL distance of Aj can be 
calculated by using Eq. (15).  

 
5.2.1 Histogram construction 

 
To calculate the KL-distance we need to obtain the distribution of attribute values 

over D. In this paper, we present a discretize-count method which is adapted from the 
algorithm proposed in [25] to build a histogram for an attribute over D. The histogram 
reflects the different value and its distribution of each attribute Aj in the database. Algo-
rithm 1 shows the procedure for building a histogram for attribute Aj.  

 

Algorithm 1: Histogram construction algorithm 
Input: Attribute Aj and Dom(Aj), total number of tuples |D|, minimum bucket number n 
Output: A histogram HDj for attribute Aj 

1. if Aj is a categorical attribute then 
2.   for each distinct value aji of Aj  
3.      Use query condition “Aj = aji” to get the number of result tuples c from D 
4.      Add a bucket (aji, c) into HDj 
5.   end for 
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6. end if 
7. if Aj is a numerical attribute with domain range [alow, aup) then 
8.   set  = |D|/n, low = alow, up = aup 
9.   do  

10.      Use query condition “low≤Aj<up” to get the number of result tuples c from D 
11.      if c≤ then 
12.         Add a bucket (low, up, c) into HDj  
13.         set low = up, up = aup 
14.      else 
15.         up = low + (up-low)/2 
16.      end if 
17.   while low < aup 
18. end if 
19. return HDj 

 

The algorithm builds a histogram for each attribute Aj in the preprocessing stage. 
The time complexity of Algorithm 1 is O(mn) where m is the number of all attributes in 
D and n is the is the averaged distinct values in the attribute domain. A histogram HRj is 
also necessary to be built for Aj over the query results R to get its probability distribution 
over R. For each bucket of HDj, a bucket with the same bucket boundary is built in HRj 
and its occurred frequency is counted in R. 

 
5.2.2 Assigning the categorizing attribute weight  

 
After getting the histogram of Aj over D and R, the histogram is converted to a 

probability distribution by dividing the frequency in each bucket by the sum of bucket 
frequency of the histogram. That is, the probability distribution of the kth bucket of Aj for 
D, PDjk, is  

|| D

c
P

kD

kD
j

j
  (16) 

where cDjk is the frequency of the kth bucket in HDj.  
The probability distribution of the kth bucket of Aj for R, PRjk, is 

|| R

c
P

kR

kR
j

j
  (17) 

where cRjk is the frequency of the kth bucket in HRj.  
Next, for the jth attribute Aj, we assign its weight wj as 


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Next, we use an example to show the efficiency of our attributes weights measuring 
method for the given contexts. Table 2 shows the use preferences on the categorizing 
attributes corresponding to different contexts in our experiments for the HouseDB.  

Table 2. Attribute weight assignments for two different contexts. 
        Contexts 
Attributes 

SqFt between 2500  
and 3000 

City = Kirkland 
Price between 350k and 400k 

Price 0. 193 0.036 
City 0.028 0.337 
SqFt 0.255 0.054 

Bedrooms 0.22 0.018 
Bathrooms 0.105 0.015 

View 0.088 0.413 
Livingarea 0.065 0.068 
Buildyear 0.037 0.052 

Neighborhood 0.009 0.006 
 

In Table 2, given a context “SqFt between 2500 and 3000”, which means that the 
user prefers a large house with more bedrooms, as expected the attribute SqFt is assigned 
a large weight because it is a specified attribute and its corresponding data distribution in 
R and in D has a large difference. The attribute Bedrooms and Price are assigned large 
weights too since the large house usually priced higher and has more bedrooms.  

According to the categorizing attributes weights under the given query context, the 
categorizing attribute in each level of the navigational tree can be determined.  

 
5.3 Navigational Tree Generating 

 
This section proposes the partition criteria of the attribute and the method to mini-

mize the visiting cost. The navigational tree generating algorithm is finally presented. 
 

5.3.1 Partition criteria 
 
For partitioning the categorical attributes, two ways have been discussed in [5]. The 

one is the single-value partitioning and the other is multi-valued partitioning. In this pa-
per we adopt the single-valued way to partition the categorical attributes. That is, assum-
ing that there are k distinct values {v1, …, vk} of attribute Aj in D, we will partition D into 
k categories – each category corresponding to the value vi in {v1, …, vk}. The numerical 
attribute partitioning is similar to the single-value partitioning, where each bucket of the 
domain derived by Algorithm 1 is treated as a single-value.  

 
5.3.2 Minimizing the visiting cost 

 
The factor that impacts the visiting cost is the order of categories presented to the 

user. We next define the probability that the user exploring the navigational tree T ex-
plores category vi. Let R be the tuple set that satisfies all conditions on the ancestors of 
category vi. Recall the histogram construction algorithm presented in Section 5.2, we 
build the histogram HRj for attribute Aj over R to get its probability distribution over R. 
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For each bucket of HDj over D, a bucket with the same bucket boundary is also built in 
HRj. Let PDji be the probability distribution of the ith bucket of attribute Aj for D, PRji be 
the probability distribution of the ith bucket (corresponding to category vi) of attribute Aj 
for R, k be the number of sibling nodes of node vi including itself, and then the probabil-
ity P(vi) for the category vi can be defined as  

'

1 '

log

( ) .

log

j

j

j

j

j

j

D i

D i
R i

i k
D l

D l
l R l

P
P

P
P v

P
P

P






 (19) 

According to the Eq. (19), the exploring probability of each node vi under the same 
parent will be calculated and the node with the maximum probability of the sibling nodes 
will be presented to the user earliest. The reason is that the larger the P(vi) is, the more 
the contribution of the bucket corresponding to vi to the KL distance is, and thus the user 
is more interested in the values of the bucket.  

 
5.3.3 Navigational tree generating algorithm 

 
For generating the navigational tree, for each level l, we need to (i) determine the 

categorizing attribute A, and (ii) for each category v in level (l1), partition the domain of 
values of A in N(v) of Eq. (3) such that the information overload is low. A node v will be 
partitioned if v contains more than M tuples. Here, M is a given parameter and it guaran-
tees that no leaf has more than M tuples. We now describe how a navigational tree is 
constructed. Since the categorizing attribute in each level of the tree is determined and 
the partition criteria for the values of categorizing attribute A in N(v) is also proposed 
above, we can generate a navigational tree by using the Algorithm 2. 

 
Algorithm 2: Navigational tree generating algorithm 
Input: Database D, query results R, categorizing attributes weights, histogram HDj 
Output: A navigational tree with the minimum navigational cost 

1. Create a root node (level = 0) and add it to T 
2. l = 1; // set current level to 1 
3. while there exists at least one category v at level l1 with |N(v)| > M 
4.   Select Aj with the maximum weight in attributes retained and not used so far as catego-

rizing attribute for the level l 
5.   if Aj is a categorical attribute then 
6.     for each value vi of Aj in |N(v)| 
7.        create a category under v and add those tuples with Aj = vi to that category 
8.     end for 
9.     Compute the exploring probability of each category of vi 

10.     Sort sub-categories of v in descending order according to the exploring probabilities 
11.   else // Aj is a numerical attribute 
12.      for each bucket [lowj, upj) of HDj for Aj in |N(v)| 
13.         create a category under v and add tuples with lowi  Aj < upi to that category 
14.      end for 
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15.      Compute the exploring probability of each category lowi  Aj < upi 
16.      Sort subcategories of v in descending order according to the exploring probabilities 
17.   l = l+1; //finished creating nodes at this level, go to the next level 
18. end while 
19. return T 

 

The algorithm creates the categories starting with level l = 0 and all next categories 
at level (l1) are created and added to tree T before any category at level l. A new level 
should be generated if there exists at least one category with more than M tuples in the 
current level; otherwise, the categorization is complete and the algorithm terminates. For 
the next level, we choose the attribute Aj which has the maximum weight in attributes 
retained and is not used so far as the categorizing attribute for this level. For the catego-
rizing attribute Aj, we partition each category v at level l1 with more than M tuples us-
ing the partition criteria proposed above. The subcategories of v are ranked in descending 
order of their exploring probabilities which can be calculated by Eq. (19). This completes 
the creating of nodes at level l, after which we move on to the next level. 

6. EXPERIMENTS 

6.1 Experimental Setup 
 
The experiments are conducted on a computer running Windows 2007 with Intel P4 

3.2-GHz CPU, and 4 GB of RAM, the RDBMS is Microsoft Sql Server 2008. We im-
plemented all algorithms in C# and connected to the RDBMS through ADO.  
 
Datasets: For our evaluation, we set up two datasets from two domains. The first dataset 
is a used car dataset CarDB with attributes {Make, Model, Year, Color, Engine, Price, 
Mileage, Transmission} containing 100,000 tuples extracted from Yahoo! Autos. The 
second dataset is a real estate database HouseDB with attributes {City, Livingarea, Price, 
SqFt, Bedrooms, Bathrooms, View, Neighborhood, Buildyear) containing 30,000 tuples 
extracted from Yahoo! Real Estate.  

 
6.2 Categorical Attribute Value Similarity Measuring Experiment 

 
This experiment aims at evaluating the accuracy of the categorical attribute value 

similarity measuring method. Table 4 shows the top-3 similar values to “Model = Camry” 
(in CarDB), and “View = Greenbelt” (in HouseDB) computed on different size of the 
datasets, respectively. Here, the parameter  in Eq. (10) is set to 0.5. 

From Table 4, we found that the similarities between given attribute value and its 
top-3 similar values are rational and reasonable. In the CarDB, for instance, given attrib-
ute value “Camry”, the values “Accord”, “Corolla”, and “Altima” are the top-3 similar 
values to it. In reality, these four model cars are quite similar to each other because they 
all belong to Japan made and are nearly identical in Price, Engine, Color, and other fea-
tures. Additionally, even though the similarities obtained from the datasets of 5,000 and 
10,000 tuples are lower than that from the dataset of 20,000 tuples with respect to a given 
attribute value the similarity change between them is not substantial and the relative or- 
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Fig. 4. Recall&Precision of QR for different thresholds over CarDB and HouseDB. 

Table 4. The similarity results computed on different size of the dataset. 
Categorical values Similar values 5000 tuples 10000 tuples 20000 tuples 

Model = Camry 
(CarDB) 

Accord 0.34 0.34 0.36 
Corolla 0.29 0.30 0.32 
Altima 0.24 0.25 0.25 

View = Greenbelt 
(HouseDB) 

Greenwood 0.18 0.21 0.22 
Park 0.15 0.18 0.20 

Water 0.12 0.14 0.15 
 

der among values is maintained, which means we can obtain the attribute value similari-
ties on a small sample dataset during the offline pre-processing stage. 

 
6.4 Query Relaxation Experiments 

 
To verify the efficiency of our QR (Query Relaxation) method, we requested 5 sub-

jects and each subject was asked to submit 3 queries for CarDB (resp. HouseDB). For 
each test query Qi, a set Hi of 30 tuples, which likely to contain a good mix of relevant 
and irrelevant tuples to the query, is generated. We did this by mixing the top-10 result 
tuples that are extracted by 3 different query relaxation algorithms of QR, TOQR (a da-
tabase query relaxation method by using the Bayesian causal structures discovery) pro-
posed in [1], and AIMQ (a domain-independent approach for answering imprecise que-
ries) proposed in [11], removing ties, and adding a few randomly selected tuples. The 
tuples are ranked according to their satisfaction degree to the original query. Unlike the 
query relaxation algorithms of IQR (an interactive query relaxation system) proposed in 
[3] and Taxonomy-based relaxation proposed in [4] requiring the user interaction and 
domain knowledge, the TOQR and AIMQ are fully automated to relax the original query 
and thus we choose them to obtain the relevant tuples. Finally, we presented the queries 
along with their corresponding Hi’s to each subject in our study. Each subject’s responsi-
bility was to mark the top-10 tuples that they preferred most from the 30 unique tuples 
collected for each test query. We then measure how closely the 10 tuples marked as rel-
evant by the user matched the 10 tuples returned by QR under different relaxation thres- 
holds. The Recall and Precision metrics are used to evaluate this overlap. Recall is the 
ratio of the number of relevant tuples retrieved to the total number of relevant tuples while 
Precision is the ratio of the number of relevant tuples retrieved to the total number of 
retrieved tuples. In our experiments, both the relevant tuples and the retrieved tuples are 
10, which makes the Precision and Recall to be equal. Fig. 4 shows the Recall&Precision 
of QR under different relaxation thresholds over CarDB and HouseDB, respectively.  
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It can be seen that the Recall&Precision of QR is varied with the relaxation thresh-
old. The lower the relaxation threshold, the higher is the recall of QR. However, this ex-
periment mainly aims to show the averaged Recall&Precision of QR can both achieve 
78% and 75% for CarDB and HouseDB, respectively. This indicates that the relaxed 
query generated by QR method can efficiently express the meaning of the original query. 
Overall speaking, the reason of QR achieved both the relatively high recall and precision 
is that; (i) QR speculates the weight for each specified attribute by using the IDF 
weighting method, which can effectively reflect the importance of the specified attribute 
for the user; (ii) The similarities between different categorical attribute values are rea-
sonable since it takes both the relationship between two compared values within the at-
tribute and the interactions come from other attributes into consideration. 

 
6.5 Query Result Categorization Experiments 

 
To verify the efficiency of our result categorization (referred as to RC) algorithm of 

QRRC, we have developed an interface that allows users to classify query results using 
generated navigational trees. We conducted an empirical study by asking the 10 selected 
subjects mentioned above to use this interface. Each subject was given the results of 10 
queries over CarDB and HouseDB, respectively. We compare our RC algorithm with two 
other query result categorization algorithms, Cost-based algorithm proposed in [5] and 
C4.5 classification-based algorithm proposed in [6], respectively. For each such query, 
the subject was asked to go along with the trees generated by the three algorithms and to 
select 1-20 houses (resp. used cars) that she would like to buy.  

The first metric is the total actual navigational cost defined as follows:  

1 2
( ) ( )

( ) ( ( ) | ( ) |).
j i j

j i
v Leaf T v Anc v

TCost T K N v K sib v
 

    (20) 

Unlike the estimated navigational cost in Definition 2, this cost is the real count of 
intermediate nodes (including siblings) and tuples visited by a subject. For simplicity, we 
use equal weight for visiting intermediate nodes and visiting tuples in leaf by setting K1 = 

K2 = 1. Fig. 5 reports the total actual navigational cost averaged over all the subjects, for 
RC, C4.5 classification, and Cost-based algorithms.  

Since the Pearson correlation coefficient can reflect the linear correlation between 
two variables, we further tested the Pearson correlation coefficient between the estimated 
and actual navigational cost for our algorithm (shown in Table 5). 
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Fig. 5. Total actual navigational cost of different categorization algorithms.  
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Fig. 7. Average navigational cost of different categorization algorithms for queries. 

Table 5. Pearson’s correlation between estimated and actual navigational cost. 
User Correlation (HouseDB) Correlation (CarDB)
Q1 0.92 0.67
Q2 0.85 0.85
Q3 0.70 0.80
Q4 0.36 0.05
Q5 0.80 0.78
Q6 0.82 0.84
Q7 0.45 0.70
Q8 0.88 0.42
Q9 0.76 0.88

Q10 0.68 0.82
Averaged 0.72 0.67

 
From Table 5, it can be seen that most of the coefficients for different queries show 

strong positive correlation and the averaged coefficients are 0.72 and 0.67 for queries 
over HouseDB (resp. CarDB), which indicates there exists almost linear relationship be-
tween estimated and actual navigational costs. This demonstrated our estimated naviga-
tional cost can accurately model the information overload scenario faced by users.  

The second metric is the number of relevant tuples found by a subject. In real appli-
cations, the user may find different number of relevant tuples when using different navi-
gational trees. Generally, a good categorization algorithm should make it easy for a sub-
ject to find more relevant results. Fig. 6 reports the number of relevant tuples found by 
each subject using different categorization algorithms for each test query. 

The third metric is the averaged navigational cost per relevant tuple found. Fig. 7 
reports the averaged navigational cost of per relevant tuples found of those algorithms. 
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Fig. 6. The comparison of the number of relevant tuples found by per subject using different cate-

gorization algorithms for each test query. 
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The experimental results demonstrated that the navigational trees generated by RC 
algorithm have both the lowest total actual navigational cost and the lowest average cost 
per relevant tuple found. Users have also found more relevant tuples using our algorithm 
than the other two algorithms. The trees generated by Cost-based algorithm have the 
worst results. This is expected because Cost-based algorithm ignores different user pref-
erences. The C4.5 classification algorithm also has worse results than our algorithm. The 
reason is that our algorithm considers the contexts in which the preferences appear and 
the tree generated by our algorithm is suitable to the user’s exploring style (e.g., the sub-
categories in the same node are ordered according to their exploring probability to the 
current user) as well, while C4.5 classification algorithm does not. Furthermore, our al-
gorithm uses the multi-way splits to partition the values of numerical categorizing attrib-
utes while the C4.5 classification only uses the binary split which may leads to an in-
crease in total (resp. average) navigational cost. Besides, our algorithm considers the data 
distribution both in the database and the query results when constructing the navigational 
tree, while the Cost-based and C4.5 classification algorithms did not. Therefore, our cat-
egorization algorithm has the better performance than the existing algorithms. 

7. CONCLUSIONS 

In this paper, we presented QRRC, a domain independent approach for providing ap-
proximate and categorized answers for autonomous Web database queries. QRRC assigned 
the weights of specified attributes according to the query value distribution in the database. 
QRRC relaxed the original query by adding the most similar categorical values or nearby 
numerical values into the query criteria range. For resolving the problem of too many an-
swers, our solution is to dynamically build a labeled and hierarchical navigational tree. 
By simply checking the label of a category, the user can determine whether it is relevant 
or not. The user only probes the interesting categories and thus the information overload 
can be reduced. The preliminary experimental result demonstrated that our query relaxa-
tion method can efficiently solve the empty answer problem and achieve the high Preci-
sion, the result categorization method can also have the lowest total and averaged navi-
gational costs than the existing categorization methods. 

It would be interesting to investigate (1) how to adapt to the dynamic nature and 
evaluate the diversity of user preferences and, (2) how does our categorization approach 
compare to ranking approach. 
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