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Mimicking human auditory systems as well as applying mean normalization in fea-

ture extraction are widely believed to improve the robustness of speech recognition. Tra-
ditionally, the normalization is conducted in the log domain by subtracting the features 
with their long-term mean. Some studies have found that the use of power functions in-
stead of log yield more robust features. In previous studies, a q-logarithmic function 
(q-log), which is also a power function, was used to derive a normalization method. The 
method, called q-mean normalization (q-MN) in this paper, was found more effective 
than conventional normalization methods. In these works, q-MN was still applied in the 
power spectral domain. Here, the method is applied after mapping the power spectra on 
human auditory systems, and, after an analysis on the effect of the method on noisy 
speech, we propose a blind and adaptive normalization technique to determine a suitable 
q in q-MN. The experiments show that the proposed features are more robust than con-
ventional features such as MFCC. The results also confirm that using nonlinear resolu-
tions inspired by human auditory systems benefits speech recognition and is better than 
using a uniform resolution.     
 
Keywords: q-logarithm, robust speech recognition, feature normalization, human audito-
ry, adaptive  

1. INTRODUCTION 

In the past decades, automatic speech recognition (ASR) technologies have been 
explored in many studies. However, their practical applications are still very limited due 
to their unreliable performances in real environments where background noise, reverber-
ation, and competing speakers exist [1, 2]. Environmental noise is one of major causes 
that degrade the performance of ASR and numerous methods for improving the robust-
ness of ASR in noisy environments have been proposed over the last decades. These 
methods are applied in the front-end, i.e. feature extraction process, and/or the back-end, 
i.e., the acoustic models. Methods for the front-end include noise removal methods, such 
as spectral subtraction [3] and vector Taylor series (VTS) [4, 5], and features that are 
robust against noise, such as power normalized cepstral coefficients (PNCC) [6], nor-
malized modulation cepstral coefficient (NMCC) [7], and frequency domain linear pre-
diction (FDLP) [8]. The methods for the back-end aim at adapting acoustic models, 
which are trained in quiet environments, into noisy environments. This is usually done by 
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retraining the model with noise-corrupted speech [9], adapting the model using parallel 
model combination (PMC) [10] and/or VTS model adaptation [11, 12]. 

Mel Frequency Cepstral Coefficients (MFCC) is arguably the most commonly used 
feature for ASR. MFCC is obtained by taking the log of mel-weighted spectra to separate 
the envelope of the spectra, which carries the information about the content of speech, 
from the speech signals. However, while MFCC can achieve satisfactory performances in 
controlled conditions, i.e., in noise-free conditions and for read speech, it is not robust 
against noise. It has been argued that the use of the log function is one of the reasons for 
it to be sensitive to noise [13]. The log function has large dynamics for values between 0 
and 1 making it sensitive to the changes in the low energy regions of speech, which may 
contain important information about speech. When these regions are distorted by noise, 
there will be a large mismatch between the corresponding MFCC and the MFCC of clean 
speech which causes significant performance drops for ASR. Many studies have used 
alternative functions such as power functions instead of log in the extraction process. 
They are chosen because they have less dynamics in low energy regions, making them 
less sensitive to noise. The examples are perceptual linear prediction (PLP) [14], PNCC, 
[6], and q-log normalized cepstral coefficients (QLNCC) [15]. However, other studies 
argue that mapping of the spectra using the root functions does not necessarily improve 
the speech recognition performance and their effectiveness are achieved when they are 
normalized [16, 17]. Normalizing the root-based features empirically appears to have 
minimize additive distortions [16, 18, 19]. Conventional normalizing approach is simply 
subtracting the features with its long term average [17]. However, root functions do not 
share the same properties as the log function. Therefore, their feature normalization 
methods should be modified accordingly. 

In previous studies, the use of the q-log function for feature extraction has been in-
vestigated [15, 19]. This function, which is a of power function, is widely used in non- 
extensive statistics [20] to explain non-extensive phenomenon in many complex systems. 
In [19], q-log and its properties are utilized to derive a normalisation method. The meth-
od was proven to be more effective than conventional normalization methods for dealing 
with additive and convolutional noises. The method, called q-log spectral mean normali-
zation (q-LSMN), is applied in the power spectral domain and q-log is used as an inter-
mediate domain, i.e. the normalized features are converted back to the spectral domain 
after normalization. It is implemented in MFCC frameworks. In [21], it is extended to 
operate on modulation spectra. Power functions used in PLP and PNCC could be seen as 
examples of q-log for certain q-values (q = 0.3 for PLP and q = 0.9 for PNCC). A Previ-
ous study confirms that replacing power function with q-log could achieve similar per-
formances [15]. In these works, a single q, empirically chosen, is used. The use of multi-
ple roots could benefit speech recognition because different speech units might have dif-
ferent sensitivity to distortions [18, 22]. Studies on the use of multiple roots or an adap-
tive approach to determine q of q-MN have not yet been explored. 

Some studies have found that mimicking human auditory systems in the feature ex-
traction process benefits ASR [23, 24]. It is well known that humans do not have linear 
response to various frequency range. In general, humans are more sensitive to the chang-
es of frequency of sounds in the low frequency regions than the changes in the high fre-
quency regions. In feature extraction, we mimick human auditory systems by having 
more spectral components in the low frequency regions than in the high frequency re-
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gions. This can be done by mapping the spectral components into a non-linear scaled 
filter that represent human auditory systems. Some popular scales used are the Mel, Bark, 
and equivalent rectangular bandwidth (ERB) scales. MFCC uses the Mel scale while PLP 
implement the Bark scale. PNCC and gammatone cepstral coefficient (GFCC) use gam-
matone filter, which is based on the ERB scale. While it is evident that use non-linear 
frequency scales benefit the speech recognition, the use of human-auditory inspired 
scales may not be optimum.   

In this paper, we propose to use the q-log based feature normalization method on 
nonlinear scaled spectra. We use only Mel scale for this work. The objective is to see 
whether the use of non-linear frequency spacing could be optimized using q-log. We 
called it q-Mean Normalization (q-MN). We hope to address three issues here. The first 
is to investigate whether there could be any advantages of applying power functions, 
q-log in particular, on human-auditory inspired features on robustness of speech recogni-
tion. The second is to see the effect of implementing q-MN in the intermediate and non- 
intermediate domains, i.e., the normalized spectra are not converted back to the linear 
domain. The objective is to compare the effect of the various dynamics of linear, log, and 
power functions and their effect on robustness of the features in ASR. Thirdly, we pro-
pose an adaptive approach to determine q for q-MN. The adaptive method is motivated 
by our analysis on the effect of applying q-MN on noisy speech. Our evaluation on the 
method finds that it is better than when applying single q.  

The remainder of this paper is organized as follows. In section 2, we describe in de-
tail the problem of noise robustness in speech recognition. In section 3, q-log is briefly 
described and the effect of two normalization methods: mean normalization (MN) and 
q-MN on features are explained. We analyze the effect of q-MN on noisy speech in sec-
tion 4. Various front-ends used and the proposed method for adaptive q-MN are de-
scribed in section 5. The experimental setup and results are then discussed in sections 6 
and 7 respectively. The paper is concluded in section 8. 

2. PROBLEM FORMULATION 

When ASR systems operate in real environments, they must deal with speech that is 
contaminated with noise. The different conditions of training and testing cause a mis-
match and hence, degrade the performance of ASR. While adding noise information in 
the training can improve the performance of ASR, the resulting performances are still not 
satisfactory [9]. This is because it is difficult to include all possible types and conditions 
of noise in the training. 

The effect of noise on speech could be explained as follows. Let s(t) be the clean 
speech at time t, which is corrupted by additive noise n(t) and convolutional noise h(t). 
Noisy speech y(t), i.e., speech corrupted by noise, is then given by the following in the 
time domain: 

y(t) = s(t)h(t) + n(t). (1) 

When extracting speech features, speech signals are first chunked with a fixed length, 
usually around 25-50 ms length. Each chunk, which is called a frame, is then windowed 
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and transformed into the spectral domain by applying discrete Fourier transform (DFT). 
In speech recognition, speech features are usually derived from their power spectra, i.e. 
square of the magnitude. In this domain, the relation between noisy speech, clean speech 
and noise can be expressed as: 

PY(m, i) = PS(m, i)PH(m, i) + PN(m, i) + 2MSMHcosSN, (2) 

where PY, PS, PH, and PN are the representation of y, s, h, and n in the power spectral do-
main respectively and MS, MH, and MN represent the magnitude spectra of s, h, and n. The 
indexes m and i are frame and frequency indexes. The term 2MS(m, i)MH(m, i)MNcosSN 
of Eq. (2) is called the cross-term. In many methods, it is ignored by assuming noise and 

speech are uncorrelated. By ignoring the cross term and denoting  

( , )
( , ) ( , )( , ) ,N

HS

P m i
P m i P m im i   

Eq. (2) can be written as: 

PY(m, i) = PS(m, i)PH(m, i)(m, i). (3) 

To obtain the features, the power spectra are fed into human-auditory-inspired filter- 
banks such as Mel scale in MFCC and then log is applied on the output of the filter- 
banks. Eq. (4) can be represented in the log mel domain as: 

y(m, f) = s(m, f) + h(m, f) + (m, f), (4) 

where y, s, h, and  represent PY, PS, PH, and  in the log mel domain and f is the index 
of the filter-bank. The convolutional noise, h, is fairly flat but  is highly non-stationary, 
making it very difficult to remove. 

3. FEATURE NORMALIZATION ON Q-LOG BASED FEATURES 

Q-log is defined as: 

q

x
x

q

q 





1

1
)(log

1
. (5) 

Since limq1logq(x) = log(x), q-log is a generalization of the natural logarithmic function. 
When q = 0, it is a linear function and when q = 1, it equals to the natural log function. 
The function lies between linear to log when 0 ≤ q ≤ 1. Its inverse, called q-exponential 
(q-exp), is defined as follows: 

qx
q xqe  1

1

))1(1( . (6) 

This function generalizes exponential function and when q = 1, it is the same as expo-
nential functions.  

Q-log is widely used in Tsallis statistics [25]. The function is used due to its nonad-
ditivity properties. Q-log does not have the same properties as log. It does not transform 
a multiplication operation into addition. A new set of operators were proposed [26] to 
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explain the properties of the q-log. They generalize multiplication, division, subtraction, 
and addition operators. Let +q and −q be the generalized addition and subtraction opera-
tors. They are defined as: 

a +q b = a + b + (1  q)ab, (7) 

and 

bq

ba
ba q )1(1 


 . (8) 

These operators are the same as the standard operators when q = 1. Based on these oper-
ators, some properties of q-log can be written as follows: 

logq(ab) = logq(a) +q logq(b), (9) 

and 

)(log)(loglog ba
b

a
qqqq 






 . (10) 

These properties make it clear that q-log is non-additive when q  1. For more details 
about these operators, please refer to [26]. 

In Tsallis statistics, the non-additivity of q-log and q-exp is used to explain nonex-
tensive phenomena in many complex systems [20, 25]. Under this framework, an entropy 
is defined [25] and various distributions are derived such as q-Gaussian and q-exponen- 
tial distributions [27, 28]. With this framework, many non-extensive phenomena of many 
complex systems in physics, biology, economy, finance, etc., can be explained. In this 
framework, the parameter, q, is usually chosen empirically. Unfortunately, a method to 
choose q has not yet been defined in the proposed studies and most studies only select q 
that best fit the phenomena of interest. 

Tsallis statistical frameworks have also been used in speech recognition and shown 
improved recognition accuracies [15, 29, 30]. One implementation of Tsallis statistics is 
the use of q-log instead of the log function in the feature extraction process [15, 19]. 
When q-log is applied on noisy speech, Eq. (2) can be expressed in q-log domain as the 
following (for readability, indexes m and f are dropped): 

yq = sq +q hq +q q, (11) 

where yq, sq, hq, λq are the q-log of PY, PS, PH, and λ respectively. We can expand Eq. (11) 
as: 

yq = sq + hq +q + (1  q)sqhq + (1  q)sqq + (1  q)hqq + (1  q)2sqhqq. (12) 

When q  1, it is obvious that sq, hq and λq are non-additive. When sq > 0, the third, 
fourth, and fifth terms of Eq. (12) would likely be positive and using q-log could actually 
increase the mismatch when features are not normalized, which has been confirmed in a 
previous study [31]. 

Mean normalization (MN) is a simple and powerful technique to improve robust-
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ness in speech recognition systems. It is effective to remove stationary distortions such as 
convolutional noise and white noise. Cepstral mean normalization (CMN) and log spec-
tral mean normalization (LSMN) are two examples of MN methods. In MN, the objec-
tive is to make the long term mean of the features to be zero. Since convolutional noise is 
relatively stationary, subtracting the long-term average from the features is effective to 
remove it. But, MN has limited effectiveness on removing . 

When MN is applied in the q-log domain, assuming that speech and noise are un-
correlated, hq is stationary, and  has zero mean (Need to be noted that this assumption 
may not be true. But, our empirical observation shows that it is very close to zero), i.e., 
= 0, we obtain the mean normalized features of noisy speech, ỹq as follows: 

ỹq = yq yq = (1 + (1  q)cq)(
~sq +q q) = (1+ (1  q)cq)[(1 + (1  q)q)sq + q]. (13) 

where cq = {hq}. As indicated in Eq. (13), there are two things that could be observed. 
First, the term (1 + (1  q)cq) could amplify the features, which might increase the mis-
match and hamper the performance of ASR even when we assume the convolutional 
noise to be stationary. Usually, the power spectra are normalized before applying MN as 
in PNCC [6]. Second, the term of (1 + (1  q)q)

~sq might benefit ASR since it amplifies 
speech and as the results, noise could be masked, reducing the effect of noise. Overall, 
since both terms are multiplicative to speech, the performance of MN could be very sen-
sitive to the choice of q and big changes in performance may occur for small changes of 
q [31]. 

A more appropriate way to normalize q-log based features is proposed [19]. The 
method is called q-LSMN. In that work, the method was applied in on the power spectra. 
It was also performed as an intermediate processing step, i.e. the normalized spectra were 
transformed back to the spectral domain after normalization. In this paper, we apply the 
method on the output of human-auditory-inspired filter-banks. We call it q-mean nor-
malization (q-MN). It is formulated as:      

qqq
q

qq
q q

yy
y

yy
y 





)1(1

 . (14) 

Applying q-MN on noisy speech, using the same assumptions as before, we obtain the 
normalized features, y̆q, as: 
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where s̄q = 
M
m=1sq(m) is the arithmetical mean of sq and ~sq is the mean normalized version 

of sq, i.e., sq = sq   ̄ sq, and s̆q is the normalized features of clean speech after q-MN. Based 
on Eq. (15), q-MN is the same as MN when q = 1 or when sq has zero mean. Interestingly, 
assuming that the convolutional noise is stationary, cq is removed. Therefore, power 
normalization as in PNCC is not needed. In addition, Eq. (15) show that q is affected by 

the factor
1 (1 )

1 (1 ) .q

q

q

q
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 For unvoiced consonants in speech, q is oppressed since generally ~sq  

< s̄q for consonants. But, this also means that q is amplified when ~sq > s̄q, as is the case 
for vowels and voiced consonants. Fortunately, ~sq is the mean subtracted features, we 
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vided filter-banks for Mel filter-banks, the 256 frequency components are also accumu-
lated into 23 filter-banks. But instead of being uniformly distributed according to a linear 
scale in the frequency domain, the filters are distributed according to the Mel scale. In 
other words, more filter-bank components are put in the low frequency regions than in 
the high frequency regions. 

No noise removal technique was applied so the improvements that were achieved 
were the results of applying of q-log transformation, the effect of human auditory scales 
and the normalization. For references, results for several standard features (LFCC, 
MFCC) with cepstral mean normalization (CMN) were provided. 

6. EXPERIMENTAL SETUP 

All features were evaluated using Aurora-2 database [34]. In this speech database, 
eight types of additive noise and two types of convolutional noise are used to artificially 
create the noisy data. There are three test sets and noise is added artificially at various 
SNR: 20 dB, 15 dB, 5 dB, 0 dB and 5 dB. In this paper, we used only the clean data to 
train the acoustic models for ASR. 

For the speech recognition, the standard HMM-based ASR system provided in the 
corpus was used. Each digit was modeled by 16 states HMM, left-to-right where each 
state was modelled using GMM with three Gaussian components. Two pause models: sil 
and sp were used: “sil” and “sp” models. The “sil” model had 3 states with 6 Gaussian 
components while “sp” had a state tied to the middle state of the sil model. The features 
had 39 dimensions: 13 static features including the zeroth cepstral, 13 first derivatives, 
and 13 second derivatives. 

For evaluation metrics we used word accuracy (WA). It is computed as follows: 

,
H I

WA
N


  (17) 

where H is the number of correctly recognized words, I is the number of insertions, and 
N is the number of words. For Aurora-2, it is common to use average word accuracy as a 
metric. It is computed by averaging the word accuracy for SNR conditions 0 to 20dB 
(clean and 5 dB are excluded). 

7. RESULTS AND DISCUSSIONS 

In this section, several evaluations on the investigated features are given. First, the 
effect of using different human auditory models is shown and analyzed. Secondly, the 
effect of applying q-log in intermediate and non-intermediate domains is evaluated. 
Thirdly, q-MFCC_A is evaluated.   

7.1 The Effect of Linear vs Nonlinear Scales 

Fig. 4 compare the performance of q-MN when it is applied in linear and Mel scales. 
As expected, applying q-log in the linear domain is worse than when it is applied in the 
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8. CONCLUSIONS 

In this paper, we have shown that applying q-MN to human-auditory filter-banks 
improves the performance of speech recognition in noisy environments. The experi-
mental results suggest that q-MN is more effective when it is applied in an intermediate 
domain for high SNR conditions. But, for low SNR conditions, the results indicate that 
more robust features can be obtained when the normalized features are not transformed 
back from this domain but used as they are in the remaining features extraction steps. 
When the SNR is low, the ratio between noise and speech could be minimized using low 
q in the q-log domain. This is not the case when they are inverted back to the linear do-
main. Compared to the standard features such as MFCC, q-log based features are largely 
better.  

We also proposed an adaptive approach to determine q of q-MN. We found that 
q-MN reduced the spectral distortion on the peaks of spectra when q < 1 was applied. 
However, it also increased the distortion in spectral valleys. Hence, we applied two q 
values for q-MN and found that qp = 0.6 and qv = 0.9 achieves the best accuracy. Need to 
be noted that there is no conclusive proof that these values work best for all noisy condi-
tions and further studies are required to find the correlation between physical properties 
of speech with q. Nonetheless, our experimental results demonstrated the effectiveness of 
multiple q-values compared to a single fixed one. 
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