
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 36, 31-52 (2020)
DOI: 10.6688/JISE.202001 36(1).0003

Composition and Testing of Connection Fault Handling
Behaviors in Programs with AND/OR Graph

CHIA-CHENG LEE, YU CHIN CHENG AND CHIN-YUN HSIEH
Department of Computer Science and Information Engineering

National Taipei University of Technology
Taipei, 10608 Taiwan

E-mail: t101599006@ntut.edu.tw, {yccheng; hsieh}@csie.ntut.edu.tw

To programs running on components in a distributed system, both network and com-
ponent failures manifest as connection faults that are represented by exceptions. Although
many strategies are available for handling connection faults, it is often necessary to com-
pose multiple strategies in such programs, especially in Internet of Things systems and
cyber-physical systems. Moreover, it should be possible to specify a program’s connection
fault handling behaviors prior to implementation. Having observed the lack of appropriate
design-level constructs, we propose an extended AND/OR graph for modeling composite
connection fault handling behaviors in programs. The extended AND/OR graph enables
succinct representations of complex fault handling behaviors by composing the constituent
strategies of retrying, communicating failure, and ignoring failure. Furthermore, we develop
a model-based testing framework that accepts the extended AND/OR graph specification as
input and generates tests for checking the connection fault handling behaviors of a program
constructed from the specification. The proposed method is illustrated with a Java program
to detect and report failure of a device. In particular, the AND/OR graph specification stip-
ulates that the program handles connection faults covering network failures by composing
retrying strategy. From this specification, tests are generated by finding all solution trees of
the AND/OR graph subject to the number of retries to cover all the paths that lead to the
program’s normal and exceptional exits, respectively. The extended AND/OR graph and
the model-based testing framework contribute to the means for specifying and testing con-
nection fault handling behaviors of programs that are crucial to the success of Internet of
Things systems and cyber-physical systems.

Keywords: connection fault, exception handling, AND/OR graph, model-based testing, as-
pect-oriented programming

1. INTRODUCTION

A program running on a computer solves a problem by being connected, through the
execution environment provisioned by the computer, to the context where the problem is
located. Through the connection, relevant phenomena – events and states – are shared
between the program and the problem context [1]. The efficacy of the program depends
on the quality of the connection and the correctness of the phenomena shared through the
connection: a failed connection could isolate the program from its context and corrupted
shared phenomena could prevent it from computing the correct result.

Received April 13, 2018; accepted July 4, 2018.
Communicated by Shi-Chun Tsai.
* This research is supported by the Ministry of Science and Technology (MOST) of Taiwan under grant contracts
104-2221-E-027-007 and 105-2221-E-027-076.

31

32 CHIA-CHENG LEE, YU CHIN CHENG, CHIN-YUN HSIEH

Failed connections and corrupted shared phenomena are aspects of availability and
robustness of software [2] that become pervasive in Internet of Things (IoT) applications
[3, 4, 5] and cyber-physical systems (CPS) [6]. A typical IoT application can easily com-
prise thousands of nodes interconnected through networks of varying degree of reliability.
Battery-powered nodes that die or network transmissions that fail are common failures.
Programs that run on these constituent nodes should be built to handle unreliable con-
nections and corrupted sensory data and to withstand node and subsystem failures [4, 7].
Thus, regardless of the role a node plays in a system – as a server, a hub controller, or a
sink node directly connected to sensors and actuators – a node’s capability to cope with
failed connection and corrupted shared phenomena is critical to its success in the system
[5, 8].

In this research, we shall focus on tolerating connections faults through exception
handling [2, 9]. As long as a program connects to the problem context to share phenom-
ena, connection faults beyond the program’s control will always be present. Between
being completely robust and being totally broken, a connection can be intermittent due to
certain transient conditions [10]; while a connection is in good order most of the time, it
could appear broken when needed. Here are two examples.

• Consider a mobile application that uses a LTE or WiFi connection to access re-
mote services where the acquired connection is intermittent due to terrains or weak
wireless airwaves; a required database retrieval could not be completed through
the acquired connection because of heavy network traffic bounded for the database
server; and so on. Such transient conditions are instances of active connection
faults.

• Consider the use of a smart phone as the edge sink/controller in a smart home
application that contacts sensors and appliances deployed in a living room through
Bluetooth, NFC, or WiFi [5]. Obviously, it is highly desirable for the application
to use the best connection. However, when the best connection is not available, it
should automatically switch to an alternative connection with a negligible delay.

A program that easily fails on transient connection faults is fragile and not suitable
for distributed, mobile, and IoT applications. Usually, connection faults can be tolerated
by retrying the failed operation, possibly after a small length of time of waiting. Since
retry incurs minimal overhead, accepting failure or attempting some other more expen-
sive strategies (e.g., retrying with an alternative connection) become justified alternative
options only after a reasonable number of consecutive retries have failed [11].

Indeed, the need to tolerate transient faults has been well recognized by the develop-
ment community. In addition to the exception handling constructs of most programming
languages, many widely used application programming interfaces (APIs) are available to
developers in composing programs that handle connection faults [12, 13, 14]. For ex-
ample, the Microsoft Enterprise Library provides fault detection strategies and backoff
strategies (i.e., number of retries to attempt in case of failure and the length of time to
wait between two retries), the selections of which are wrapped in an object called the
transient fault handling application block, which provides a surrogate around the method
to be retried to ride out a transient fault [12].

Both the use of exception handling constructs and the use of APIs can be viewed as
implementation-level means for handling connection faults. As pointed out in [2], this
often has a consequence that program-level availability is inadequately planned and the
resulting program is insufficiently tested [15].

COMPOSITION AND TESTING OF CONNECTION FAULT HANDLING 33

To make connection fault handling a part of the specification of the program under
development, a more abstract way above the level of language features or APIs is needed.
In particular, the abstraction should be able to express the composition of exception han-
dling operations for implementing the exception handling strategies - including retrying,
state restoration, and error reporting [11] – once the situation of the applicable strategy
has been determined [16]. Further, the abstraction should also serve as a foundation to
automate the subsequent technical tasks, including generating the tests to check an imple-
mentation’s conformance to the specification [17].

In this paper, we extend the AND/OR graph for structured programming [18] to
compose the connection fault handling behaviors of a program. A node in the extended
AND/OR graph is called an operation, which extends an action in AND/OR programming
[18] or a statement in structured programming [19], that terminates with or without an ex-
ception. To the collection of basic operations available in the AND/OR programming, we
propose to add two additional exception handling operations derived from the try-catch-
finally construct that are available in most programming languages. With the extended
collection of operations, operations that tolerate connection faults are constructed through
the AND and OR compositions [18]. With the extended AND/OR graph, we make two
contributions. First, as an artifact that focuses on specifying the connection fault handling
behaviors of programs, the extended AND/OR graph complements the existing design
artifacts such as sequence diagrams and communication diagrams [20], which focus on
specifying the normal behaviors of programs. Second, we demonstrate that the extended
AND/OR graph can be used as a model in model-based testing (MBT) [17]. In so doing,
we have developed a framework to generate unit tests from the AND/OR graph specifica-
tion, where both the specification and AND/OR graph search algorithm are implemented
with the Prolog programming language [21]. The generated tests, each of which corre-
sponds to a solution tree of the AND/OR graph traversed by the search algorithm, make
use of aspect-oriented programming [22] to inject active connection faults as described by
the solution tree during testing. A failing unit test indicates that the specification has not
been implemented correctly for the particular sequence of connection faults encountered.

The rest of this paper is organized as follows. In Section 2, the state model of an
operation facing connection faults is defined, followed by the definitions of the basic
operations and the exception handling operations. Section 3 shows how common strate-
gies for handling connection faults are constructed with the extended AND/OR graph. In
Section 4, a working example in composing the connection fault handling behaviors of
detecting a device failure function is detailed to illustrate the use of the extended AND/OR
graph. In Section 5, we develop a model-based testing framework that generates tests for
checking a program’s conformance to its connection fault handling AND/OR graph spec-
ification using a detecting a device failure as an illustrating example. A review of some
related work is found in Section 6. Finally, we offer our conclusion in Section 7.

2. THE EXTENDED AND/OR GRAPH FOR CONNECTION
FAULT HANDLING

Our objective is to extend the AND/OR graph formalism to represent a composite
operation with the specified connection fault handling behaviors [18]. In order to do
this, Section 2.1 defines the connection fault-operation relation and the fault handling
behaviors of an operation in response to a connection fault. The basic operations and
the proposed extensions of the AND/OR graph for exception handling are detailed in
Section 2.2.

34 CHIA-CHENG LEE, YU CHIN CHENG, CHIN-YUN HSIEH

D A

breaking external condition

condition clearing

Legends
D connection fault is dormant
A connection fault is active

Fig. 1. State model of a connection fault

Nstart

F

H

Xs

Xe

check ∨ being told

return

handle
∼handle/throw exception e

mitigated ∨ ignored

∼mitigated

Legends
N normal
F faulting
H handling
Xs normal exiting
Xe erroneous exiting
∼ logical negation
∨ logical disjunction

a/b on a, do b

Fig. 2. State model of an operation op regarding connection fault.

2.1 Connection Fault, Operation, and Their Relationship

First, we shall define the effects of a connection fault on an operation op. A con-
nection fault is either dormant or active [9] as shown in Fig. 1. A dormant connection
fault becomes an active connection fault when an external condition breaks the connec-
tion (e.g., network is disconnected); an active connection fault turns dormant when the
condition that breaks the connection clears (e.g., network is reconnected). A dormant
connection fault is benign to operation op. That is, it does not affect operation op’s be-
havior in exchanging information with the external entities. Further, an active connection
fault is benign to operation op if the connection with the ongoing active fault is not being
used by operation op.

The tolerance of a connection fault by an operation is to ensure that only benign
connections are used when the operation communicates with the external entities. Ac-
cordingly, an active connection fault causes operation op to exhibit an error if (1) the
connection is being used by operation op when the fault becomes active and (2) opera-
tion op does nothing to handle or fails to handle the active connection fault.

For the purpose of tolerating connection faults, the behavior of an operation op re-
garding connection fault can be modeled by the state diagram in Fig. 2. Operation op
enters its normal state N upon invocation. Regardless of its functionality, operation op
exits normally by leaving the state N and entering the normal accepting state Xs when
all the connections actually used during its execution are benign. When operation op
uses a connection with an ongoing active connection fault (state A in Fig. 1), it leaves
the normal state N and enters the faulting state F either by detecting it (e.g., operation
op times out in getting data through the connection) or by being informed about it (e.g.,
operation op throws an exception when establishing the connection). From the faulting
state F , operation op either enters the handling state H to mitigate the active connection
fault (Section 3), or enters the accepting erroneous state Xe after throwing an exception e.
Depending on whether the active connection fault is mitigated (or can be safely ignored)
or not, operation op returns to the normal state N or the faulting state F .

There are two noteworthy points about the state model of Fig. 2. First, the state model
says nothing about the correctness of operation op when it exits normally in entering Xs;

COMPOSITION AND TESTING OF CONNECTION FAULT HANDLING 35

op

s e
∨

(a)

op
[cond]

(b)

op

op1 op2

[cond1] [cond2]∨

(c)

op

op1 op2 . . . opk

∧ ∧ ∧

(d)

Fig. 3. Operations: (a) an OR-node to model an operation that can terminate with success s or with
failure conveyed by exception e; (b) a guarded operation cond|op where the operation op is executed
only if the specified condition cond holds; (c) a conditional operation opcond can be constructed by
forming an OR-node with a number of guarded operations as its branches, where the conditions are
evaluated from the left-most branch to the right-most branch; (d) an exception-stopping AND-node
to compose an operation consisting of k constituent operations op1,op2, · · · ,opk.

it singularly focuses on modeling the connection fault handling behaviors of operation
op. Second, the non-presence of an unconditional transition from state F to state N or
state Xs in Fig. 2 requires operation op not to ignore an active connection fault it has
encountered. This requirement ensures that operation op is free of the internal fault, or
bug, of ignoring an encountered active connection fault without checking (Section 3.4).
In other words, an operation with behaviors described by the state model in Fig. 2 always
throws an exception when an encountered active connection fault is not handled.

2.2 Operations and the AND/OR Composition

With the state models of Figs. 1 and 2 in place, we are ready to define the basic oper-
ations and exception handling operation of the AND/OR graph for composing connection
fault handling behaviors of an operation.

2.2.1 Basic operations

According to the state model of Fig. 2, an operation op can terminate normally with-
out raising an exception or it can terminate erroneously with an exception raised. This is
denoted as Result(op) ∈ {s,e}, where s denotes normal exit (entering state Xs) without
an exception and e denotes erroneous exit (entering state Xe). For example, an action of a
client sending a message to a server can terminate erroneously if the network is intermit-
tent. Operation op is modeled as an OR-node as shown in Fig. 3 (a). The nodes s and e
are instances of a terminal node that represents an operation where no further expansion
is possible. By this definition, an operation that does not raise an exception always termi-
nates with the node s; for brevity, such an operation is represented as a terminal node by
omitting the node s.

A guarded operation is an operation that is executed only when the specified condi-
tion is satisfied [18, 23]. In Fig. 3 (b), a guarded operation is denoted by cond|op, where
operation op is executed only if condition cond specified at the inbound edge evaluates
to true. The guarded operation and the OR-composition are combined to express a con-
ditional statement as shown in the conditional operation op in Fig. 3 (c), where cond1 is
evaluated before cond2 and cond2 is evaluated only if cond1 evaluates to false. Note that
cond1 and cond2 need not be mutually exclusive. For a conditional operation op with k
(k≥ 1) guarded operations condi|opi (1≤ i≤ k), Result(op) = Result(op j) if there exists
a j,1≤ j≤ k, cond j = true and cond1∨ . . .∨cond j−1 = f alse; otherwise, Result(op) = s.

An operation op consisting of a sequence of k (k ≥ 1) operations op1, op2, · · · , opk
is modeled as an exception-stopping AND-node as shown in Fig. 3 (d). The constituent
operations op1, op2, · · · , opk are executed sequentially; that is, operation opi is executed
before operation op j if i < j,1 ≤ i ≤ k− 1. Note that the AND-node can represent a

36 CHIA-CHENG LEE, YU CHIN CHENG, CHIN-YUN HSIEH

parallel construct and a sequential construct [18]. In this paper, the AND-node is restricted
to be a sequential execution of the constituent operations from left to right. Result(op) = s
if all constituent operations opi, i = 1, · · · ,k end in s; Result(op) = e if all operations
before operation op j end in s and operation op j(j ≥ 1) ends in e, upon which operations
opi, i = j+1, · · · ,k are not executed. Skipping the latter constituent operations explains
why the node of operation op of Fig. 3 (d) is called an exception-stopping AND-node:
it terminates the normal execution and propagates to its caller the exception thrown by
the failing constituent operation. The exception-stopping AND-node is consistent with
the termination model of the continuation of control flow upon exception [24], which is
adopted by all of the programming languages analyzed in [25], including C++ and Java.
An exception-stopping AND-node degenerates into a regular AND-node if none of its
constituent operations throws an exception. Where no confusion is possible, the term
AND-node will be used for brevity.

2.2.2 Exception handling operations

The try-statement that is available in most languages is modeled as a composite
operation. Since the semantics of the try-statements cannot be expressed by the basic
operations of Fig. 3, two new types of operations are introduced: the try-catch operation
and the try-finally operation.

Operations corresponding to the three variants of the try-statement are depicted in
Fig. 4. Fig. 4 (a) denotes the try-catch operation op, which is stereotyped with the symbol
�t-c�. Operation op is composed of the normal operation opt reached through the
branch labeled try and the conditional operation opc reached through the branch labeled
catch for exception handling, respectively. Operation opt is executed unconditionally.
Operation opc is executed only if operation opt throws an exception e that matches any
conditions in the ordered list e = e1,e = e2, . . . ,e = ek of operation opc.

We assume that opt and opc behave according to the state model of Fig. 2. The result
of executing operation op, Result(op), is determined in three different cases according to
Fig. 2:

• If operation opt exits normally, Result(op) = Result(opt) = s. In this case, opera-
tion opt – and therefore operation op – makes the transition from state N to state Xs
in Fig. 2; or

• operation opt terminates in error raisng an exception e 6= e j (j ∈ {1, · · · ,k}). Op-
eration op propagates exception e and Result(op) = Result(opt) = e. In this case,
operation opt – and therefore operation op – makes the transition from state F to
state Xe in Fig. 2; or else

• operation opt terminates in error with an exception e = e j raised for some j ∈
{1, · · · ,k}. The first matching operation op j of operation opc is executed and
Result(op) = Result(opc) = Result(op j). In this case, operation opt makes the
transition from state F to state Xe, causing operation op to make the transition from
state F to state H to invoke the operation opc in Fig. 2 to handle exception e.

The try-finally operation op is modeled as in Fig. 4 (b), where the node is stereo-
typed with the symbol�t-f�. The operation opt is executed unconditionally. Then, the
cleanup operation op f of the finally branch is always executed regardless of the result
of executing operation opt of the try branch. The try-finally operation op has the result
of Result(op f) if Result(op f) 6= s; otherwise, it has the result of Result(opt). Note that

COMPOSITION AND TESTING OF CONNECTION FAULT HANDLING 37

op

opt opc

op1 . . . opk

try catch(e)

[e = e1] [e = ek]

�t-c�

∨∨

(a) try-catch

op

opt op f

try finally

�t-f�

(b) try-finally

op

�t-c�
optc

opt opc

op1 . . . opk

op f

try

try catch(e)

[e = e1] [e = ek]

finally

�t-c-f�

∨∨

(c) try-catch-finally

Fig. 4. Exception handling operations based on try-statement.

op(e|I)

op

�t-c�

(a)

op(e|I)

op op eh(e|I)

screen(e) retry(I)

eop retry impl(I)

wait(I) �t-c�
op(e|I−1)

try catch(e)

[I ≤ 0] [I > 0]

�t-c�

∨

∧

∧

(b)

[e not in scope]

Fig. 5. Retrying with the original; (a) Making operation op tolerate transient faults represented
by exception e by retrying it at most I times with the surrogate operation op(e|I); (b) a possible
implementation expansion of operation op(e|I).

the try-finally operation op does not enter the state H of Fig. 2; that is, it does not handle
any exception thrown by operation opt .

The try-catch-finally operation can be constructed by plugging in the try-catch oper-
ation into the try branch of the try-finally operation and is stereotyped with the symbol
�t-c-f�; see Fig. 4 (c).

3. MODELING THE COMMON CONNECTION FAULT
HANDLING STRATEGIES

An operation op selects from three strategies for handling an active connection fault:
retrying, communicating failure, and ignoring failure [11, 26, 27]. For retrying, there are
two options: retrying with the original and retrying with an alternative [28]. If the failure
is caused by a bug or by an incorrect action of the user, retrying with the original does not
help at all. The strategy retrying with an alternative is applicable to both connection faults
and bugs provided that the alternative operation is bug-free. Finally, if the failure is caused
by the user, the proper strategy is to involve the user to fix the cause after communicating
failure [27].

38 CHIA-CHENG LEE, YU CHIN CHENG, CHIN-YUN HSIEH

3.1 Retrying With the Original

The strategy retrying with the original is implemented with a surrogate that controls
the repeated calls to the original operation. As depicted in Fig. 5 (a), operation op is made
to tolerate connection faults represented by exception e by inserting the try-catch node
op(e|I) above it, where the notation e|I means that at most I(I ≥ 0) retries are attempted
for a caught exception of type e.1

While Fig. 5 (a) is appropriate as a design level notation for operation op(e|I), dur-
ing implementation time, it can be expanded to show further details, including the screen-
ing operation for excluding exceptions from retry and the backoff strategies before retry.
Fig. 5 (b) shows a possible expansion of node op(e|I). In the expansion, the try-catch
node op(e|I) is composed of the try operation op and the catch operation op eh(e|I).
The AND-node op eh(e|I) is sequentially composed of operation screen(e) and operation
retry(I). Operation screen(e) terminates by throwing exception eop (with exception e as its
cause) if exception e thrown by operation op is not in scope for retrying with the original.
By being not in scope, we mean that the exception is not appropriate to handle with retry-
ing, e.g., when the exception is caused by an error committed by the user. Ideally, such
a user error should be represented by an exception other than e. In practice, however, the
same exception type is often used for both connection fault and user error. The exception
used in such a practice is called a homogeneous exception [29]. Thus, operation screen(e)
is employed to further check for exceptions representing non-connection faults. Section 4
gives an example of how the screening operation deals with a homogeneous exception.

When screen(e) exits without throwing an exception, exception e is appropriate to
handle with retrying with the original. This is implemented with retry(I), which ends
either with op exiting in success or in failure by throwing exception eop when the number
of retries I has been exhausted. Note that a retry is attempted after a waiting period
determined by wait(I), which could implement an appropriate backoff strategy such as
exponential backoff [14].

3.2 Retrying With an Alternative

Let op be an operation called by operation opa as depicted in Fig. 6 (a). The op-
eration opa is made to tolerate failure of operation op by inserting a surrogate try-catch
operation opReAlt between operation opa and operation op and providing an alternative
operation opAlt that is different from but functionally the same as operation op. The alter-
native operation opAlt is executed when operation op raises exception eop; see Fig. 6 (b).
For example, if a SQL command fails against the primary database, it can be alternatively
executed against the backup database.

3.3 Communicating Failure

When it is appropriate for operation opa to allow the failure of op to become its
own failure, this strategy is modeled with the exception-stopping AND-node and make
operation op a child of operation opa (Fig. 3 (d)). That is, i.e., both operations op and
opa make the transition from state F to state Xe in Fig. 2.

3.4 Ignoring Failure

Sometimes it is necessary to ignore a connection failure. An implementation of
ignoring failure is shown in Fig. 7 (a). The surrogate operation op(ē) catches the active

1In general, the surrogate operation could be written as opb([ei|Ii]), i = 1, . . . ,k, if there are k exceptions for
which the strategy retrying with the original is applicable.

COMPOSITION AND TESTING OF CONNECTION FAULT HANDLING 39

opa

op

(a)

opa

�t-c�
opReAlt

op opAlt
try catch(eop)

(b)

Fig. 6. Retrying with an alternative; (a) Operation opa calls operation op; (b) tolerating failure of
operation op represented by exception eop with an alternative operation opAlt through the surrogate
operation opReAlt.

op(ē)

op nop
try catch(e)

�t-c�

(a)

op(ē)

op screen(e)

eop

try catch(e)

[e not in scope]

�t-c�

(b)
Fig. 7. Ignoring an exception e, where nop stands for no operation.

connection fault conveyed by exception e but does nothing to fix it (represented by nop -
no operation, which always has the result of success s.) as indicated by the bar notation
over the exception e. Note that, however, it may be necessary to screen for exceptions
that should not be ignored when the homogeneous exception is used, in which case the
expansion in Fig. 7 (b) is used. Strategy ignoring failure is applicable, for example, when
closing a database connection fails after successfully accessing the database. In this case,
it is reasonable for the access operation to ignore the failure (probably after logging) and
terminate normally [27], i.e., taking the transition from state H to state N in Fig. 2.

4. AN ILLUSTRATING EXAMPLE WITH DETECTING AND
REPORTING FAILURE OF AN ANALOG DEVICE

In this section, we illustrate the use of the extended AND/OR graph to compose the
connection fault handling behaviors of an operation. The illustrating example is adapted

Monitoring
program

Analog
devices

ICU
patients

Nurses’
station

read

factor
evidence

notify

Fig. 8. Detecting and reporting failure of analog devices.

40 CHIA-CHENG LEE, YU CHIN CHENG, CHIN-YUN HSIEH

from the Patient Monitoring problem [1]. Our focus is on detecting failures of the analog
device.

A patient-monitoring program is required for the intensive care unit (ICU) in a hospi-
tal. Each patient is monitored by an attached analog device which periodically measures
factors such as pulse, temperature, blood pressure, and skin resistance. The monitoring
program reads these factors on a periodic basis. If an analog device fails, the nurses’
station is notified by the monitoring program. In the event that notification fails, an SMS
message is sent to the phone of the medical staff on duty.

Fig. 8 shows the context diagram of the sub-problem of detecting and notifying fail-
ure of analog devices. We are going to assume that the analog device is implemented with
a network-capable embedded system such as Arduino [30] or Raspberry Pi [31], which
allows the monitoring program to read the vital factors through a RESTful API [32], (e.g.,
using the library [33] on Arduino.)

An analog device failure can come from three sources:

• The network connection between the monitoring program and the analog device is
experiencing a breakage.

• The analog device is broken and exhibits a reading out of the normal range; e.g., a
temperature reading that is out of range of living human body temperature (88◦ ∼
100◦ F).

• A sensor is detached from the patient and exhibits a reading out of the normal range.

Of the three sources, only the first source is related to connection fault handling; the
other two sources are domain errors whose detection requires building a domain model
of the analog device. For the first source, we shall apply the strategy of retrying with the
original to ride out the transient connection fault. For the the the domain error, we shall
apply the strategy of error reporting.

Since these faults can occur during the read operation performed by the monitoring
program, we are going to compose the two strategies in the operation read. In Java, the
signature of read is

void read() throws fad ,
where fad

2 is an exception representing an analog device failure. Likewise, the operation
notify has the signature

void notify() throws fns,
where fns

3 is an exception representing failure to notify the nurse station, which is appro-
priate since either the network connection to the nurse station or the nurse station itself
could be down.

The operations are composed into the operation readOrNotify with a signature
as follows:

void readOrNotify() throws fns.
Finally, to satisfy the requirement, the operation monitor is composed as in Fig. 9.

In a nutshell, in the event that both analog device and the nurse station fail, an SMS
message is sent through the phone network to the medical staff in charge.

2Implemented as exception ADFailureException in Java in Section 5.
3Implemented as exception NotifyNSFailureException in Java in Section 5.

COMPOSITION AND TESTING OF CONNECTION FAULT HANDLING 41

�t-c�
monitor

�t-c�
readOrNotify

read

s fad

notify

s fns

sendSMS
try

try catch(fad)

catch(fns)

∨ ∨

Fig. 9. Operation monitor is the top level operation that composes read and notify.

read

r = get

s

checkStatus(r.code)

fad s

checkValue(r.value)

s fad

[code = 4xx or 5xx] [else] [value is sensible] [else]

∧ ∧

∨ ∨

Fig. 10. Expanded operation read reads a measurement and checks whether it has a failure.

4.1 Implementing the Strategies of Communicating Failure and Retrying With
the Original

With the top level operation monitor specified as in Fig. 9, we can go a step fur-
ther to consider the fault handling strategies applicable operation read. Fig. 10 shows
the expanded tree of subtree rooted at operation read in Fig. 9. The operation read is
composed of the operations get, checkStatus, and checkValue. Specifically, op-
eration get reads a measurement from an analog device and returns the standard HTTP
status code used by the RESTful API [32]. The status code is a 3-digit integer where the
first digit defines a class of response: a 2 indicates the request has succeeded, a 4 indicates
the client error, and a 5 indicates the server error [34]. Operation checkStatus checks
for connection fault and throws an instance of exception fad if a client error (return code
= 4xx) or a server error (return code = 5xx) is detected, e.g., code 408 for timeout and
code 503 for an overloaded device. Finally, operation checkValue checks for domain
error and throws an instance of exception fad if the reading has a value that is nonsensical.
Note that in either case, the cause is recorded in a data field of exception fad .

Operation read has the semantics of communicating failure, i.e., it deals with both
connection fault and domain error by throwing the exception fad . The use of homoge-
neous exception fad is a common practice for exception handling design [29] [35] [36].

While operation read satisfies the requirement, an intermittent network connection
can send an alarm to nurse station. By the time the medical staff on duty reaches the
alleged failed analog device, it could happen that no failure has found. This is clearly
undesirable and should be further improved.

In Fig. 11 operation read(fad |I) is introduced as a surrogate around operation
read to ride out transient connection faults by applying strategy of retrying with the
original.

The original operation read throws a homogeneous exception fad for both a domain
error and a connection fault. Operation screen is introduced to single connection faults
for the application of the strategy of retrying with the original. In this case, operation
retry is attempted at most I times (I ≥ 0). In each attempt, an appropriate backoff strat-

42 CHIA-CHENG LEE, YU CHIN CHENG, CHIN-YUN HSIEH

�t-c�
read(fad | I)

read

s fad

handle(fad | I)

screen(fad) retry(I)

fad retry impl(I)

wait(I) �t-c�
read(fad |I−1)

try catch(fad)

[I ≤ 0] [I > 0][fad not in scope]

∧∧∨

∧

∨

Fig. 11. Surrogate operation read(fad |I) implementing the strategy of retrying with the original.

egy wait(I) is applied. After exhausting the allowed number of retries without success,
the failure is communicated by raising exception fad to signify failure of operation read
(Fig. 11).

5. SPECIFICATION-BASED TESTING

The connection fault handling behavior composition graph can serve as a specifica-
tion for constructing the connection fault handling behaviors of an operation. In particu-
lar, the extended AND/OR graph representation of an operation can be easily represented
with a rule-based program for generating various artifacts that describe an operation’s
connection fault handling behaviors, including code and tests.

In this section, we shall focus on generating tests for checking the connection fault
handling behaviors of an operation from the specification. Using terms of AND/OR graph
searching [21], a node is said to be solved when it exits either normally or erroneously. A
solution tree is a sub-graph of the AND/OR graph where the result of executing the root
node, which is the top-level operation whose connection fault handling behavior is being
modeled, is known.

Using the example of Section 4, we assume that code of the operation read(fad |I)
to detect failure of an analog device has been manually constructed according to the
AND/OR graph of Fig. 11. We want to know if the implementation conforms to the
specification through tests generated from the solution trees obtained by searching the
AND/OR graph. Used in this way, the AND/OR specification is a model for generating
tests in model-based testing (MBT) [17].

5.1 System Model

Fig. 12 shows a system that uses an AND/OR specification to generate and run tests
for checking the connection fault handling behaviors. We shall assume that the Java
environment is used. The system makes use of aspect oriented programming (AOP) with
AspectJ [22] and unit testing with JUnit [37].

In Fig. 12, the system consists of the following components. Test Generator creates
a collection of tests based on a given Specification, which is an instance of the extended
AND/OR graph. A generated Test contains code for invoking Operation Under Test as
well as Directives to be consulted by Advice on deciding what to insert at a joint point (i.e.,
a specific invocation of a constituent operation) of Operation Under Test, e.g., whether to

COMPOSITION AND TESTING OF CONNECTION FAULT HANDLING 43

Test

Directives

Test Generator

Specification

Operation
Under Test

Advice

2 write

1 create

3 run 4 joint point

5 read

6 advise

Fig. 12. Generating and executing tests from an AND/OR graph specification: a test carries infor-
mation for directing what an advice should do when an operation is called during the execution of
the test.

1 :- op(100, xfx, >>).
2 :- op(500, xfx, :).
3 :- op(600, xfx, --->).
4 read*I/R--->try_catch:(read/Rt,
5 (eh*I)*Rt/Rc).
6 read/R--->or:[s, f(ad)].
7 (eh*I)*Rt/R--->and:[screen(Rt)/R1, [’=’,Rt,f(ad)]>>(retry*I)/R2].
8 (retry*I)/R--->or:[[’=<’,I,0]>>throw(f(ad))/R, [’>’,I,0]>>(read*J)/R]
9 :- J is I-1.

10 screen(Rt)/R--->or:[s].
11 throw(F)/R--->or:[F].

Fig. 13. An extended AND/OR specification of the Operation Under Test read(fad |I) in Prolog.

let the constituent operation go through normally or to inject an exception to emulate an
active connection fault.

The interaction between components are labeled with numbers to be read in increas-
ing order. Tests are first generated by Test Generator (step 1) according to the AND/OR
graph specification of connection fault handling behaviors for the Operation Under Test.
A Test is run by going through steps 2 to 6. First, Directives to be consulted by Advice
are written by the Test (step 2). As the execution continues, Operation Under Test is in-
voked (step 3) with Advice inserted before specific constituent operations specified by a
joint point and then executed (step 4). Advice then reads the previously written Directives
(step 5), and performs the required action (step 6), i.e., to continue normally or to throw
a designated exception.

5.2 The AND/OR Graph in Prolog

The AND/OR graph specification of operation read(fad |I) in Fig. 11 has been
translated into the equivalent specification in Prolog in Fig. 13. The AND/OR graph is an
extension of the implementation of [21].

We now briefly describe the notational conventions in the following user-defined op-
erators. In lines 1-3, the three operators ‘>>’, ‘:’, and ‘--->’ are infix, right-associative
operators of precedences 100, 500, and 600, respectively, with smaller precedence value
binding more strongly. Operator ‘--->’ is a relation from a node to its successors. Op-
erator ‘:’ marks the node type (and, or, try-catch and try-finally) in its first argument and
the successor nodes as a list in its second argument. For example, node a with two OR
successors b and c is represented by the clause:

44 CHIA-CHENG LEE, YU CHIN CHENG, CHIN-YUN HSIEH

a ---> or:[b,c].
The operator ‘>>’ binds the guard condition to a node. In the following clause, node a*I
has the successor b if I=<0 and the successor c if I>0, where ‘*’ is a built-in operator
of precedence 400 that binds node a with the variable I:

a*I ---> or:[I =< 0 >> b, I > 0 >> c].4

Lastly, we use the binary operator / to bind a node and the result R of evaluating the node.
Thus, the node

read*I/R
denotes that operation read is attempted at most I times with R as the result.

With the operators defined and the notational convention out of the way, we are ready
to explain the conversion of the AND/OR graph of operation read(fad |I) in Fig. 11 into
the Prolog code of Fig. 13. In lines 4-5, the node read*I/R is a try-catch node with node
read/Rt at the try-branch and node (eh*I)*Rt/Rc at the catch-branch. The node
read*I/R stipulates that operation read will be attempted at most I times, at the end
of which the result R is obtained. The node read/Rt is always executed with Rt being
equal to s for success, f(ad) for a connection fault while detecting an analog device;
see line 6. At the catch branch the AND-node (eh*I)*Rt/Rc comprises operation
screen(Rt)/R1 (which always exits successfully with s for simplicity in line 10)
and the guarded retry operation (retry*I)/R2 (line 7) that is expanded only if the
exception is fad . The clause in lines 8-9 stipulates that exception f(ad) is thrown (line
11) if all allowed retries have been exhausted; otherwise, operation (read*(I-1))/R
is executed. For simplicity, the wait operation of Fig. 11 is omitted.

5.3 The AND/OR Graph Search Algorithm

Fig. 14 shows the key clauses of the Prolog procedure
compose(Node/R, Node/R--->Tree)

for exploring an AND/OR graph using depth-first search, where Node/R--->Tree is
a solution tree with result R. The rule for processing an OR-node with guarded branches
of Fig. 3 (c) is found in lines 1-6. Line 2 expands a node that matches with an OR-node.
In line 3, operator >> separates the condition (which is the list CondList) from the
guarded operation (which is the term Node1/R). Line 4 assembles the list CondList
into a term, and line 5 calls the assembled term as a goal. For example, in line 4 of Fig. 13,
the condition list [’=’,Rt, f(ad)] is assembled into the term Rt = f(ad), which
is then executed as a goal by the built-in predicate call. In line 6, the node Node1/R is
executed if the condition Cond in line 4 evaluates to true.

We summarize the rest of the Prolog program in Fig. 14 without going into detail.
The clause at lines 8-11 explores the OR-node of Fig. 3 (a). The clause at lines 13-15
explores the AND-node of Fig. 3 (d). The clause at lines 17-20 explores a node that
corresponds to a try catch node where the try clause succeeds without an exception.
The clause at lines 22-29 explores a node that corresponds to a try catch node where
the try clause throws an exception that is not caught by any of catch clauses. Lastly, the
clause at lines 31-37 explores a node that corresponds to a try catch node where the
try clause throws an exception that is caught by a matching catch clause.

After loading the programs of Figs. 13 and 14, the Prolog query
?- compose(read*1/R,T).

generates all of the possible results Rwith solution trees T for tolerating at most one active
connection fault encountered by operation read. Fig. 15 shows the solution tree T where

4In Prolog, the condition Cond is constructed from a list CondList with the built-in operator ‘=..’ in the
clause Cond =..CondList. Thus, the condition I =< 0 is written as [’=<’, I, 0].

COMPOSITION AND TESTING OF CONNECTION FAULT HANDLING 45

1 compose(Node/R, Node/R--->Tree) :-
2 Node/R--->or:Nodes, % OR-node
3 member(CondList>>Node1/R, Nodes),% Select a branch if Cond
4 Cond =.. CondList,
5 call(Cond), !,
6 compose(Node1/R, Tree).
7
8 compose(Node/R, Node/R--->Tree) :-
9 Node/R--->or:Nodes, % OR-node

10 member(Node1, Nodes), % Select a branch
11 compose(Node1/R, Tree).
12
13 compose(Node/R, Node/R--->and:Trees) :-
14 Node/R ---> and:Nodes, % AND-node
15 composeall(Nodes, Trees, R). % Solve all Node’s successors
16
17 % try catch - try success
18 compose(Node/s, Node/s--->try_catch:TreeT) :-
19 Node/s ---> try_catch:(Try/s,Catch),
20 compose(Try/s,TreeT).
21
22 % try - catch: try throws exception uncaught by Catch
23 compose(Node/R, Node/R--->try_catch:TreeT) :-
24 Node/R ---> try_catch:(Try/R,Catch*R1/RC),
25 getLeavesOrNode(Catch*R1/RC,Catches),
26 failureCaught(Catches,FC),
27 EFC = [s|FC], % extend the failure list by s
28 compose(Try/R,TreeT),
29 \+ member(R,EFC).
30
31 % try - catch: try throws exception caught by Catch
32 compose(Node/R, Node/R--->try_catch:TreeT+TreeC) :-
33 Node/R ---> try_catch:(Try/R1,Catch*R1/RC),
34 compose(Try/R1,TreeT),
35 R1 \= s,
36 compose(Catch*R1/RC,TreeC),
37 R = RC.

Fig. 14. The key clauses of a depth-first AND/OR graph search algorithm in Prolog.

the surrogate operation read*1 ends with R=s after the surrogated operation read first
encountered a fad (when I=1) and then exited with success (when I=0).

5.4 Generated Tests

Fig. 16 shows three of the JUnit tests generated by Test Generator with the Prolog
specification in Fig. 13 translated from the extended AND/OR graph of Fig. 11 with the
Prolog query

?- compose(read*1/R,T).
In what follows, we shall explain in detail the test from at lines 1-14 in Fig. 16 corre-
sponding to the solution tree in Fig. 15.

The intent and result of a test are succinctly summarized in the name of the test (line
2). In this case, the test checks that operation read(1) indeed terminates in success
as indicated by the suffix ‘ ts’ in the method name, where ‘t’ and ‘s’ denote that the
surrogated operation read first encounters a transient connection fault (when I=1) and
a success (when I=0), respectively.

Line 3 stipulates to tolerate at most one transient fault. Lines 4-7 are the directives
written by the test for an advice to consult (see Fig. 12 and Section 5.5) and consist of in-
jecting one ADFailureException (implementation of terminal node fad) followed by
‘s’ for the execution of operation read. As a result, the call monitoring.read(I)
is expected to complete without throwing an exception; see lines 8 - 13.

An implementation of the surrogate operation read(I) with I=1 that passes the

46 CHIA-CHENG LEE, YU CHIN CHENG, CHIN-YUN HSIEH

read(fad |1)

read

fad

handle(fad |1)

screen(fad)

s

retry(1)

�t-c�

read(fad |0)

read

s

try catch

[1 > 0]

try

�t-c�

∧

Fig. 15. Solution tree of the AND/OR graph of Fig. 11 where operation read first exits with a fad
(when I=1) and then exits with success (when I=0). The rectangular nodes are terminal.

three tests in Fig. 16 conforms to the specification that it retries at most once for the con-
nection fault, and terminates successfully or throws an exception as required by the con-
nection fault handling specification in Figs. 11 and 13 and the state model in Fig. 2. Tests
of operation read(I) with I greater than 1 are similar to tests of operation read(I)
with I=1. Since the total number of tests generated exceeds 5,000, for brevity, Fig. 16
only shows the three tests of read(I) with I=1.

5.5 Advice

An Advice can be seen as a test stub which provides an indirect input (to raise an
exception or not) to control the flow of Operation Under Test [38]. Fig. 17 shows the
partial AspectJ implementation of Advice [22]. The pointcut looks for invocations of
Monitoring.read() (line 2). The before advice stipulates that before an instance
of Monitoring.read() is executed, one of the two alternative actions is taken. De-
pending on the instruction read from Directives (line 6) set by the test, it allows the in-
vocation to go through (lines 7-8); replaces it with a mocked ADFailureException
with a HTTP status code 408 (Request Timeout) (lines 9-10).

6. RELATED WORK

The present work is based on the previous results in fault handling [39, 40, 41, 42,
25], although with a much narrower scope of modeling and testing connection fault han-
dling behaviors. In what follows, we shall relate the present work to the various tech-
niques used, including AND/OR graph, aspect-oriented programming, and software test-
ing.

AND/OR graphs model problems that are solved by decomposition in artificial in-
telligence, e.g., in symbolic integration [43], game-playing, theorem proving, and many
other problems [44, 45]. The use of AND/OR graph to represent a program was pro-
posed in [18]. Indeed, an AND-node subsumes sequential and parallel composition and
an OR-node subsumes non-determinism and conditionals; thus, it can be used for struc-
tured programming. The extended AND/OR graph proposed in this paper can be seen as
parallel to the AND/OR program of [18] by including exception handling operations, but

COMPOSITION AND TESTING OF CONNECTION FAULT HANDLING 47

1 @Test
2 public void test_read_x1_success_after_0_transients_ts(){
3 int I = 1;
4 repo.initResponse();
5 repo.addResponse("read/f(ad)");
6 repo.addResponse("read/s");
7 repo.toBeforeFirstResponse();
8 try {
9 monitoring.read(I);

10 }
11 catch(Exception e){
12 fail("Exception thrown");
13 }
14 }
15 @Test
16 public void test_read_x1_success_after_0_transients_s(){
17 int I = 1;
18 repo.initResponse();
19 repo.addResponse("read/s");
20 repo.toBeforeFirstResponse();
21 try {
22 monitoring.read(I);
23 }
24 catch(Exception e){
25 fail("Exception thrown");
26 }
27 }
28 @Test
29 public void test_read_x1_Fad_after_0_transients_tt(){
30 int I = 1;
31 repo.initResponse();
32 repo.addResponse("read/f(ad)");
33 repo.addResponse("read/f(ad)");
34 repo.toBeforeFirstResponse();
35 try {
36 monitoring.read(I);
37 fail("Exception not thrown");
38 }
39 catch(ADFailureException e){
40 assertEquals("Analog device fails", e.getMessage());
41 }
42 }

Fig. 16. JUnit tests of the operation read(fad|1) generated by the Test Generator.

is simplified to solely focus on the specification of connection fault handling behaviors.
It should be noted that the extension can be achieved with monads to extend the normal
operation to account for exceptions as is used in functional programming [46].

Model-based testing has been proposed for testing standard specification confor-
mance [47]. Basically, standard specification written in a natural language is first trans-
lated into a finite state machine description, which is then used to generate tests for testing
conformance. It has been found that the tests generated from model were able to exceed
the test suites directly crafted from the natural language specification. The AND/OR
graph formalism proposed for modeling connection fault handling behaviors and for gen-
erating test cases is an instance along the line of MBT research [17]. In particular, the
MBT technique implemented in this paper achieves redundancy in generating tests from
the AND/OR graphs for checking the conformance of an implemented program to the
specification.

In this research, we use aspect oriented programming (AOP) as part of the testing
framework to inject exceptions and share states between test cases and the operation under
test. It is interesting to note that AOP has been used in extracting exception handling
behaviors to aspects so that normal behaviors and exceptional behaviors are separated
[48]. The AND/OR graph composition of connection fault handling behaviors could,

48 CHIA-CHENG LEE, YU CHIN CHENG, CHIN-YUN HSIEH

1 public aspect AspectConnection {
2 public pointcut read() : call(* Monitoring.read());
3
4 OpRespRepo repo = OpRespRepo.getRepo();
5 before() throws ADFailureException : read() {
6 String OpRes[] = repo.emitNext();
7 if (OpRes[1].equals("s")) {
8 // do nothing, call original or provide a viable replacement
9 } else if (OpRes[1].equals("f(ad)")) {

10 throw new ADFailureException("Analog device fails", 408);
11 }
12 }
13 }

Fig. 17. An Advice in AspectJ.

in principle, be implemented as aspects to be weaved into the join points identified by
point cuts. The main benefit is the potential of reusing the exception handling aspects,
especially if only generic and homogeneous handling such as logging and reporting is
involved. However, there are limitations when the handler’s behavior depends on the
exceptional context [49]. For example, the retrying with the original strategy of Fig. 11
uses a local variable I in the faulting method to control the number of retries to attempt,
which is not available to the extracted aspect. Although this can be fixed by making the
control variable I a field of the object that owns the faulting method and by making the
object an argument passed to the pointcut and associated advices, the need to specify
the object’s class in the parameter declaration limits the aspect’s reuse. One way to get
around the limitation is to have the object owning the faulting method implement an
interface created solely for the purpose of accessing the control variable. Therefore, it
seems unlikely that reuse of aspects is possible without some consideration given to the
design of exception handling. In either way, it seems inevitable that endowing an object
with connection fault handling behaviors will unavoidably tangle normal and exceptional
behaviors.

Numerous researches for exception handling testing based on static analysis of pro-
gram code have been published [50, 51]. In contrast, the proposed method is based on
specification and testing. In software development life cycle, static analysis, specification,
and testing techniques complement each other for software quality assurance. For exam-
ple, during requirement analysis and development, the proposed method for AND/OR
composition of connection fault handling can be used for specification and testing, while
static analysis techniques such as control-flow or data-flow analyses can be applied after-
wards to check for further exception handling defects.

7. CONCLUSION

We have presented the extended AND/OR graph for composing connection fault
handling behaviors in programs. The extended AND/OR graph not only enables the de-
scription of specification to be followed by developers in building programs with the
required connection fault handling behaviors, but can also be used to generate tests for
checking a program’s conformance to the specification. The extended AND/OR graph
and the model-based testing framework are illustrated with the implementation and test-
ing of a program to detect and report failure of an analog device. The extended AND/OR
graphs are easily converted into Prolog programs. Solution trees obtained by searching
the AND/OR graph are used to generate tests. Although the AND/OR graph formalism
requires more effort from the developers, it can be seen as a reasonable price to pay for

COMPOSITION AND TESTING OF CONNECTION FAULT HANDLING 49

better robustness in handling connection faults.

REFERENCES

1. M. Jackson, “Problem frames and software engineering,” Information and Software
Technology, Vol. 47, 2005, pp. 903–912.

2. L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice, 3rd ed.,
Addison-Wesley Professional, MA, 2012.

3. J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of things (iot): A
vision, architectural elements, and future directions,” Future Generation Computer
Systems, Vol. 29, 2013, pp. 1645–1660.

4. A. Alamri, W. S. Ansari, M. M. Hassan, M. S. Hossain, A. Alelaiwi, and M. A.
Hossain, “A survey on sensor-cloud: architecture, applications, and approaches,” In-
ternational Journal of Distributed Sensor Networks, Vol. 9, 2013, p. 917923.

5. C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, “Context aware com-
puting for the internet of things: A survey,” Communications Surveys & Tutorials,
Vol. 16, 2014, pp. 414–454.

6. S. Khaitan and J. McCalley, “Design techniques and applications of cyberphysical
systems: A survey,” Systems Journal, Vol. 9, 2015, pp. 350–365.

7. E. A. Lee, “Cyber physical systems: Design challenges,” in Proceedings of the 11th
IEEE International Symposium on Object and Component-Oriented Real-Time Dis-
tributed Computing, 2008, pp. 363–369.

8. P. Bellavista, A. Corradi, M. Fanelli, and L. Foschini, “A survey of context data
distribution for mobile ubiquitous systems,” ACM Computing Surveys, Vol. 44, 2012,
pp. 24:1–24:45.

9. A. Avižienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts and taxon-
omy of dependable and secure computing,” IEEE Transactions on Dependable and
Secure Computing, Vol. 1, 2004, pp. 11–33.

10. M. Adams, J. Coplien, R. Gamoke, R. Hanmer, F. Keeve, and K. Nicodemus, “Fault-
tolerant telecommunication system patterns,” The Patterns Handbook: Techniques,
Strategies, and Applications, Cambridge University Press, NY, 1998, pp. 189–202.

11. C.-T. Chen, Y. C. Cheng, C.-Y. Hsieh, and I.-L. Wu, “Exception handling refactor-
ings: Directed by goals and driven by bug fixing,” Journal of Systems and Software,
Vol. 82, 2009, pp. 333–345.

12. D. Betts, J. Dominguez, H. de Lahitte, G. Melnik, F. Simonazzi, M. Subramanian,
A. Homer, S. Somasegar, and S. Guthrie, Developer’s Guide to Microsoft Enterprise
Library, 2nd ed., Microsoft Developer Guidance, 2013.

13. “Error retries and exponential backoff in aws,” http://docs.aws.amazon.com/general/
latest/gr/api-retries.html, 2015-12-26.

14. “Truncated exponential backoff,” https://cloud.google.com/storage/docs/exponential
-backoff, 2015-12-26.

15. S. Sinha and M. J. Harrold, “Criteria for testing exception-handling constructs in java
programs,” in Proceedings of IEEE International Conference on Software Mainte-
nance, 1999, pp. 265–274.

16. H. Shah, C. Gorg, and M. J. Harrold, “Understanding exception handling: Viewpoints
of novices and experts,” IEEE Transactions on Software Engineering, Vol. 36, 2010,
pp. 150–161.

50 CHIA-CHENG LEE, YU CHIN CHENG, CHIN-YUN HSIEH

17. A. Pretschner and J. Philipps, “Methodological issues in model-based testing,” in
M. Broy, B. Jonsson, J.-P. Katoen, M. Leucker, and A. Pretschner, (eds.), Model-
Based Testing of Reactive Systems, Springer, Berlin, 2005, pp. 281–291.

18. D. Harel, “And/or programs: a new approach to structured programming,” ACM
Transactions on Programming Languages and Systems, Vol. 2, 1980, pp. 1–17.

19. O.-J. Dahl, E. W. Dijkstra, and C. A. R. Hoare, Structured Programming, Academic
Press Ltd., MA, 1972.

20. J. Rumbaugh, I. Jacobson, and G. Booch, Unified Modeling Language Reference
Manual, 2nd ed., Pearson Higher Education, UK, 2004.

21. I. Bratko, Prolog: Programming for Artificial Intelligence, 3rd ed., Addison-Wesley
Longman, MA, 2001.

22. G. Kiczales and E. Hilsdale, “Aspect-oriented programming,” SIGSOFT Software
Engineering Notes, Vol. 26, 2001, p. 313.

23. E. W. Dijkstra, “Guarded commands, nondeterminacy and formal derivation of pro-
grams,” Communications of the ACM, Vol. 18, 1975, pp. 453–457.

24. P. A. Buhr and W. R. Mok, “Advanced exception handling mechanisms,” IEEE Trans-
actions on Software Engineering, Vol. 26, 2000, pp. 820–836.

25. A. F. Garcia, C. M. Rubira, A. Romanovsky, and J. Xu, “A comparative study of
exception handling mechanisms for building dependable object-oriented software,”
Journal of Systems and Software, Vol. 59, 2001, pp. 197–222.

26. J. Siedersleben, “Errors and exceptions. rights and responsibilities,” in Proceedings
of the 17th European Conference on Object-Oriented Programming, 2003, pp. 2–9.

27. R. Wirfs-Brock, “Designing for recovery,” IEEE Software, Vol. 23, 2006, p. 11.
28. A. Avizienis, “The n-version approach to fault-tolerant software,” IEEE Transactions

on Software Engineering, Vol. 11, 1985, p. 1491.
29. A. Haase, “Java idioms-exception handling,” in Proceedings of EuroPLoP Confernce,

2002, pp. 41–70.
30. “Arduino,” http://arduino.org/.
31. “Raspberry pi,” www.raspberrypi.org.
32. R. Daigneau, Service Design Patterns: Fundamental Design Solutions for SOAP/

WSDL and Restful Web Services, Addison-Wesley, MA, 2011.
33. “arest,” https://arest.io.
34. R. Fielding and J. Reschke, “Rfc 7231-hypertext transfer protocol (http/1.1): Seman-

tics and content, jun. 2014.”
35. R. C. Martin, Clean Code: a Handbook of Agile Software Craftsmanship, Pearson

Education, UK, 2009.
36. M. Fowler and K. Beck, Refactoring: Improving the Design of Existing Code, Addi-

son-Wesley Professional, MA, 1999.
37. E. Gamma and K. Beck, “Junit: A cook’s tour,” Java Report, Vol. 4, 1999, pp. 27–38.
38. G. Meszaros, xUnit Test Patterns: Refactoring Test Code, Pearson Education, UK,

2007.
39. P. A. Lee and T. Anderson, Fault Tolerance: Principles and Practice, Springer Sci-

ence & Business Media, Berlin, 2012, Vol. 3.
40. R. H. Campbell and B. Randell, “Error recovery in asynchronous systems,” IEEE

Transactions on Software Engineering, Vol. SE-12, 1986, pp. 811–826.
41. F. Cristian, “Exception handling and software fault tolerance,” IEEE Transactions on

Computers, Vol. 100, 1982, pp. 531–540.
42. C. Dony, “Exception handling and object-oriented programming: towards a synthe-

sis,” ACM Sigplan Notices, Vol. 25, 1990, pp. 322–330.

COMPOSITION AND TESTING OF CONNECTION FAULT HANDLING 51

43. J. R. Slagle, “A heuristic program that solves symbolic integration problems in fresh-
man calculus,” Journal of the ACM, Vol. 10, 1963, pp. 507–520.

44. N. J. Nilsson, Artificial Intelligence: a New Synthesis, Elsevier, Netherland, 1998.
45. G. F. Luger, Artificial Intelligence: Structures and Strategies for Complex Problem

Solving, Pearson Education, UK, 2005.
46. P. Wadler, “The essence of functional programming,” in Proceedings of the 19th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, 1992, pp.
1–14.

47. E. Farchi, A. Hartman, and S. S. Pinter, “Using a model-based test generator to test
for standard conformance,” IBM Systems Journal, Vol. 41, 2002, pp. 89–110.

48. M. Lippert and C. V. Lopes, “A study on exception detection and handling using
aspect-oriented programming,” in Proceedings of the 22nd International Conference
on Software Engineering, 2000, pp. 418–427.

49. F. Castor Filho, A. Garcia, and C. M. F. Rubira, “Extracting error handling to as-
pects: A cookbook,” in Proceedings of IEEE International Conference on Software
Maintenance, 2007, pp. 134–143.

50. S. Sinha and M. J. Harrold, “Analysis and testing of programs with exception han-
dling constructs,” IEEE Transactions on Software Engineering, Vol. 26, 2000, pp.
849–871.

51. B.-M. Chang and K. Choi, “A review on exception analysis,” Information and Soft-
ware Technology, Vol. 77, 2016, pp. 1–16.

Chia-Cheng Lee (李李李家家家政政政) received the BS degree in Com-
puter Science and Engineering from the National Taiwan Ocean
University in 2011. He is currently a Ph.D. candidate at the De-
partment of Computer Science and Information Engineering of
the National Taipei University of Technology, Taiwan. His re-
search interests include Software Engineering and Artificial In-
telligence.

Yu Chin Cheng (鄭鄭鄭有有有進進進) received the MSE degree from
the Johns Hopkins University and the Ph.D. degree from the Uni-
versity of Oklahoma, both in Computer Science. He is currently
a Professor at the Department of Computer Science and Informa-
tion Engineering of the National Taipei University of Technol-
ogy, Taiwan, where he teaches and researches in object-oriented
programming and design, agile development, software require-
ments and artificial intelligence. He is a member of IEEE Com-
puter Society.

52 CHIA-CHENG LEE, YU CHIN CHENG, CHIN-YUN HSIEH

Chin-Yun Hsieh (謝謝謝金金金雲雲雲) received his MS and Ph.D. de-
grees from the University of Mississippi and the University of
Oklahoma, respectively, both in Computer Science. Dr. Hsieh
held several positions at the National Taipei University of Tech-
nology, including the director of the computing center, the chair-
person of the Electronic Engineering department, and the direc-
tor of the Library. His research interests include programming
language theory, object-oriented software engineering, and dis-
tributed systems. Dr. Hsieh is a member of the Software Engi-
neering Association of Taiwan (SEAT).

