
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 38, 1035-1050 (2022)
DOI: 10.6688/JISE.202209 38(5).0010

Semidirect Products of Finite Groups in Public-Key
Cryptographic Protocols

G. H. J. LANEL1, T. M. K. K. JINASENA2

AND B. A. K. WELIHINDA1,+

1Department of Mathematics
2Department of Computer Science
University of Sri Jayewardenepura

Nugegoda 10250, Sri Lanka
E-mail: ghjlanel@sjp.ac.lk; kasun@sjp.ac.lk; kasuniwe@gmail.com+

Public-key cryptosystems using non-abelian groups had been a research inspiration es-
pecially since the proposal of Shor’s quantum algorithm attack in 1994. In this article, we
prove two approaches to novel encryption schemes using elements of some non-abelian
groups based on an intractable problem of determining automorphisms and generating el-
ements of a group. We show that the difficult problem of determining paths and cycles of
Cayley graphs including Hamiltonian paths and cycles could be reduced to this intractable
problem. Moreover, achievement of resistance to algebraic span cryptanalysis by integrating
a technique introduced in the existing literature is discussed.
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1. INTRODUCTION

Modern Cryptography, also known as Algebraic Cryptography has become a cru-
cial and an attractive field of research over the years. Public-key cryptosystems used at
present, utilize abelian groups and are mainly dependent on Number theoretical princi-
ples. However, with the identification of insecurities if the quantum computers are to be
invented and the development of more and more cryptographic attacks to the existing pro-
tocols, attention is diverted on developing novel cryptographic protocols based on varied
approaches. One such approach is the non-abelian group based Cryptography.

Our attention was directed towards using non-abelian groups for Cryptography dur-
ing a study on the existence of Hamiltonian cycles in Cayley graphs (for a recent literature
review and some advancements in this direction, see [1–9] etc.). There, we had developed
the intuition that the Hamiltonian Cycle Problem (HCP) and Hamiltonian Path Problem
(HPP) will be suitable choices of intractable problems, particularly over Cayley graphs of
non-abelian groups for the development of novel cryptographic protocols. Study of the
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related literature (see [10–15] etc.) proved that indeed, non-abelian group based Cryptog-
raphy has already become a latest attraction of many scholars and that it is identified to
be resistant to quantum computer attacks due to the non-abelian structure (for instance,
see [16–18] for clarifications on the emergence of non-abelian group based Cryptography
as a possible solution to quantum attacks).

The past researches were focused on underlying problems such as Conjugacy Prob-
lem, Conjugacy Search Problem, Word Problem, Factorization and Membership Search
Problems etc. in non-abelian groups, but a significant application of the HCP or HPP was
lacking. Most of intractable problems are actually generalizations of some conventional
cryptographic problem to non-abelian groups: e.g. [19,20] show one way of generalizing
the traditional Discrete Logarithm Problem (DLP) to problems over non-abelian groups.

Anshel-Anshel-Goldfeld [19] and Ko-Lee [20] protocols are two of the very first
developments based on non-abelian groups making use of conjugacy related problems.
Following their initiation, many other scholars (see [15, 21, 22]) have attempted in pre-
senting generalizations of the DLP. Furthermore, novel schemes presented in studies such
as [13,16,17,23,24] show the applications of different variants of Factorization Problems
and Membership Search Problems over non-abelian groups whereas [25–27] are some
applications based on the Word Problem. Several scholars have also conducted studies on
using automorphisms of non-abelian groups to develop cryptosystems; the encryption and
signature protocols by A. Mahalanobis [28], the MOR cryptosystem [29], Moldenhauer
protocol [30] and the protocol by Paeng et al. [31] are some of the examples.

Almost all of the non-abelian group based schemes in the existing literature were
proven to be vulnerable (see [12,32–34] for some of the attacks developed by various au-
thors). Especially, the recent introduction of the algebraic span method of cryptanalysis
by B. Tsaban [32] has led to the breakage of the security of majority of schemes whose
platform groups can be efficiently and faithfully represented as matrix groups. Faith-
ful representations as matrix groups, either efficient or otherwise, always exist for finite
groups. Hence, this novel attack is particularly challenging. V. Roman’kov [35], has
introduced a protocol which is an advanced version of the Anshel-Anshel-Goldfeld [36]
scheme, offering resistance to the algebraic span cryptanalysis.

In this manuscript, we propose two novel techniques for encryption protocols using
the elements of semidirect products of finite groups based on an intractable problem of
determining automorphisms and generating elements of a group. Thereafter, we show
that the mathematically hard problem of determining paths and cycles, including Hamil-
tonian paths and cycles in Cayley graphs can also be reduced to this intractable problem.
Hence, we suggest that Hamiltonian paths/cycles and in fact, any random paths/cycles
could be used in the above protocols. Furthermore, we discuss modifications that can
be included by integrating the technique proposed in [35] such that the protocols will be
further resistant to Tsaban’s span method of cryptanalysis.

Paper outline. In Section 2, we recall the fundamental mathematical concepts re-
quired to understand our results. Section 3 includes the novel cryptograpic protocols
proposed followed by a discussion on its security. The next section is devoted for present-
ing the use of paths and cycles in Cayley graphs in the protocols. Thereafter, we discuss
about securing the schemes against the algebraic span cryptanalysis and associated com-
putational costs. The final section includes conclusions and future recommendations.
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2. PRELIMINARIES

This section briefly discusses the fundamental concepts related to this study.
A semidirect product G, between two finite groups H and K, where H is normal,

is denoted by G = H ⋊φ K. It is defined by the homomorphism φ : K → Aut(H) and
maps k ∈ K to automorphisms φk of H. Here, Aut(H) denotes the automorphism group
of H. Since the order of G is same as that of the semidirect product of H and K whose
underlying set is H ×K, |G|= |H|× |K|.

The group law in G can be stated as, (h,k)(h1,k1) = (hφk(h1),kk1), where
(h,k),(h1,k1) ∈ G. φk(h) = k−1hk, for k ∈ K,h ∈ H. The (additive) identity element of G
can be denoted as (eH ,eK), while the inverse of an element (h,k) is (φk−1(h−1),k−1). For
any φk, φk(h) = k−1hk, and φk−1(h) = (k−1)−1hk−1 = khk−1. Hence, φk−1(h) = φ

−1
k (h).

Also, φ m
k (h) = φk(φk(· · ·(φk︸ ︷︷ ︸

m− times

(h)))) = k−mhkm = (km)−1hkm = φkm(h).

Definition 1. A vertex-transitive graph is a graph X , with automorphisms of X which
maps v1 to v2, for any two vertices v1, v2 ∈V (X), where V (X) is the set of vertices of X .

A Cayley graph of a finite group G defined as follows, with respect to a finite subset
S of G, where 1 /∈ S and S is inverse closed, is a type of a vertex-transitive graphs.
Definition 2. The Cayley graph of G with respect to S, Cay(G,S) is the graph whose
vertices are the elements of G and g is adjacent to gs for all g ∈ G, s ∈ S.

A cycle/path in a spanning subgraph is also a cycle/path in the ambient graph. There-
fore, it is sufficient to identify the existence of cycles/paths in Cayley graphs with respect
to irredundant generating sets.
Definition 3. An irredundant generating set for a Cayley graph X is a generating set S
such that no proper subset of S generates X .

A Hamilton path is a one that visits every vertex exactly once. If there is an edge
between the starting and ending vertices, it is a Hamilton cycle. Determining whether a
graph consists of a Hamiltonian cycle or a path are known as HCP and HPP, respectively.

3. ENCRYPTION PROTOCOLS USING
SEMIDIRECT PRODUCTS

Firstly, we present the novel notion proposed by us, restating the Lemma 1 from [37],
which will be the foundation for the proposed protocols. Consider a semidirect product,
G = H ⋊µ K, where H and K are finite groups and H is the normal subgroup. We assume
that the group operations are efficiently computable.

For any two groups, say G1 = H ⋊φ K and G2 = H ⋊θ K, the underlying set is the
same, which is H ×K. Thus the elements of both are the same. The Cayley graphs of
each with respect to their corresponding irredundant generating sets will be different.

If communicating parties are to communicate using two such groups chosen by each,
both will be performing computations under the same mod p,modq etc., using same ele-
ments whereas the product of any two elements has to be computed using two different
homomorphisms φ and θ by each user. When two parties choose two groups like G1,G2,
both of them as well as any eavesdropper is aware of H,K and the elements of the group.
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But homomorphisms φ ,θ and generating sets chosen are only known by respective party.

Lemma 1. [37] Determining φ or a set of generating elements of a semidirect product
H ⋊φ K used by a communicating party (when only H,K, a sequence of elements of the
form φsk

j
(h), where h ∈ H is known), is a mathematically intractable problem.

Let the communicating parties be Alice and Bob. Suppose Alice communicates using
G1 = H ⋊φ K whereas Bob uses G2 = H ⋊θ K.

Assumption 1. Assume that the messages are represented as elements of H ×K.

3.1 Encryption Protocol 1

1. Alice chooses an irredundant generating set for H, say, H = ⟨h1, · · · ,hia⟩.

Let Sa be an irredundant generating set for G1, chosen by Alice. Sa = {t1, · · · ,
tma ,s1, · · · ,sna}; t1, · · · , tma ∈ H and s1, · · · ,sna ∈ K. Some (or all) of the elements
in {t1, · · · , tma} might be equal to some (or all) elements in {h1, · · · ,hia} or could
be expressed in terms of the product of several elements in {h1, · · · ,hia}. Let the
homomorphism φ be defined by the action of the elements s1, · · · ,sna ∈ K on H.
For s ja ∈ K, 1 ≤ ja ≤ na, let φ(s ja) be denoted by φs ja

. Similarly, Bob can choose
Sb = {t ′1, · · · , t ′mb

,s′1, · · · ,s′nb
}; t ′1, · · · , t ′mb

∈ H and s′1, · · · ,s′nb
∈ K.

2. Alice makes a random element, say, (hH ,sH) ∈ G1 and a sequence of elements
{φs ja

(h1),φs ja
(hia+1), · · · ,φs ja

(hia+3), · · · ,φs ja
(hia)}

na
ja=1, public, where φs ja

(hia+1),

φs ja
(hia+2),φs ja

(hia+3), · · · are extra additions at random positions known only by her,
to the sequence {φs ja

(h1), · · · ,φs ja
(hia)}

na
ja=1, which maps the generating elements cho-

sen for H.

3. Bob can encrypt a message which is represented in the form of an element of H ×K,
say (hM,sM), using Alice’s public key and θ . Here, hM ̸= eH (∈ H) and sM ̸= eK (∈ K).

4. Encryption: Bob computes the inverse of the message vertex, which is, (θs−1
M
(h−1

M ),

s−1
M ). Then, (θs−1

M
(h−1

M ),s−1
M )(hH ,sH) = (θs−1

M
(h−1

M )θs−1
M
(hH),s−1

M · sH) = (hC, sC) is
calculated, where (hC, sC) is the required cipher-text.

5. Bob sends the encrypted message (cipher-text), (hC, sC) together with the sequence
{θsM (φs ja

(h1)),θsM (φs ja
(hia+1)), · · · ,θsM (φs ja

(hia+3)), · · · ,θsM (φs ja
(hia))}

na
ja=1 in the

same order Alice has sent.

6. Decryption: Upon receiving the encrypted message, Alice first computes {θsM (h1),
· · · ,θsM (hia)}. Thereafter, she uses these values to obtain, (θsM (hC), sC · s−1

H ) =
(hR,s−1

M ) and hH ·h−1
R = hM . The original message sent by Bob is (hM,sM).

3.2 Encryption Protocol 2

1. Let Alice choose an irredundant generating set for H, say, H = ⟨h1, · · · ,hia⟩.

2. She randomly selects two elements (h,s),(h′,s′) ∈ H ×K such that, (h,s)(h′,s′) =
(h ·φs(h′),s · s′) = (eH ,eK).
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3. Next, she makes (h,s) (or (h′,s′)) public, together with a sequence of elements {φs(h1),
φs(hia+1), · · · ,φs(hia+3), · · · ,φs(hia)}, where φs(hia+1),φs(hia+2),φs(hia+3), · · · are ex-
tra elements added same as in the above scheme.

4. Bob encrypt a message, say (hM,sM), by computing (hM,sM)(h,s).

(hM,sM)(h,s) = (hM ·θsM (h),sM · s) = (hC,sC)

5. Bob sends the encrypted message (hC,sC) together with the sequence {θsM (φs(h1)),
θsM (φs(hia+1)), · · · ,θsM (φs(hia+3)), · · · ,θsM (φs(hia))} in the same order sent by Alice.

6. Upon receiving the encrypted message, Alice first computes {θsM (h1), · · · ,θsM (hia)}.
Thereafter, she uses these values to obtain, hC ·θsM (φs(h′)) = hM and sC · s′ = sM .

hC ·θsM (φs(h′)) = hM ·θsM (h) ·θsM (φs(h′)) = hM ·θsM (h ·φs(h′))

= hM ·θsM (h ·φs(h′)︸ ︷︷ ︸
eH

)

︸ ︷︷ ︸
eH

= hM and sC · s′ = sM · s · s′︸︷︷︸
eK

= sM

3.3 Security Analysis and Discussion

In the decryption step of Protocol 1, in order to determine θsM (hya) for 1 ≤ ya ≤ ia,
Alice can identify gya ∈ Zp ×Zp, such that, φs ja

(gya) = hya for all ja,ya, and calculate,
θsM (φs ja

(gya)) = θsM (hya). This follows similarly for Protocol 2, where she can determine
gya ∈ Zp ×Zp, such that, φs(gya) = hya for all ya, and calculate, θsM (φs(gya)) = θsM (hya).

When Bob takes the product of (hH ,sH) with (θ−1
sM

(h−1
M ),s−1

M ) (in Protocol 1),
(θ−1

sM
(h−1

M ),s−1
M )(hH ,sH) = (θ−1

sM
(h−1

M ) ·θs−1
M
(hH),s−1

M · sH)

= (θ−1
sM

(h−1
M ) ·θ−1

sM
(hM ·hR),s−1

M · sH︸ ︷︷ ︸
sC

) (since θs−1
M
(hH) = θ−1

sM
(hH))

= (θ−1
sM

(h−1
M ) ·θ−1

sM
(hM) ·θ−1

sM
(hR),sC) (by the properties of homomorphisms)

= (θ−1
sM

(h−1
M ·hM︸ ︷︷ ︸

eH

) ·θ−1
sM

(hR),sC) (by the properties of homomorphisms)

= (θ−1
sM

(hR),sC) = (hC,sC)

By the Lemma 1, it is proven that the sequences chosen to be public do not com-
promise security, when made public. A third party can not determine the choice of the
generating sets nor the φs ja

’s (due to the properties given in premises in Lemma 1 [37]),
even if he try to check all possible generating elements and homomorphisms (φ ’s).

That is, for any φs ja
(g) = hya , there exists a θ : K → Aut(H), such that, θsl ( fl) = hya ,

thus making it impossible to determine φ . All the possible homomorphisms, φ ’s satisfy
this condition, for each automorphism denoted by each value of l. Moreover, for any
φs ja

(g) = hya , there exists φsk
ja
( fk) = hya , for all k, which also creates further hardness in

determining which generating elements, and φ might have been chosen by Alice.
It is interesting to notice that, multiplication of matrices corresponding to two linear

transformations are abelian if they are present as diagonal matrices. This implies that the
corresponding automorphisms are abelian (see Example 1 to identify how linear trans-
formations could be used). Being abelian (due to the presence of diagonal matrices or
otherwise), contributes in adding a significant simplification to the decryption step in our



1040 G. H. J. LANEL, T. M. K. K. JINASENA, B. A. K. WELIHINDA

proposed protocols, where Alice can determine θsM using the abelian-ness of θ and φ .
For an element, θsM (φs ja

(hya)), Alice can compose by φ−1
s ja

,

φ−1
s ja

(θsM (φs ja
(hya))) and simplify using the abelian property as follows.

φ−1
s ja

(θsM (φs ja
(hya))) = θsM (φ

−1
s ja

(φs ja
(hya))) = θsM (φ

−1
s ja

(φs ja︸ ︷︷ ︸
φeK

(hya))) = θsM (hya)

Since hya ’s are generating elements of H and φs ja
’s are automorphisms of H,

φs ja
(hya)’s are also generating elements of H. Then, if an eavesdropper knows φs ja

(hya)’s
and the corresponding θsM (φs ja

(hya))’s, he can use it to determine θsM . Therefore, in the
public-key sequences, it is required that {φs ja

(h1), · · · ,φs ja
(hia)}

na
ja=1, which are values

corresponding to generating elements, are not distinguishable from the extra additions,
φs ja

(hia+1),φs ja
(hia+2),φs ja

(hia+3), · · · . The platform group for implementation of the
cryptographic schemes has to be chosen suitably, satisfying this requirement as well.

But if the orders of the generating elements in different possible generating sets are
different, it will further help to hide which type of a generating set was chosen by Alice.
As an example, consider the presence of two irredundant generating sets S1 = {s1,s2},
where |s1| = |s2| = 3 and S2 = {s, t}, where |s| = 3, |t| = p, for a semidirect product
(Zp ×Zp)⋊φ Z3. There, if only one type of generating set, say S2 was available, then
even though an order p element out of the set of order p elements say, t1, t2, · · · will be
chosen for t randomly, the possible elements could be guessed by identifying the order
p elements from the public sequence. But this vulnerability is reduced when several
different sets like S1,S2 are present.

Alice can also choose an arbitrary automorphism like φsk
ja

(in Protocol 1) corre-

sponding to her φ , rather than being restricted to the values obtained by φs ja
’s: {φsk

ja
(h1),

φsk
ja
(hia+1), · · · ,φsk

ja
(hia+3), · · · ,φsk

ja
(hia)}

na
ja=1. This will make it more difficult for an

eavesdropper to determine φ .
Even though we have used as examples to explain our ideas more clearly, the groups

(Zp ×Zp)⋊φ Zq, where p,q are distinct primes are not suitable platforms for our pro-
posals. The reason is that they offer efficient representations as matrix groups and hence
are vulnerable to the algebraic span cryptanalysis. Another weakness is that, since all
the elements except the identity in Zp ×Zp can be used in generating sets as generating
elements, when the sequence {θs ja

(h1),θs ja
(hia+1), · · · ,θs ja

(hia+3), · · · ,θs ja
(hia)}

na
ja=1 is

made public, an eavesdropper can attempt to arbitrarily choose a suitable set and use it to
determine θsM .

4. USING HAMILTONIAN PATHS AND CYCLES

The above Protocol 1 can also be implemented by taking (hH ,sH) to be the ending
vertex of a Hamiltonian path or any random path in a Cayley graph of the corresponding
group, while the Protocol 2 can be implemented by considering a Hamiltonian cycle or
any random cycle. Even though the use of paths and cycles in Cayley graphs do not
indicate a specific advantage for the above protocols, we illustrate the concept below with
the supposition that it will be a useful insight and an initiation for future studies where the
use of paths in Cayley graphs present actual benefits.
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Generally, in Cayley graphs where the existence of a Hamilton cycle or a path have
been proven, the cycle or the path can be written using mathematical formulae.

Example 1. Consider a group of order 3p2, (Zp ×Zp)⋊φ Z3. An irredundant generating
set is {s,h1}, with |s| = 3, |h1| = p, where the action of s on Zp ×Zp can be defined as
follows [1].

Define a linear transformation T on Zp ×Zp by T (h) = s−1hs. Let m(x) be the
minimal polynomial of T and h2 = T (h1) = s−1h1s. Since |s| = 3, T 3 = I, so m(x) di-
vides x3 − 1 = (x− 1)(x2 + x+ 1) (Refer [1], for a complete argument on determining
that m(x) = x2 + x+ 1). With respect to a basis {h1,h2} of Zp ×Zp, T can be defined
as T (x1,x2) = (−x2,x1−x2). That is, T (h1

x1h2
x2) = s−1(h1

x1h2
x2)s = h1

−x2h2
x1−x2 (con-

sidering the rational cannonical form, using m(x)). Using T corresponds to using φs for
computations, because Aut(Zp ×Zp) ∼= GL2(Zp), where GL2(Zp) is the general linear
group of 2×2 matrices over Zp.

A Hamiltonian cycle in the corresponding Cayley graph of (Zp ×Zp)⋊φ Z3 is [1],

([(h1
−1)3 j−1, s, (h1)

−3 j−1, s−1]
(p−1)

2
j=1 , [(h1)

(p−5)
2 , s−1, h1

(p+1)
2 , s], [h1

p−1, s−1], [h1
3 j−1,

s, (h1
−1)−3 j−1,s∗]−k−1

j=−(p−1)
2

, [(h1
−1)3 j−1, s−1, h1

−3 j−1, s−1]−2
j=−k, [(h1

−1)p−4, s−1, t2, s]),

where p = 3k+1 or p = 3k+2, and s∗ = s or s∗ = s−1 based on the value of j.

It is clear that using φ , p,q,s and h1, a Hamiltonian cycle can be written based on the
mathematical proof, without generating the graph. Similarly, any random cycle or path
of any length can be mathematically written once φ , p,q,s and h1 are known. Hence, in
the cryptographic protocols, we propose to obtain the Hamiltonian paths/cycles (or any
random paths/cycles) via the mathematical proofs without generating the Cayley graphs.

The difficulty of determining the Hamiltonian paths or cycles chosen by the com-
municating parties corresponds to the difficulty of determining φ and the generating set
chosen by each individual party.
Premise 1. [37] When obtaining Hamiltonian paths using the mathematical proofs as we
have suggested, it is clear that a person need to know φ and suitable generating elements
used in defining φs (or φs ja

’s; 1 ≤ ja ≤ na). The vertex obtained as the ending vertex of a
Hamiltonian path is different for different choices of the generating elements.

By Lemma 1 and Premise 1, it is proven that publishing of the ending vertex of the
Hamiltonian path or the random path chosen does not reveal the path chosen, when φ

and the generating elements are kept as secrets. In fact, had the choice been a random
path rather than a Hamilton path, the problem is even harder, due to the presence of many
random paths ending at the same vertex (more than Hamiltonian paths).

Suppose Xa =Cay(H ⋊φ K,Sa) is Cayley graph of Alice and Xb =Cay(H ⋊θ K,Sb)
is Cayley graph of Bob, with respect to the generating sets Sa,Sb mentioned previously.
In Protocol 1, as the public element (hH ,sH), Alice can choose the ending vertex of a
Hamiltonian path or any random path (starting at identity vertex) in the Cayley graph (if
the path doesn’t start at identity vertex, product of the generating elements representing
the path will not be equal to (hH ,sH) and in some cases the ending vertex might even be
(eH ,eK) and these deviations will have to be taken in to account when doing computa-
tions). Thereafter, steps of the protocol can be followed similarly as proposed above.

In Protocol 2, Alice can determine a Hamiltonian cycle or any random cycle and take
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the product of some consecutive elements along the cycle as (h,s) and the product of the
remaining consecutive elements as (h′,s′). Since it is a cycle, (h,s)(h′,s′) = (eH ,eK) is
satisfied. The rest of the steps can be followed similarly.

As seen by Example 1, it is possible to obtain Hamiltonian paths/cycles using the
mathematical proofs without generating the graphs, if H,K and φ are known. This is
an advantage, with respect to both efficiency and security of the protocols (if paths in a
graphs are to be used). However, a naı̈ve attack, which is, checking all possible homomor-
phisms (φ ’s) for known H,K, and attempting to identify ending vertices of all possible
Hamiltonian paths in Cayley graphs is possible. If there is only one generating set rather
than a randomly chosen one, the ending vertices will be unique and identifiable. Hence,
the cryptographic schemes are made secure against this attack by the random choice of
the generating sets and keeping the generating elements and automorphisms as secrets.

5. RESISTANCE TO ALGEBRAIC SPAN CRYPTANALYSIS

As mentioned previously, many cryptosystems in the literature were identified to be
unshielded from cryptanalytic techniques introduced by various scholars. In our study,
we have focused our attention on the “algebraic span cryptanalysis” [32] that had been
evolved based upon previous techniques such as Cheon-Jun method [38] and Tsaban’s lin-
ear centralizer method [39] and is the most prominent attack applicable to our protocols.
It is widely applicable since it can cryptanalyze any system where the platform group
used for the protocol has efficient and faithful representations as matrix groups and the
problem could be reduced to a system of linear equations using matrix pairs g and f = gz,
once g and f are known. This technique uses spans of algebras to generate solutions.

V. Roman’kov [35] has proposed the use of a system of the form f = (cg)z, where f
and g are known, so that it will not reduce to a system of linear equations. The author had
used a notion of marginal sets for the proposal. The method of using a “salt” γ to offer
resistance against conjugacy search in [40] also quite resembles this approach in the way
of utilizing a product of elements cg, γB to hide the original g and B.

Suppose F is a free group on a countably infinite set {x1,x2, · · ·} and W is a non-
empty subset of F . For w = w(x1, · · · ,xn) ∈ W , and g1, · · · ,gn ∈ G, where G is a group,
the value of the word w at (g1, · · · ,gn) is defined to be w(g1, · · · ,gn).

Definition 4. [35] For n ∈ N, let w = w(x1, · · · ,xn) be a group word, G be a group and
ḡ = (g1, · · · ,gn) be a tuple of elements of G. A tuple c̄ = (c1, · · · ,cn) ∈ Gn is said to be
a “marginal tuple” determined by w and ḡ if, w(c1g1, · · · ,cngn) = w(g1, · · · ,gn). This is
denoted by c̄ ⊥ w(ḡ).

Moreover, a marginal set C̄ ⊆ Gn with respect to w and ḡ, denoted by C̄ ⊥ w(ḡ), is
a set where, c̄ ⊥ w(ḡ) for every c̄ ∈ C̄. In [35], also discussed is a universal method of
obtaining a marginal set C̄ by a word w, while there are numerous ways to compute such
sets. Consider w = w(a1, · · · ,ak) = a1a2 · · ·ak, ai ∈ G, 1 ≤ i ≤ k, which is any expression
in straight form of a fixed element f ∈ G. It is possible that ai = a j or ai = a−1

j for i ̸= j.
This word is non-reducible.

x1a1x2a2 · · ·xkak = f (1)
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Every solution of Eq. (1) can be included in a marginal set C̄. We can fix i and choose
any value x j = c j, j ̸= i, c j ∈ G. Then, the solution of Eq. (1) is,

xi = a−1
i−1c−1

i−1 · · ·a
−1
1 c−1

1 f a−1
k c−1

k · · ·a−1
i+1c−1

i+1 (2)

Solutions of Eq. (1) can be computed by a sequence of the following random ele-
mentary insertions. Let (c1, · · · ,ck) be a solution of Eq. (1). For any i and any random
element d ∈ G, ci can be changed to c′i = ciaida−1

i and ci+1 to c′i+1 = dci+1. This results
in a new solution of Eq. (1). Continuing this process with random d and i, a series of new
solutions of Eq. (1) can be obtained. Employing (c1a1, · · · ,ckak) instead of (a1, · · · ,ak)
offer security to an algorithm while not creating the slightest change to the results of
computations since w(c1g1, · · · ,cngn) = w(g1, · · · ,gn).

All the above proposals were made by us independently before reading and under-
standing the literature [32, 35]. However, if the platform group chosen to implement
the schemes has an efficient matrix representation they are vulnerable to the algebraic
span cryptanalysis. Therefore, we suggest modified computations integrating the pro-
posal in [35] to overcome this attack as below. Suppose all the notations and variables are
same as in the original proposal in Section 3.

5.1 Modified Encryption Protocol 1

1. Alice chooses an irredundant generating set for H, say, H = ⟨h1, · · · ,hia⟩ and makes
an element (hH ,sH) ∈ G1 public.

2. Bob considers the message vertex (hM,sM) and computes the inverse; (θs−1
M
(h−1

M ),s−1
M ).

Then, (θs−1
M
(h−1

M ),s−1
M )(hH ,sH) = (θs−1

M
(h−1

M )θs−1
M
(hH),s−1

M ·sH) = (hC, sC) is calcu-
lated and (hC, sC) is sent to Alice.

3. Alice determines elt1, · · · ,eltL such that, hC = eltr1
1 eltr2

2 · · ·eltrL
L , and a set of marginal

tuples C̄ such that for c̄ = (c1,c2, · · · ,cx) ∈ C̄,

hC = c1 · elt1 · c2 · elt1 · · ·cr1 · elt1︸ ︷︷ ︸
r1−terms

· · ·cx−(rL−1) · eltL · cx−(rL−2) · eltL · · ·cx · eltL︸ ︷︷ ︸
rL−terms

.

4. She makes {elt1,elt1,eltL+1, · · · ,eltL+3, · · · ,eltL}, where eltL+1,eltL+2,eltL+3, · · · are
extra elements added at random positions known only by her and a modified marginal
set C̄′, where extra elements are added to each marginal tuple at the same correspond-
ing positions, public. A modified marginal tuple c̄′ would be like,

c̄′ = (c1,c2,cx+1, · · · ,cx+3, · · · ,cx), with the extra elements cx+1,cx+2,cx+3, · · · .
5. Bob chooses a random c̄′ ∈ C̄′ and first calculates, {c1 · elt1,c2 · elt1,cx+1 · eltL+1,

· · · ,cx+3 · eltL+3, · · · ,cx · eltL}.

Next, he obtains {θsM (c1 · elt1),θsM (c2 · elt1),θsM (cx+1 · eltL+1), · · · ,θsM (cx+3 ·
eltL+3), · · · ,θsM (cx · eltL)} using the inverse of θs−1

M
he used in encrypting the message

and transmits the sequence to Alice in the same order she has sent.

6. Now Alice identifies the extra elements by their positions in the sequence, dis-
cards them and uses the remaining elements to compute, θsM (c1 · elt1) · θsM (c2 ·
elt1) · · ·θsM (cx ·eltL) = θsM (c1 ·elt1 ·c2 ·elt1 · · ·cx ·eltL) = θsM (hC) = hR and hH ·h−1

R =
hM .
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The determination of the y-coordinate, sM is same as in the initial proposal since no
modification was suggested by us.

5.2 Modified Encryption Protocol 2

The modified steps for this protocol basically follow the above suggestion.

1. Let Alice choose an irredundant generating set for H, say, H = ⟨h1, · · · ,hia⟩ and two
elements (h,s),(h′,s′) ∈ H ×K such that, (h,s)(h′,s′) = (h · φs(h′),s · s′) = (eH ,eK).
She makes one element, say (h,s) public.

2. As in Protocol 1, Alice determines elt1, · · · ,eltL such that, φs(h′) = eltr1
1 eltr2

2 · · ·
eltrL

L , and a set of marginal tuples C̄ such that, φs(h′) = c1 · elt1 · c2 · elt1 · · ·cr1 · elt1︸ ︷︷ ︸
r1−terms

· · ·

cx−(rL−1) · eltL · cx−(rL−2) · eltL · · ·cx · eltL︸ ︷︷ ︸
rL−terms

; c̄ = (c1,c2, · · · ,cx) ∈ C̄. She makes {elt1,

elt1,eltL+1, · · · ,eltL+3, · · · ,eltL}, where eltL+1,eltL+2,eltL+3, · · · are extra additions at
random positions and a modified marginal set C̄′, where extra elements are added
to each marginal tuple at the same positions, public as well. A modified marginal
tuple c̄′ ∈ C̄′ will be, c̄′ = (c1,c2,cx+1, · · · ,cx+3, · · · ,cx), with the extra elements
cx+1,cx+2,cx+3, · · · .

3. Bob encrypts a message, say (hM,sM), by computing (hM,sM)(h,s).

(hM,sM)(h,s) = (hM ·θsM (h),sM · s) = (hC,sC).

4. Moreover, Bob chooses a random c̄′ ∈ C̄′ and calculates, {c1 · elt1,c2 · elt1,cx+1 ·
eltL+1, · · · ,cx+3 · eltL+3, · · · ,cx · eltL}. Next, he obtain {θsM (c1 · elt1),θsM (c2 ·
elt1),θsM (cx+1 ·eltL+1), · · · ,θsM (cx+3 ·eltL+3), · · · ,θsM (cx ·eltL)} using the θsM he used
in encrypting the message and transmits to Alice together with (hC,sC).

5. Now Alice identifies the required elements from the sequence and computes, θsM (c1 ·
elt1) ·θsM (c2 ·elt1) · · ·θsM (cx ·eltL) = θsM (c1 ·elt1 ·c2 ·elt1 · · ·cx ·eltL) = θsM (φs(h′)) and
hC ·θsM (φs(h′)) = hM . The value of sM is obtained by the same computations stated in
the original proposal.

6. COMPUTATIONAL COST

As mentioned in analyses done in previous studies on non-abelian group based cryp-
tosystems (e.g. [12, 41]), the time complexities as well as the ability to resist quantum
cybersecurity threats are dependent on the non-abelian group utilized and the represen-
tation of the group (that is, whether it is represented as a permutation group or a matrix
group etc.) in addition to the steps of the algorithm. Following the notes in the literature,
in this section we discuss computational costs viable for our protocols.

6.1 Encryption Protocol 1

Based on the platform groups G1,G2, chosen by each individual and their represen-
tations, there is a cost of determining the irredundant generating sets for each G1 and
G2. There can be many generating sets since there can be many choices for generating
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elements (as also explained in the proof of Lemma 1 [37]). If G1 and G2 have m1 and m2
number of generating sets respectively, then there is O(m1) and O(m2) costs for Alice and
Bob respectively.

Next, both of them have to select an irredundant generating set for H out of the
possible irredundant generating sets for H. Suppose there are m3 such possible sets. Then
there are O(m3) operations for this choice (eventhough only Alice’s choice of generating
elements will be used in her public-key sequence in the instances where Bob is the sender
of messages, he also has to have a chosen set of generating elements for H in order to
conduct computations such as θs−1

M
(h−1

M ) etc.).
The cost for choosing a random element (hH ,sH) by Alice is related to the order of

G1; O(|G1|), while there is a cost of applying φs ja
’s on any element which is based on the

platform group chosen. Particularly, φs ja
’s denote automorphisms of H and hence the cost

is dependent on what the group H is. In our protocols, φs ja
’s correspond to conjugations.

Therefore, applying φs ja
’s amount to just two multiplications of elements in G1.

If powers of automorphisms such as φsk
ja

’s were chosen to be applied, then the com-
putation of powers of φs ja

’s corresponds to exponentiation of two elements namely, the
conjugating element and its inverse. The exponentiation of elements can be computed
by the “square and multiply” method same as in the standard Diffie-Hellman protocol
(also mentioned in [41]). The computational cost for the application of φs ja

’s or φsk
ja

’s to
Alice’s choice of generating elements for H and extra random elements added is also de-
pendent on the number of elements in the generating set for H, that is, ia and the number
of random elements added, say x. That is, O(ia)+O(x).

For Bob to compute the inverse of the message vertex and multiply with Alice’s
public-key vertex to generate the cipher-text (hC,sC), there is an associated cost, again
based on the platform group chosen and its representation. And the computational cost
for the application of θsM to the sequence of elements corresponds to O(ia)+O(x).

Upon the receival of cipher-text, Alice has to compute {θsM (h1), · · · ,θsM (hia)}.
There, checking for suitable values gya ’s such that φs ja

(gya) = hya ’s is an application
of automorphisms to elements and will eventually reveal the values of θsM (hya)’s. This
could easily be achieved through multiplication of suitable terms in {θsM (φs ja

(h1)),

· · · ,θsM (φs ja
(hia))}

na
ja=1. For example, if φs ja

(hy
1) = h1, then θsM (φs ja

(h1))
y = θsM (h1)

and could be computed using the “square and multiply” method.
The decryption step require computation of θsM (hC) that could be done through mul-

tiplication of suitable elements from {θsM (h1), · · · ,θsM (hia)} whose product will form
θsM (hC). The calculation of the inverse h−1

R and the two multiplications hH ·h−1
R , sC · s−1

H ,
involve computational costs that are dependent on the platform group.

6.2 Encryption Protocol 2

The selection of two elements (h,s), (h′,s′) and checking whether the product
(h,s)(h′,s′) is equal to (eH ,eK) necessitates an additional cost. It also includes the cost of
application of automorphism φs on h′ prior to obtaining the product with h. These costs
depend on the group chosen and its representation as mentioned previously.

The cost of computing hC ·θsM (φs(h′)) is quite similar to that in decryption step of
Protocol 1 and lacks the requirement to compute an inverse of an element. The costs
associated with all the remaining steps are similar to that of Protocol 1.
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6.3 Using Paths and Cycles in Cayley Graphs

If Hamiltonian paths/cycles or any random paths/cycles are to be used, an additional
cost to generate the particular paths/cycles are associated, based on mathematical proofs
for the relevant group and of course, the type of the platform group and its representation.
Protocols could be programmed to have the starting vertex of paths as (eH ,eK) to mini-
mize extra costs such as, in having to execute a loop again and again if the ending vertex
would be (eH ,eK) until an ending vertex that is not equal to identity will be obtained.

Use of cycles have lower computational cost in comparison with the Protocol 2 for
the step of checking whether (h,s)(h′,s′) is equal to (eH ,eK), since in a cycle such a
checking is not required. The reason is that, in cycles the product of any set of consecutive
elements with the next set of consecutive elements is always (eH ,eK). Complexities of the
remaining steps of the algorithms are similar to that described above under each protocol.

6.4 Modified Encryption Protocols 1 and 2

When considering the modified protocols, a computational cost is aggregated to de-
termine elements {elt1, · · · ,eltL}, compute marginal and modified marginal tuples, apply
θsM to a sequence of products of elements and obtain the respective products, all of which
are dependent on the platform group chosen. If the number of marginal tuples in the
set C̄′ is m4, then selection of a random tuple c̄′ by Bob is O(m4). The calculations
θsM (c1 · elt1) · θsM (c2 · elt1) · · ·θsM (cx · eltL) = θsM (hC), hH · h−1

R and hC · θsM (φs(h′)) are
concerned with computation of inverse of elements and product of elements as in the
previous descriptions.

In comparison to the improved Anshel-Anshel-Goldfeld scheme proposed in [35]
which is the currently existing protocol resistant to the algebraic span cryptanalysis, our
protocols involve more steps and hence could be considered to associate higher costs.

Throughout the paper, we had discussed all the applications with respect to irredun-
dant generating sets but they can be applied for any generating set following the same
manner. In fact, the use of any generating set is more complicated and hence is more
secured than considering the irredundant sets.

7. CONCLUSION AND FUTURE STUDIES

Non-abelian group based Cryptography is a latest attraction for innovative research
on cryptosystems. In this paper, we have proposed new cryptographic protocols based
on an intractable problem of determining automorphisms and generating elements of a
group. Whereas most of the previous non-abelian group based cryptographic schemes
were proven to be vulnerable, this could be a suggestion of a pathway on new further
researches for secure schemes. The relation of paths and cycles in Cayley graphs to this
problem implies that the HPP and HCP in Cayley graphs of non-abelian groups and in fact
the difficulty of determining random paths/cycles in Cayley graphs can also be considered
in developing cryptographic protocols. This can be regarded as the first study, where paths
and cycles in Cayley graphs were suggested to be generated by considering the abstract
properties of the graphs via mathematical proofs rather than having to generate the graphs.
Moreover, the ability to use two different groups by the two communicating parties while
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using elements from the same underlying set H ×K is a special advantage.
In our proposals, an eavesdropper has the ability to easily determine the y-coordinate,

sM , even though the x-coordinate is proven to be secured. Hence, it would be interesting
to focus future studies in developing techniques to protect the y-coordinates involved in
encryption. Furthermore, suitable platforms for the implementation of these protocols and
further improvements to the security could be explored and proposed. Novel protocols
utilizing the Hamilton paths/cycles in a more beneficial manner may also be investigated.
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