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Dengue fever is a mosquito-borne pathological infection that is the nation's most dan-

gerous widespread human illness disorder, posing a critical threat to humankind. Moreover, 

accuracy is a major challenge during dengue epidemic prediction that must be addressed. A 

few research studies have looked into the factors influencing dengue outbreak prediction. 

Furthermore, only a tiny fraction of the infected population can be properly predicted using 

a forecasting approach for dengue infection disorders based solely on meteorological vari-

ables. This limitation is caused by a low mosquito population below infection transmission 

thresholds. Therefore, an Improved Deep Learning Model for Predicting Dengue Outbreaks 

is proposed, in which novel climatic parameters such as the TempWind factor are evaluated. 

Then to estimate the dengue risk incidence level, the Bayes network model combined with 

Particle Swarm Optimization (PSO) is introduced. As a result, the proposed model has pro-

ven that using the correct and relevant factor of putting aspects for epidemic forecasting 

yields improved and accurate findings.   

 

Keywords: dengue outbreak prediction, deep learning, particle swarm optimization (PSO), 

Bayes network mode, TempWindFactor (TWF). 

 

 

1. INTRODUCTION 
 

By 2050, the current global population of 7.8 billion people (as of 2020) is expected 

to increase to 9.7 billion [1]. Population growth, unfortunately, speeds up the development 

of infectious diseases [2]. Several elements lead to disease outbreaks. Among these varia-

bles are climate change, globalization, and urbanization, the bulk of which are caused by 

humans somehow. Diseases may be prone to emergence, and emerging infections are more 

likely to have rapidly evolving viruses. When a parasite transmits to another living creature 

from one body, it is called infectious disease. It has the potential to do significant harm on 

a large scale, making it a serious societal issue. It affects not only people moreover society 

as a whole and is thus classified as a joint problem [3]. As a result, identifying high-risk 

locations for fatal pathogenic and non-pathogenic infection epidemics is critical. As a re-

sult, the fatal illness eruption may remain predicted and detected. Fatal illness epidemics 
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could be responded to much better, and the unique Coronavirus disease, which is currently 

causing a worldwide health pandemic, can be predicted and detected (COVID-19). 

Even though the COVID-19 virus has gained international attention as an emerging 

global epidemic, global dengue fever cases have continued to rise due to urbanization, 

climate variability, and increased travel [4]. Dengue Infection is an arboviral infection af-

fected by one of four virus pathotypes that are directly connected. It is now the most com-

mon human-infecting mosquito-borne virus, posing a serious worldwide health threat [5]. 

Over 3 billion individuals are at risk of infection worldwide, with around 40 million symp-

tom episodes and 20,000 deaths reported each year. Dengue fever has now been detected 

in more than 100 countries worldwide, with Southeast Asia accounting for over 70% of 

dengue morbidity and mortality worldwide. However, the true prevalence of the condition 

is estimated to be many times higher because several medically evident instances escape 

unreported during the public through care facility monitoring techniques, which are com-

monly employed to report illness [6]. Furthermore, the examination into why dengue has 

altered the worldwide risk posed through human illness infection would assist influencers 

around the globe in effectively anticipating and adapting to possible developments in den-

gue threat in 2020, 2050, and 2080 [7]. 

One strategy for controlling and preventing the spread of this infection is to have a 

good prognosis on the outbreak’s existence, which allows higher experts and users to de-

velop tactics and deal with this problem efficiently and successfully [8, 9]. The fundamen-

tal and most important concern for managing dengue fever is the accuracy of a forecast 

system for epidemics. As a result, identifying relevant risk variables for prediction systems 

is crucial [10]. Given the importance of climatic factors in this illness, connecting climate 

data and dengue eruption prevalence seems to be crucial for constructing a reliable fore-

casting system for future epidemics [11-13]. Warmth, moisture content, and rainstorm 

quantity were the important weather risk variables examined. Climate-based forecast sys-

tems' recent accuracy ranges from 82.39 to 90.5 percent [14-19]. 

In various methods, health organizations can apply Artificial Intelligence (AI) tech-

nologies to prevent the spread of serious infectious disease epidemics [20, 21], and it might 

be accomplished by using artificial intelligence to forecast and identify severe infectious 

diseases, as well as to respond to lethal infectious diseases. This research aims to assess 

the accuracy of dengue forecasting methods and the number of threat variables that go into 

dengue pandemic forecast methods and discover novel risk factor correlations. The precise 

parameters are then utilized to forecast dengue outbreaks. The existing challenge in dengue 

epidemic prediction that has to be addressed is accuracy. A few researches have looked in-

depth at the elements that influence dengue outbreak prediction. As a result, Improved 

Deep Learning Model For Predicting Dengue Outbreaks was developed as an improved 

architecture based on artificial intelligence methodologies. The following is the research 

work’s contribution: 

The current study solely considers meteorological characteristics of dengue cases that 

affect prediction outcomes. However, our proposed method incorporates the TempWind 

component to predict dengue outbreaks accurately. 

In addition, the Bayes network model is used in conjunction with Particle Swarm 

Optimization (PSO) to anticipate dengue disease epidemics. 

The following is the format of the review paper: The survey of existing methodologies 

is described in Section 2, and then the suggested framework is completed in Section 3. 
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Section 4 presents the execution outcomes of the proposed method. At last, Section 5 con-

cludes the paper. 

2. RELATED WORKS  

Dengue outbreaks are currently being tracked using various early warning and moni-

toring systems worldwide. Dengue estimation methods had already remained examined; 

nevertheless, few of these designs continue to have high accuracy restrictions in predicting 

dengue outbreaks. Several models have been created using a variety of styles and proce-

dures for forecasting dengue epidemics. Many research works have also used artificial 

neural networks to develop prediction models for dengue epidemics. Fusion designs were 

used in epidemic forecasting studies, and there are several ways based on dynamic tech-

niques to calculate the weight of an interconnected model. The majority of categorization 

problems, on the other hand, revolve around anticipating disease outbreaks. 

K. Duangchaemkarn et al. [22] proposed another method for detecting disease out-

breaks that employ symptoms. A location-based algorithm uses k-NN clustering to locate 

a new probable epidemic cluster. Moreover, to assess the accuracy and efficiency of out-

break prediction, additional testing using empirical epidemiology datasets is required. 

Chen et al. [23] proposed independent Least Absolute Shrinkage and Selection Op-

erator concepts remain to be built for various syndrome/state/estimate windows with var-

ying design difficulty by adding multiple sets of classifiers to analyze the role of various 

classifiers under different situations using LASSO regression models to predict occur-

rences for four viral diseases. In the future, the authors could evaluate the effects of dis-

aggregation for nations like Japan where data at the prefectural level is provided. 

Scavuzzo et al. [24] proposed six models for correlation, such as two linear regression 

(Simple and Ridge) and four non-linear concepts. In the modeling, the Difference Vegeta-

tion Index (NDVI), Normalized Difference Water Index (NDWI), and Meteorological Pa-

rameters (LST) at dark, Meteorological Parameters (LST) during the day, and the Moder-

ate-resolution imaging rain gauge were all used (floral life, humidity, heat, and storm). The 

Artificial Neural Network (ANN), Multilayer Perceptron (MLP) produces the most pre-

sentable results compared to other models. With a larger dataset, these algorithms’ perfor-

mance could be significantly enhanced. Although, the used dataset is still somewhat tiny 

from a machine learning perspective. 

Y. Wu et al. [25] developed a hybrid technique that combines Convolutional Neural 

Networks-Recurrent Neural Networks (CNN-RNN), and residual connections to create a 

group prototype that is sensitive and capable of more robust epidemiological data predic-

tion. The results revealed that this combined approach exceeded AR, VAR, and GPS meth-

odologies, with a mean square error of 0.259. It’s important to observe that CNN-RNN 

does not routinely outperform because all of the datasets are quite tiny (only containing a 

few hundred training samples), thus adding additional parameters (the result of including 

the CNN modules) might reduce performance due to overfitting. 

 V. Vijayakumar et al. [26] created a Fog computing-based intelligent healthcare 

method to detect and control vector-borne infections. According to the empirical evalua-

tion, the Fuzzy k-Nearest Neighbour identifier gives the best performance, with 95.9 per-

cent prediction accuracy. However, several concerns need to be rectified in the future. The 

proposed approach is mainly developed for diabetes, and it has to be enhanced to effective-

ly assess several diseases at once based on important aspects and risk factors. 
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Tapak et al. [27] used time-series adaptation to examine and compare the efficacy of 

multiple ml algorithms in predicting the regular amount of influenza-like illness (ILI) cases: 

Support Vector Machine, Auto-Regressive Integrated Moving Average, Random Forest, 

and Artificial Neural Network. According to the findings, the ANN's sensitivity for the 

validation set (86.2 percent) remained higher than the other three approaches. The used 

data, though, was general national data. However, because Iran’s environment varies sub-

stantially from region to region, it was not possible to obtain weekly ILI statistics seg-

mented by climate. Therefore, the authors are incapable of researching the effect of these 

factors. 

Somboonsak et al. [28] identified the model with the best restriction virtues to fore-

cast the incidence of dengue sickness using the SARIMA model constructed on dengue 

patient data. The Box-Jenkins technique is combined with the temporary autoregressive 

integrated moving average concept to project the dengue sick people. The results show that 

the SARIMA method is useful for monitoring dengue outbreaks. 

 Xu et al. [29] developed a timely, accurate dengue forecasting model using recurrent 

long short-term memory (LSTM) neural networks. Compared to other candidate models, 

the LSTM model decreased the overall RMSE of forecasts by 12.99 percent to 24.91 per-

cent. It reduced the average RMSE of predictions during the pandemic by 15.09 percent to 

26.82 percent. But there are several gaps in the study. First, compared to other machine 

learning models, the LSTM model requires more time for training; however, this difference 

is not significant because the data used in this study originated from a small dataset. 

A. Baldominos et al. [30] presented the creation of a medical result support system 

aimed at detecting diseases based on patient diagnostic indicators. This system is designed 

to manage a minor quantity of records, ideal for applications that adhere to strict guidelines. 

In addition, the authors supplemented the models with data from other sources to improve 

their quality. The social data derived from online searches, as gathered from Google Trends 

and meteorological data, have been considered. Nevertheless, in situations where clinical 

data may be limited due to a lack of technical and human resources, other widely accessible 

and easy-to-access sources of data might be employed to improve diagnosis performance.  

Sood et al. [31] proposed an intelligent healthcare system that employs cloud services, 

IoT devices, and fog computing frameworks to identify, monitor, and inform dengue-af-

fected persons and other decision-makers in live time and handle the Dengue virus disease 

eruption. The suggested structure practices a Naive Bayesian Network (NBN) to detect 

people who may be infected with the dengue virus. It generates real-time notifications to 

advise and inform key stakeholders to take suitable measures at the fog subsystem as soon 

as possible. In addition, the proposed system employs Public System Investigation in the 

web domain to deliver a GoogleMaps-created international hazard analysis of Dengue in-

fectious agent and prevent dengue virus pathogen epidemics. The proposed approach has 

potential future applications in the field of technology-based healthcare research, where it 

can be used to establish a system for monitoring diseases based on common symptoms. 

Gangula et al. [32] focused on using ensemble-based learning to improve the accuracy 

and outcomes of forecasting dengue fever. The most important meteorological conditions 

that contribute to dengue epidemics have been discovered by Nejad et al. [33]. These fea-

tures were discovered through relationship research and used as process variables for neu-

ral network techniques. Bayes network designs stood picked among the top five categori-

zation models for machine learning: Support Vector Machine, Radial Basis Function tree, 
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visual representation, and Naive Bayes. This epidemic prediction model is anticipated to 

help government agencies, health organizations, and other concerned parties become 

aware and create better prevention measures in the future. 

Salim et al. [34] used an SVM linear model classifier to forecast dengue epidemics 

using meteorological data, including heat, cyclones, moisture, and storm. Moreover, the 

interactions between variables are outside the control of SVM. The study aims to look into 

SVM as a tool for outbreak prediction as well as the week of the year as the main predictor 

of dengue outbreaks at different spatial scales and in various types of models. 

Kamarudin et al. [35] assessed the existing Mosquito-borne disease eruption forecast-

ing framework. The authors proposed an updated framework that included the Entomolog-

ical Index feature to improve future Mosquito-borne disease epidemic predictability. 

However, no research has been done to determine the essential factors in regulating 

the reproduction of Aedes mosquitos, which cause dengue fever. This proposal is directed 

to find the essential element, and the emergence of dengue disease was predicted using 

artificial intelligence algorithms based on that factor. 

3. DISCOVER THE NEW FACTOR FOR DENGUE FEVER OUTBREAKS 
AND PREDICTED USING BAYES NETWORK-PSO (BN-PSO) 

Dengue fever is an arboviral infection caused by dengue viruses spread by Aedes 

mosquitos. Mosquito-borne illness control is not one-size-fits-all since various conditions 

can promote vector multiplication and raise infection rates. As a result, the predictive abil-

ity of AI techniques will be directly influenced. In the production of prediction risk maps 

and the modeling of dengue cases, climatic and meteorological data were regularly used. 

According to researchers, inter-annual and seasonal climatic fluctuations substantially im-

pacted dengue virus transmission. As a result of our research, an Improved Deep Learning 

Model For Predicting Dengue Outbreaks was developed. Initially, the input is preprocessed, 

and then the processed input is analyzed using PCC analysis. 

Furthermore, the study identifies a new meteorological element, the TempWind factor, 

which combines the lagged lowest temperature with the current month temperature and 

lags cumulative wind speed. Furthermore, a Bayes network model linked with the stochas-

tic method based on population is developed to assess dengue fever’s risk incidence level. 

As a result, dengue fever epidemic predictors may provide health officials with timely in-

formation to implement preventative measures. Fig. 1 depicts the proposed architecture. 

 
Fig. 1. Proposed architecture. 
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3.1 Novel Climatic Factor Identification 

Dengue fever is caused by a combination of weather and meteorological factors. Ini-

tially, the data is collected from two different databases: the weather database and the den-

gue case database. The incidence of dengue cases is presented monthly, while weather data 

gives daily weather information. The data was preprocessed at first, and every month, it 

was standardized and divided into two categories: ‘low risk’ and ‘high risk.’ After that, the 

data is consolidated and cleansed as needed. The Bivariate Correlation analysis is then 

applied to the preprocessed data. As a result, the data was evaluated, and the Bivariate 

Correlation was used to determine the association in the middle of the monthly prevalence 

of dengue instances xziz and weather information every month yziz.  
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The most important climatic factors were identified using Pearson correlation analysis, 

in which new climatic parameters were used as direct determinants of dengue cases to 

predict better future Mosquito-borne disease outbreaks, in which the lagged minimum tem-

perature through the current month temperature and covered growing wind speed was in-

tegrated to find new climatic parameters called the TempWind Factor (TWF). According 

to the findings, the lowest temperature has the strongest link to dengue frequencies, guided 

by accumulated wind speed and the number of dengue incidences recorded in various 

months. The lowest temperature and routine wind speed remain two major climatic threat 

issues for dengue illness. Eq. (2) is used to calculate the average minimum temperature. 

5
 (  )

 [month( 1)]

6
  month( )z

znz

Minimum temperature current month

Minimum temperature i
AverageMinimum temperature i

+

−
=


 (2) 

Where iz is the number of months used to calculate the normal least temperature, and 

month (iz − 1) is the lowest temperature from the previous month that is added to the current 

month’s minimum temperature [nz = 0]. Divide the result by 6 [the previous five months + 

the current month] to get the average. The cumulative wind for the month iz is calculated 

using Eq. (3) as follows, 

1

0
    ( ) [   ( 1)]

z
z zn

Cumulative wind speed per month i Total wind month i
=

= −  (3) 

where iz is the cumulative month for total wind speed analysis, cumulative wind speed per 

month iz is the final calculation, and month (iz − 1) is the month preceding the month (nz). 

The PCCs between meteorological factors and dengue case incidence. The emphasized and 

underscored great optimistic figures displayed the maximum connection and constants in 

the middle of climatic conditions and the occurrence of dengue disease. Based on the data 

from the previous months, the best value for the normal lowest temperature is determined. 

Months before the current month, the highest cumulative wind speed value was recorded. 
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According to the correlation analysis, the average lowest temperature for the 5th 

month (plus the current month) and collective wind speed for the 2nd month (before the 

current month) are strongly linked with dengue cases.  

 
Fig. 2. Evaluation of Temperature Wind Factor (TWF). 

 

TWF will be the name given to the two components, which will be applied as initial 

parameters to estimate the probability of a dengue eruption. Fig. 2 displays the interplay 

of variables then evaluated and fed into deep learning models as integrated inputs. 

3.2 Classification using Bayes Network Model Combined with Particle Swarm Opti-

mization (BN-PSO) 

Following the discovery of temperature wind factors, the study forecasted the likeli-

hood of dengue fever. According to our findings, there is a strong possibility of dengue 

epidemics and small threats of an eruption not occurring. Furthermore, the deep learning 

models predict this risk level by inserting parameters presence and absence of TWF. Table 

1 summarizes the exact data variables and their characterizations. Furthermore, the Bayes 

network model paired with Particle Swarm Optimization is used to achieve high accuracy. 

The BN-PSO algorithm is accurately explained using the following equation: BN-

PSO = (Fz, Xz, Vz, Szxzxz, Pzvzvz, Mzvz, Pzxzvz, Ginit, Uz), Fz is a weight factor, Xz is particle 

position space, Vz is particle velocity group, Szxzxz is a subtraction process (point, point), 

Pzvzvz represents a continuing procedure (position plus speed), Mzvz represents a calculation 

process (correlation times velocity), Pzxzvz represents arithmetic operation (velocity plus 

velocity),  is the length of the swarm, Ginit is the initial clusters, and Uz is the terminating 

condition. 

 
Table 1. The forecasting model relevant variables in the presence and absence of TWF. 

Relevant variables in the absence of TWF 

Weather Factors 

Lowest thermal reading (oC) 

Average thermal reading (oC) 

Highest thermal reading (oC) 

Cumulative storm speed (km/h) 

Relevant variables in the presence of TWF 

Weather Factors 

Average thermal reading(oC) 

Highest thermal reading (oC) 

Cumulative storm speed (km/h) 

TWF Factors 
Average Minimum temperature (oC) 

Cumulative wind speed (km/h) 

 

 

 

 

 

 

 

 

 

Average Minimum 

temperature per month (iz) 

by Equation (2) 

Cumulative wind 

speed per month  iz  

by Equation (3) 

 

Temp-Wind Factor 
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Fitness Function: The most probable structure is Pz(Dz|Bzsz). These structures are ranked 

depending on how likely the data came from them. In addition, because the network’s para-

meters are known in advance, the probability P(D|BS) may be calculated in closed form. 

1 1 1
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where nz is the quantity of factors in the file, rziz indicates the majority of states that could 

exist for variable Xziz, and qziz represents the number of positions for the parameters (Xziz), 

Nzizjzkz indicates sufficient database statistics, and Nzizjzkz indicates the hyper defined for the 

variable previously (considering an uz nz revealing previous as in the earlier architecture, 

we fixed the input variables to 1) and the number of alternative states for variables.  

1

ziz

z z z z z z

r

zi j k zi j kN N==  (5) 

1

ziz

z z z z z z

r

zi j k zi j kN N=
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Due to computational constraints, the sum of individuals assigned to a parameter is 

restricted. This counting measure stands as the Bayesian network model (4). In practice, 

the logarithm of (4) is frequently employed in rating channels. When information is relia-

ble, the Bayesian routing algorithm, a fitness value for BN, occurs in the secured method. 

As a result, we can consume the score decomposition principles in our research, which 

makes calculating the ranking method easier. Moreover, using the Bayesian network model, 

search many architectures for the one that gets optimal connections from entire collections, 

which indicates certain instances in the information have entries with all factors (4). 

The numeric value for the overall material can be calculated by summing the scores 

for each local position, with the exponential of the evaluating tool serving as the total of 

points for every element. As a result, the scope of the search is vast. The number of parents 

at any given device point can vary from 0 − nz − 1, in which nz refers to the dataset’s num-

ber of variables. 

A local position can have   1

1

z z

z

k n

zi
i

−

= values, where kz the maximum number of indi- 

viduals is a value and nz is the total amount of items in the dataset. As a result, the number 

of nodes is as follows,  

  1
( ) .

z z z

z z z z

n k n

zj i i j
i Z

−

= =   (7) 

An adjacency list can be used to express a particle’s position Pz = ((xziz)), iz = 1, …, 

nz, if a provided BN consists nz variables. According to our findings, while used to a point 

in each stage, the switch operator yields another position. As a result, there are three types 

of SO: +xziz, −xziz and . +xziz indicates the addition of a variable xziz to its original place −xziz 

represents the reduction of a variable xziz and  indicates null. 

Addition (Pzxzvz) point desirable speed: Let Pz be a point and vz be a speed. By imple-

menting the first switch of vz to Pz, then the next to the output, and so on, the position Pz = 

Pz  vz is determined.  

Subtraction (Szxzxz) point minus point: Let Pz1 and Pz2 be two positions. The velocity vz,  

as determined by a given algorithm, is defined as the difference Pz2 Bz Pz1, so that applying 
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vz to Pz1 gives Pz2. The state “discovered using a specified algorithm” is required since, as 

we have observed, two velocities of the same size can be equivalent. The algorithm is 

specifically selected so that Pz1 = Pz2 → vz = Pz2 Bz Pz1 = .    

 

Addition (Pzxzvz) speed desirable speed: Allow vz1 as well as vz2 are the different speeds. 

The shift list holds. The first switch unit of vz1, the first switch unit of vz2. The second 

switch part of vz1. The second switch part of vz2 and so on is used to calculate vz1vz1.  

 

Multiplication (Mzvz) coefficient: In the multiplication (Mzvz) correlation times speed, let 

be an actual correlation and vz be speed. There are numerous options based on the value. 

The original cluster Ginit, and the speeds, could be produced randomly or using a Sobol 

control action, which uniformly distributes the D-dimensional variables across the solution 

area. 

The cluster length must not be reserved too large due to the computing period needed 

to score the suitability process; however, it cannot be maintained too tiny to improve the 

variety of swarm elements and prevent early coherence. The halting condition for the al-

gorithm is defined when g1 generations have been completed, or the amount of the strong-

est material’s optimization process corresponds to the mean price of the optimization pro-

cess in subsequent generations of g2. 

BN-PSO Algorithm: 

1

1   ( ) ( )z z z

z z z z

k k k

zi d z zi d z zi d zi dV w V c rand P X
+
=    −  

1 ( ) ( )z

z

k

z zgd zi dc Rand P K  −  (8) 

1 1
 + z z z

z z z

k k k

zi d zi d zi dX X V
+ +
=  (9) 

Where iz = 1, 2, ..., Nz; Nz denotes the swarm size; the d-dimensional search space is 

denoted as d; and wz is the inertia weight factor. rand( ) and Rand( ) are two rectangular 

distribution arbitrary integers in the region [0,1]; cz1 and cz2 are the positive constants 

termed the social and cognitive variables, respectively. The particle speed iz at iteration kz 

is the ;z z

z z

k k

zi d zi dV X  the particle’s current position iz at iteration kz; xzizd is the greatest earlier 

situation of an element iz at iteration kz; Pzgd is the earlier location of the best neighbor at 

repetition kz.  

Step 1: To begin, give each particle a random first result/point and a shift rows/speed. 

Step 2: If the ending requirement has been fulfilled, go to Step 5.  

Step 3: Using the current point Xzizd of the particle, find the next position Xzizd of the particle. 

• Find the difference ∝ by ∝ = Pzizd − Xzizd, where ∝ is a simple switch list that is 

used to Xzizd to get Pzizd.  

• Analyze the variance  by  = Pzgd − Xzizd, where  is also a basic switch list. 

• Estimate the speed Vzizd, in terms of Eq. (8) and convert Vzizd into a simple switch 

list. 

• Determine the recent result Xzizd using Eq. (9). 

• If a better solution is discovered, Pzizd should be modified. 

Step 4: Update Pzizd and go to Step 2 if an improved result for the particles in the group is 

discovered. 
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Step 5: Display the ideal output. 
 

Furthermore, the classified output is examined, with various accuracy measures and 

parameters available to assess classifier performance. In addition, the gap between the ex-

pected and actual known values is quantified using several exactness and deviation assess-

ments. The accuracy measure was utilized to assess the learners’ effectiveness in this in-

vestigation. Eq. (10) depicts the process of achieving precision. 

( )

( )
100

TP TN

TP FP TN FN
Accuracy

+

+ + +
=   (10) 

4. RESULT AND DISCUSSIONS 

This section addresses the results of the implementation and the performance of our 

proposed system. Following that, comparative analyses with existing research are presen-

ted. 

 

Tool   : PYTHON 3 

OS    : Windows 7 (64-bit) 

Processor : Intel Premium 

RAM   : 8GB RAM 

4.1 Dataset Description 

The research consumes the information from two independent databases: a weather 

forecasting database and a Kaggle database of confirmed dengue cases. The dengue con-

firmed cases database comprises the year (1990 to 2010), the week of the year, and the 

total number of cases. In contrast, the weather forecasting database provides metrological 

data such as warmth, air direction, moisture, and thunderstorm. 

4.2 Data Preprocessing 

Figs. 3 (a) and (b) displays the preprocessed data, which were divided into two fea-

tures, City 1 and City 2, based on the normalized temperature, month, and wind speed data. 

Then, the data is combined and cleaned as required. 

  

                                             (a) 

 

                                     (b) 

 

 

Fig. 3. (a) Preprocessed data. 
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Fig. 3. (b) Preprocessed data. 

4.3 Monthly Average Temperature Over the Years 

The average temperature is depicted in Fig. 4, which is calculated using Eq. (2). The 

average temperature is calculated, by adding the minimum temperature from the previous 

month to the present month’s minimum temperature. 

 

 
Fig. 4. Average monthly temperature over the years. 

 

From Fig. 4, the average temperature in January month is 0.814C, February month 

is 2.16C, March month is 6.9C, April month is 12.76C, May month is 16.87C, June 

month is 20.72C, July month is 22.96C, August month is 22.35C, September month is 

17.52C, October month is 11.34C, November month is 6.59C, and December month is 

1.63C. 

4.4 Monthly Average Wind Speed Over the Years 

Fig. 5 shows the cumulative wind speed per month, evaluated by the above-illustrated 

Eq. (3). Cumulative wind speed analysis is calculated by the cumulative wind speed per 

month, such as January, February, and March, to December and the preceding month. 

 

                                             (a) 

 

                                     (b) 
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Fig. 5. Monthly wind speed over the years. 

 

From Fig. 5, the cumulative wind speed in January month is 11.512 km/h, February 

month is 12.19 km/h, March month is 13.41 km/h, April month is 11.9 km/h, May month 

is 10.96 km/h, June month is 9.63 km/h, July month is 9.64 km/h, August month is 8.94 

km/h, September month is 9.62 km/h, October month is 10 km/h, November month is 

10.94 km/h, and December month is 11.09 km/h. 

4.5 Temperature Aggregation 

The evaluation and aggregation of temperature data, such as the minimum, maximum, 

and mean temperatures, are shown in Fig. 6. The minimum temperature is −21.822°C, the 

maximum temperature is 39.91°C, and the mean temperature is 11.93°C, according to Fig. 6. 

 

  
Fig. 6. Aggregation of temperature.            Fig. 7. Aggregation of wind speed. 

 

4.6 Wind Speed Aggregation 

Fig. 7 depicts the aggregation of wind speed, including the least, supreme, and mean 

wind speeds, which are evaluated and aggregated. Minimum, maximum, and mean wind 

speeds are optimal at 0 km/h, 63.85 km/h, and 10.81 km/h, respectively. 
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4.7 TempWind Parameter Over the Years 

The orange line indicates the temperature factor in Fig. 8, while the blue indicates the 

wind factor. The temperature aggregation (such as minimum, maximum, and mean) and 

wind speed (such as minimum, maximum, and mean speed) demonstrated a strong rela-

tionship with dengue cases. The Temperature Wind Factor (TWF) through time is depicted 

in Fig. 8. 

 
Fig. 8. TempWind parameter over the years. 

4.8 Dengue Predicted Cases 

Fig. 9 illustrates the forecasting results of the dengue outbreak. The Bayes Network 

in the proposed method predicts the dengue outbreak with Particle Swarm Optimization, 

which shows the effectiveness of the results. This proposed model is used to create an early 

warning system that could assist in monitoring the outbreak. Through this, it will be pos-

sible to establish in place effective and efficient reactive approaches to predict dengue 

outbreaks. 

 
Fig. 9. Dengue predicted cases. 

4.9 Comparative Analysis 

Our novel technique is compared to baseline approaches such as Bayes net with and 

without TRF [36], SVM with and without TRF [36], RBF tree with and without TRF [36], 
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Decision table with and without TRF [36], Correlation and autoregressive model [36], C-

SVC kernel and RBF [36], Poisson multivariate regression models [36], and Bayes net-

work model using TRF [36]. 

Fig. 10 illustrates the total dengue cases predicted by existing techniques compared 

to the proposed TempWind Factor. Thus, our proposed factor outperforms compare to the 

existing approach. 

Table 2. Comparison of accuracy report with TWF. 
Methods Accuracy (%) 

Bayes net per TRF 92.35 

SVM with TRF 88.04 

RBF tree per TRF 89.47 

Decision table per TRF 90.41 

Proposed Method 97.5 

 
Fig. 10. Total dengue cases. 

 

Fig. 11 depicts the overall accuracy compared with the Temperature Wind Factor 

(TWF). The proposed technique achieves improved accuracy by integrating the Tempera-

ture Wind component (TWF). With 92.35 percent, 88.04 percent, 89.47 percent, and 90.41 

percent, our proposed approach compared the baseline Bayes net with TRF [36], SVM 

with TRF [36], RBF tree with TRF [36], and Decision table with TRF [36]. As a result, 

our unique technique has a 97.5 percent accuracy, higher than previous procedures. 

Fig. 12 shows the overall accuracy comparison without the Temperature Wind Factor 

(TWF). The proposed technique achieves improved accuracy by integrating the Tempera-

ture Wind Factor (TWF). Our proposed approach scored 91.39 percent, 88.00 percent, 

 

        
 Fig. 11. Comparison report with TWF.       Fig. 12. Comparison report without TWF. 
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89.47 percent, and 89.95 percent when compared to the baseline Bayes net without TRF 

[36], SVM without TRF [36], RBF tree without TRF [36], and Decision table without TRF 

[36]. As a result, our unique novel technique has a greater accuracy of 96.72 percent than 

existing procedures. 

 

Table 3. Comparison of accuracy report without TWF. 
Methods Accuracy (%) 

Bayes net without TRF 92.35 

SVM absence TRF 88.04 

RBF tree without TRF 89.47 

Decision table absence of TRF 90.41 

Proposed Method 97.5 

 

Table 4. Comparison of accuracy of dengue outbreak prediction model. 

Methods Accuracy (%) 

Correlation and the autoregressive method 84.90 

C-Support Vector Classification kernel and Radial Basis Functions 90.50 

Multivariate Poisson regression models 90.00 

Bayes network model using TRF 92.35 

Proposed 97.5 

 

 
Fig. 13. Comparison of accuracy of dengue outbreak prediction model. 

 

Fig. 13 shows the overall accuracy of the proposed Temperature Wind Factor (TWF). 

The proposed technique achieves greater accuracy by combining the Bayes Network with 

Particle Swarm Optimization (BN-PSO). Our proposed method compared the baseline 

Correlation and autoregressive model [36], C-SVC kernel and RBF [36], Poisson multi-

variate regression models [36], and Bayes network model using TRF [36] such as 84.90 

percent, 90.50 percent, 90.00 percent, and 92.35 percent. Thus, our novel technique has 

obtained an accuracy of 97.5 %, higher than the existing techniques. 
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5. CONCLUSION 

A variety of circumstances can cause dengue fever epidemics. Our study focused 

solely on a detailed investigation of heat and wind speed hazard issues for dengue eruptions, 

identified as the maximum essential determinants due to their importance and accessibility. 

By combining the 5-month lagged average lowest temperature by the current month and 

2-month delayed collective wind speed, a new substantial risk factor TWF was found. 

TWF has improved in predicting dengue outbreaks, and these lagged meteorological vari-

ables are useful in more precisely forecasting the outbreak. This study shows that using 

exact and relevant input criteria when predicting outbreaks yields more precise and accu-

rate results. The TWF model was merged into the BN-PSO model, yielding a 97.5 percent 

accuracy. According to the findings, TWF in the Baysien Network-Particle Swarm Opti-

mization paradigm beat all other epidemic forecasting methods. Further studies should 

investigate and validate the TWF factors using more datasets from various regions, and 

countries. Moreover, the accuracy of dengue outbreak predictions should improve with the 

use of deep learning approaches. 
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