
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 34, 469-488 (2018)
DOI: 10.6688/JISE.201803_34(2).0010

469

Priority-based Clustering in Weighted Graph Streams

MOHSEN SAADATPOUR1, SAYYED KAMYAR IZADI2, MOHAMMAD NASIRIFAR1
AND HAMED KAVOUSI1

1Department of Computer Science
Shahid Beheshti University
Tehran, 1983969411, Iran

2Department of Computer Science
Alzahra University

Tehran, 1993891176, Iran
E-mail: k.izadi@alzahra.ac.ir; m.saadatpour@aut.ac.ir; {m.nasirifar; h.kavousi}@sbu.ac.ir

Nowadays, analyzing social networks is one of interesting research issues. Each

network could be modeled by a graph structure. Clustering the vertices of this graph is a
proper method to analyze the network. However, huge amount of changes in the graph
structure as a result of social network interactions implies the need of an efficient cluster-
ing algorithm to process the stream of updates in a real-time manner.

In this paper, we propose a novel algorithm for dynamic networks clustering based
on the stream model. In our proposed algorithm, called Priority-based Clustering of
Weighted Graph Streams (PCWGS), we provide a measure based on the importance of
the frequency of recent interactions in the network to have more acceptable clusters. In
PCWGS algorithm, a timestamp coupled with the weighted mean of the number of inter-
actions of the network vertices are used to account edge weights. It is worth noting that,
we present a data structure, which can keep useful information about the current state of
the edges in the network based on update times and their weights while minimizing the
required memory space in our proposed algorithm. Our simulations on real data sets re-
veal that PCWGS algorithm yields clustering with high quality and performance com-
pared to previous state-of-the-art evolution-aware clustering algorithms.

Keywords: graph clustering, graph mining, node clustering, graph stream, social network

1. INTRODUCTION

Graphs or networks are one of the most powerful models to represent a set of enti-
ties and links between them with wide applications such as social networks, citations in
scientific papers, network of the World Wide Web, and hyperlink analysis in web pages.
Many algorithms are designed to analyze and extract information from these graphs [24].
Graph clustering is the process of dividing vertices of a graph into subsets, in each of
which, vertices are related to each other by a similarity measure.

In online systems, most of the computer programs deal with massive data sets such
as those found in online traffic monitoring, finding user forums in real time, automatic
transaction monitoring of ATMs. These networks rapidly change over time, and the huge
continuous streams of data they produce, need to be handled by efficient algorithms. The
stream model, which is capable of handling such data sets, is usually used for algorithms
that process the data in one or few passes under the restriction of limited memory [11].

The term “graph stream” usually presents itself in two models. In the first one,

Received April 29, 2017; revised June 17 & July 17, 2017; accepted August 8, 2017.
Communicated by Shyi-Ming Chen.

MOHSEN SAADATPOUR, SAYYED KAMYAR IZADI, MOHAMMAD NASIRIFAR AND HAMED KAVOUSI

470

graph stream stands for a sequence of graphs and the purpose of clustering is to find
groups of similar graphs, while in the second one, the sequence of atomic graph which
changes over time is considered as graph stream. These atomic changes can be insertions
or deletions of edges/vertices of the graph and the clustering aims to find groups of verti-
ces by their structural similarity in real time or to discover stable clusters over time in
evolving graphs. In this paper we examine the second model of graph streams.

1.1 The Problem Description

We Similar to the problem introduced in [28], are interested in clustering the verti-
ces of a graph based on edge weights with respect to some constraints. Given an undi-
rected weighted graph G = (V, E), where V is the set of vertices and E is the set of edges
{u, v, w} where u, v  V and w is the associated weight. We partition the vertices of the
graph G into clusters P = {C1, C2, …, Ck} in such a way that the total weight of inter-
cluster edges (cut size) is minimized, and each cluster has at most L vertices. We assume
L is fixed and Ci  Cj = . More formally,

Cut(P) = Min({wi,j | e = (Ci, Cj, wi,j)E, 1  i  k}) (1)

We consider a dynamic and online version of this problem in the stream scenario,
thus according to graph data stream model, queries include insertions and deletions of
edges and vertices over time. We suppose Gt is the update of graph G and Pt = {C1,
C2, …, Ck} is the set of clusters Gt is decomposed to at time t. The algorithm will incre-
mentally update the clusters over time.

Due to massive scale of graph’s input and memory limitation in stream scenario,
different approaches have been devised, including random sampling [23], sliding window
[7], graph sketches [3], etc. In our algorithm, we use a new technique to focus on recent
changes and limit input data for processing. With these assumptions we must represent
an online and incremental algorithm to cluster dynamic graphs in sliding window model
with many changes in a short period of time. Previous offline graph clustering approach-
es such as [14] cannot capture cluster evolution and are not incremental. It is worth not-
ing that these algorithms ignore the number of interactions that occur between a pair of
vertices over time.

In this paper, we propose a new algorithm called Priority-based Clustering of Weigh-
ted Graph Stream (PCWGS). We consider each connected component as a cluster with
respect to a constraint L for each component. To keep recent edges and strong interac-
tions, we employ a measure, based on the time-stamp of an edge and the mean value of
the number of interactions that occur between vertices of this edge in time-stamps, as the
edge weight. When two clusters are merged or splitted, we are interested in stronger and
more recent edges than weaker and older ones. With the purpose of having efficient pro-
cessing, in our method vertices will not be allowed to move between clusters. In addition,
edges will be cut in case of constraint violation if they have the minimum weight.

1.2 Motivation

The majority of available methods for the stream model are for un-weighted graphs

or they ignore the importance and frequency of strong and stable interactions over time.

PRIORITY-BASED CLUSTERING IN WEIGHTED GRAPH STREAMS 471

The evolution-aware clustering algorithm [28] uses only the timestamp parameter as the
edge weight to study the process of graph clusters’ evolution. Introducing a new method
to cover both weighted and un-weighted graphs is one of our main goals considering the
features of stream model. Working on new data structures to improve the performance of
graph structure storage and considering history of edges is the next goal.

Table 1. Assigned weight and number of interactions at each time-stamp.
Time-stamp t1 t2 t3 … tn

Weight Cn 2Cn 3Cn … nCn
Number of interactions in each timestamp 1 2 3 … n

Example 1: Suppose vertices A and B have consecutive interactions with each other in n
timestamps, and at the (n+1)th timestamp the interaction is interrupted. In the meantime
another interaction takes place between two other vertices C and D which had a weak
interaction in the previous n timestamps. According to the restriction of maximum num-
ber of vertices in each cluster and based on the EAC algorithm, in case of edge deletion,
the older edge (AB) should be deleted, in spite of the fact that this edge had a good histo-
ry over time and there is a chance of repetition of this interaction in the future. Thus in
this way the importance of the frequency of interactions over time (edges weight) is ne-
glected. In order to further clarify the difference between EAC and PCWGS algorithms,
we present another scenario.

Suppose the edges are formed in 3 timestamps. In Fig. 1, the edges are colored blue,
orange, and green in the first, second and third timestamps, respectively. Edge weight
represents the number of interactions between two vertices that occurred in each
timestamps. If we consider the maximum number of vertices to be 5, in the second
timestamp, the graph would have two separate clusters which are shown by the two
clouds. However, in the third timestamp some interactions happen between the two clus-
ters, based on their weights, which result in merging of the clusters. According to the
constraint of maximum number of vertices in each cluster some edges must be deleted.
As a result, a clustering based on the EAC algorithm yields three clusters i.e., {A, C, D, G,
E}, {F} and {B}, which has overlooked the strong interactions in the three time-stamps
and only considers the differences in the third timestamp. On the other hand, clustering
based on the proposed PCWGS algorithm yields two clusters of {A, B} and {C, D, F, E,
G} which preserves the differences in the third timestamp as well as the weight and in-
teractions’ repetition over the three timestamps these results are showing in Fig. 2. 

Fig. 1. The case of clustering graph vertices according to maximum size of clusters and edge

weights in different time-stamps.

E

GF

3
8

4

6

6
1

B A

C

5

1

21

3

1

D

3

2

MOHSEN SAADATPOUR, SAYYED KAMYAR IZADI, MOHAMMAD NASIRIFAR AND HAMED KAVOUSI

472

 (a) EAC (b) POWGS

Fig. 2. The case of merging and splitting clusters according to maximum size of clusters and edge
weights in different time-stamps with different algorithms; (a) Using the EAC algorithm and
(b) using the PCWGS algorithm.

1.3 Our Contributions

Our main contribution in this paper is as follows:

 Considering number of recent communications as a parameter to identify clusters and

their changes enables us to provide acceptable clustering using current status of graph
without repeating calculations.

 A new data structure to capture useful information of edges in network based on
weighted average and timestamp, with acceptable space requirement, enable us to
manage the cost of complexity and storage of required information.

 Improvement of quality of clustering besides performance comparing the proposed
method with ones like EAC and EIC.

 The same method for weighted and un-weighted networks are supported.

1.4 Related Works

There are two types of graph clustering algorithms, within-graph and between-graph

clustering. In within-graph we attempt to cluster the nodes or edges of a single graph into
groups based on a similarity measure, while in between-graph or object clustering we
attempt to cluster a set of graphs that have arisen from a common set of nodes and are
structurally similar. Object clustering has been studied by Aggarwal and Philip [1],
which is based on structural similarity in a stream of large numbers of small graphs. In
this paper, we focus on the node-clustering problem. Traditional node-clustering algo-
rithms such as minimum cut problem and graph partitioning have been studied widely
[13]. These algorithms cannot handle large and time evolving graphs where some clus-
ters change rapidly at certain time points. Many of these algorithms are mainly functional
in offline settings and therefore cannot be used efficiently in online or stream scenarios.
In addition, they need to store the entire input before processing.

Granular computing [5, 8, 16, 19, 27] is a global computing model for managing big
data, information and knowledge. In this model, each object is displayed as an infor-
mation granule and can be linked together through some degree of similarity, functionali-
ty or indistinguishability. These connections can lead to a granular hierarchy or a net-
work [15].

Granular computing has been commonly used for furthering other research areas,

E

G

F

3

8

6

1

B

F

C

5

1
2

D

E

GF

3
8

4

6

6
1

B

A
C

5

1

3

D 3

2

PRIORITY-BASED CLUSTERING IN WEIGHTED GRAPH STREAMS 473

such as data mining [15, 18] machine learning [26], computational intelligence [17],
fuzzy rule-based systems [2], data classification [4] and bioinformatics [12]. It is of fu-
ture research interest to apply granular computing techniques to solve risk assessment
problems. On the other hand, it is worth noting that risk is highly related to uncertainty
[10]. Uncertainty modeling is an important parameter in dynamic clustering where many
elements of the clusters can change over time. Recently, Peters et al. [18] presented a
method of guiding further developments of fuzzy clustering algorithms, especially dy-
namic fuzzy clustering algorithms. They combined granular computing with clustering
analysis and used Dynamic Clustering Cubes (DCCs) to categorize existing dynamic
granular clustering algorithms. Many of these algorithms are not provided for graph clus-
tering in the stream model.

One of the widely used offline graph clustering algorithms is METIS [29], which is
a type of multilevel graph partitioning algorithm with high-quality and balanced parti-
tions. Kilot et al. [20] worked on graph partitioning in online and dynamic scenarios as
well, but similarly they had to store the whole graph input prior to processing, which is
not suitable for a streaming model. FENNEL is a one-pass graph partitioning algorithm
for large scale graphs proposed by Charalampos et al. [22]. It uses modularity maximiza-
tion [6] by a greedy assignment method. This algorithm works un-weighted graphs, and
does not take into account the number of interactions between each pair of nodes. Zanghi
et al. [29] proposed an online graph clustering algorithm that partitions online input of
vertices by maximizing a global likelihood function. The algorithm is sensitive to the
number of clusters and works well when the number of clusters is small. In addition, it is
an insert-only model that does not support the deletion of vertices and edges. Eldawy et
al. [9] proposed a method for clustering of streaming graphs by considering each con-
nected component as a cluster according to the limited number of nodes in each cluster
and updated these clusters incrementally based on the graph changes. Due to memory
limitation, they used a random sampling method by assigning a random number to each
edge and selecting the edges whose number was below a sampling threshold. Their algo-
rithm is referred to as EIC and is not sensitive to cluster evolution [28]. In order to cap-
ture time evolving clusters, they solely used a sliding window approach in the streaming
model. In [28] they proposed a new approach in order to process streaming graphs for
evolution-aware clustering of vertices (EAC). They also considered individual connected
components as clusters. Due to the capture time of evolving clusters, they assigned the
timestamp of an edge as its weight. They also favored the more recent edges in a cluster-
ing and used the sliding window model to capture evolution. This method and most of
the existing works only consider un-weighted edges in which the number of interactions
between pairs of nodes over the time is ignored. However, in weighted graph stream
models, it is important to consider the more recent interactions as well as their frequency,
i.e. the edges with large number of interactions in recent time are much stronger than
those with smaller number of interactions. Therefore, it is necessary to take into account
the expiration time property of interactions to capture evolving clusters in streaming
model [25]. The authors dealt with the problem of dynamic community detection, by
considering the underlying social behavior over different graph regions. They designed a
new structure called Local Weighted, Edge-based Pattern (LWEP) to describe homoge-
neous regions. They defined an exponential decaying weight for each edge to capture
evolving cluster in the stream scenarios and used weighted Jaccard similarity to identify

MOHSEN SAADATPOUR, SAYYED KAMYAR IZADI, MOHAMMAD NASIRIFAR AND HAMED KAVOUSI

474

communities. In their method the constant factor of the exponential function needs be
estimated. It seems that the average number of interactions between two entities over
time is an important parameter that is ignored in pervious approaches.

2. THE ALGORITHM

In this section we describe our clustering method in details and how it works in
streaming scenario. The intuition behind our method is to consider both the weighted
edges and the last occurrence of a connection (in terms of timestamp). Clearly in dynam-
ic graph streams, changes in recent timestamps are more important than changes in older
connections. But the caveat arises in weighted graph streams where we also need to take
into account the weights of the connections. In order to capture the relationship between
a pair of nodes, and the evolution in streaming graphs, we propose a method named Pri-
ority-based Clustering in Weighted Graph Streams (PCWGS). This algorithm, and in
general any edge-comparison based methods for clustering dynamic graph streams, com-
prises of two main parts. First, a measurement criterion which preserves both the recent
update time and the weight of a connection use it for edge comparisons. Second, a data
structure which can handle efficient insertion/deletion of connections while decreasing
the storage complexity and also keeps track of edges based on the measure provided in
the first step.

We first start proposing our algorithm by introducing the incremental weighted
graph streams, and then define the two parts of the PCWGS method.

Definition 1: The incremental representation of a graph stream is G1, G2, …, Gt, … where
Gt = (Vt, Et) is the incremental graph, Vt signifies the attached nodes until time t, Et = {ui,
vj, 

t
ij  ui, vjV1V2…Vt} with t

ij = t
ji denoting the number of interactions between

nodes ui and vj that happen between timestamps t  1 and t. 

We use the connected components as clusters and retain these clusters incrementally

for graph updates. We use the combination of the time-stamp and weighted mean of
number of interactions as an edge’s weight. Edges in each cluster are stored in order of
recent time-stamp and their mean of number of interactions that has happened recently.

For instance, assume each day as a time-stamp and assign the incremental linear
weight i. Ci to time-stamp i such that 0 ≤ i ≤ n and Ci is a statistical factor that we will
define later. Assigned weight and number of interactions at each time-stamp are shown in
Table 1.

Definition 2: Weighed Mean: Assume that interactions between nodes ui and vj are rec-
orded at timestamps t0 < t1 < …. < tn. t0 is the timestamp at which ui and vj began to inter-
act and tn = t is the current timestamp.n in statistics, is the mean of interactions between
ui and vj that has happened until tn.

1

n

n n ii
iC 


  (2)

i is the number of interactions between ui and vj that happens in time-stamp i and

PRIORITY-BASED CLUSTERING IN WEIGHTED GRAPH STREAMS 475

Cn is a positive number such that:

2
(1)1

1 .
n

n n n ni
iC C 

   (3)

We define the expiration weight Wt
ij for an edge between two nodes ui and vj, as the

following:

Wt
ij  tn  (n). (4)

Wt
ij is a measure to determine the average number of interactions over time and ac-

cording to importance of interactions that have occurred in recent timestamps.  

Theorem 1: At timestamp tn+1 for an existing edge with new interactions, its expiration
weight Wt

ij is updated as:

 1 2
1 12 2 ,t ijn

ij n n tn nW t  
     (5)

2
1 12 2 .ijn

n n nn n      (6)

Proof: We have

1

,
n

n n i
i

iC 


  (7)

2
(1) ,n n nC  (8)

2
1 (1)(2) .n n nC    (9)

According to Eqs. (6)-(9) the 1n  will be as:

1 1 1 1
1

(1) ,
n

n n i n n
i

C i n C     


   (10)

1

,
n

n
i

i n

i
C






 (11)

1
1 1(1) .n

n n n
n

C
n

C
  

    (12)

By substituting Eqs. (9) and (11) into Eq. (10), Eq. (13) would be resulted as follows:

2
1 12 2 .ijn

n n nn n      (13)


2.1 Data Structure and Storage Minimization

As it is mentioned in the related works, the simple sliding window fails to handle

the edge weights as a significant part of the information, effectively and decreasing the
storage complexity is not a trivial task and is handled differently in different methods.

MOHSEN SAADATPOUR, SAYYED KAMYAR IZADI, MOHAMMAD NASIRIFAR AND HAMED KAVOUSI

476

For this purpose we try to present a data structure which can keep useful information
about the edges in the network based on update times and weights whilst keeping the
storage as low as a constant factor.

The overall scheme of the algorithm consists of two parts which are the data handler
and the graph handler. The data handler decides which information should be kept in the
structure and which have to be omitted. It also manages the overall storage and prohibits
it from exceeding a constant number of entries. The graph updates in different time-
stamps are given to the data handler and upon each update, requests go back and forth
between the data handler and the graph handler until the graph structure is stable. The
data handler maintains the upper bound of the storage during this whole procedure.

The graph handler keeps the structure of the network and efficiently makes changes
to it based on the requests from the data manager. It also creates a framework in which
queries such as “which cluster does a particular node belong to?” or “which nodes are
currently in a particular cluster?” can be answered efficiently.

Data Handler: The data handler consists of two smaller data structures of the type
Weighted Mean Priority Based Edge-Container. One list is called the main edge list and
the other one is called the reserve edge list. The Weighted Mean Priority Based Edge-
Container provides access to a balanced binary search tree under the hood which keeps
the edges in sorted order according to the value in Eq. (4) yields for each edge and allows
efficient insertion/deletion. The balanced binary search tree embedded in the Weighted
Mean Priority Based Edge-Container is allowed to use a constant amount of storage, that
is if the number of elements in the Weighted Mean Priority Based Edge-Container is
more than a constant factor, say k, The Weighted Mean Priority Based Edge-Container
will report the fact that elements should be deleted form the back of the list (Lowest ele-
ments, since The Weighted Variance Priority Based Edge-Container keeps the elements
sorted in non-increasing order) until the size of the balanced binary search tree that the
data structure uses is less than or equal to the constant factor k.

The second list, the reserve edge-list similar in type to that of the main edge-list
(Weighted Variance Priority Based Edge-Container), handles data in a manner identical
to that of the main edge-list. The only difference between the two instances of the
Weighted Mean Priority Based Edge-Containers is the constant factor k. The constant
factor which denotes the maximum size of one list can differ from the other and therefore
the two can vary independently. The purpose of having two different data structures with
the exact same behavior will be discussed shortly.

Let M be the size of the main edge-list and N the size of the reserve edge-list. The
graph handler component performs a clustering only based on M edges which are already
kept in the main list. That is, the current state of the graph depends on the entries of the
main list. A similar result can be obtained in the other direction too: at a particular time-
stamp, the edges in the reserve list do not have any influence on clustering and structure.

It is also worthwhile to mention that the values in the two lists are pairwise distinct.
That is if there is a connection record between two vertices A and B in the main list, there
is certainly no sign of an entry representing the connection between A and B in the re-
serve list. The update queries are presented in the form of incremental graphs, each of
which denotes a set of edges and their weights, and a timestamp which grows strictly
increasing during different updates.

PRIORITY-BASED CLUSTERING IN WEIGHTED GRAPH STREAMS 477

Although the entries of the two Weighted Mean Priority Edge-Lists and those of the
incremental graph, are identically called edges, there is an important difference between
them. An edge in the incremental graph denotes how close is the connection between two
nodes between the arrival timestamp of this edge and the previous timestamp (or the ini-
tial connection weight between them in case of timestamp = 1). The entries in Priority
Based Edge Lists however, represent how close is the connection between pairs of nodes
in this timestamp, according to the entire data we have received. This means that not only
the entries of the two Priority Lists are pairwise distinct, but also there is no duplicate of
an edge in each of them either. That means no matter how many updates a pair of verti-
ces has undergone previously, there is at most one record related to those two nodes in
the lists. What actually makes this approach work is the pair of values (namely weighted
mean and timestamps) which is stored (encapsulated) alongside the pair of vertices inci-
dent to each edge, and the formulas that are used to update them over time. Therefore the
entry representing a pair of vertices (if it exists) in either of the Priority Based Lists is all
the data we have stored for the connection between the pair of vertices. This property
causes Priority Based Lists with maximum size of K to store much more information than
the simple sliding windows of the same size, since there could be a lot of duplicate rec-
ords of the connections between the same pair of vertices.

At each update if the connection between a pair of vertices has been remain strong
enough based of measurement criteria, the related edge lies in the main list. Of course,
when, the connection made weak, the edge lies in the reserve list, waiting for the future
timestamp to get a chance to get into the main list, saving its previous history and be a
part of the actual graph representation.

There is however a third case in which there is no present record of the connection
between this pair of nodes which means that either the connection between the two has
been so weak that they are popped off the reserve list as well as the main list, or this is
the first time a connection between these two nodes is being supplied to the algorithm.
Each time we try to do the insertion on an edge from the incremental graph, we give that
edge a chance to be in the main list and therefore the edge is inserted into the graph,
which in turn results in a change in how the graph is decomposed into clusters. After that,
the cluster which the newly inserted edge is now part of it, must preserve the maximum
cluster size constraint. If this constraint is violated, all of the edges of the cluster are
erased and all of them except the one with the lowest weight among them are re-inserted
into the graph using a different insertion algorithm, since they are not actual insertion
queries and should not update Priority Lists. The edge with the lowest weight is deleted
from the main list and sent to the reserve list, since its weight has not been significant,
compared to other edges. After these insertions the cluster size constraint is checked
again and in case of violation the same procedure takes place. After all the insertion que-
ries are handled, the reserve list is possibly populated with some new edges and could be
violating the size constraint. Therefore while the size of the list exceeds the maximum
size of the reserve list, the lowest weighted edge is popped from the list, as a conse-
quence of having a very low weight.

What explicitly happens is described in more detail below:

HandIncrementalGraph Algorithm: For each edge in the incremental graph do Incre-
mentalGraphEdgeInsertion. It is shown in Algorithm 1.

MOHSEN SAADATPOUR, SAYYED KAMYAR IZADI, MOHAMMAD NASIRIFAR AND HAMED KAVOUSI

478

IncrementalGraphEdgeInsertion Algorithm: when a tuple e = {a, b, w, t} as an inser-
tion query which states that a connection with weight w between nodes a and b has been
recorded at timestamp t and the previous timestamp arrives, there are a number of cases:

Case 1: Edge {a, b} is already in the main list: the weight of the edge is updated with
respect to the formula in section 3 and no further action is needed and therefore the graph
structure remains the same.

Case 2: Edge {a, b} is in the reserve edge list: the weight of the edge is updated using
the formula (4) and the edge is deleted from the reserve list and inserted into the main
edge list and an insertion query InsertIntoGraph {a, b, w′} where a and b are the nodes
and w′ is the new connection weight between a and b is sent to the graph handler compo-
nent. At the end, deletion queries of the lowest-weighted edges in the main list are sent to
the graph while the size of the main list exceeds M (Algorithms 5 and 6). Afterwards the
deleted edges are in turn pushed into the reserve edge-list and entries are also deleted
from the end of the reserve list while the list does not preserve the size constraint (N).The
intuition behind this part of the algorithm is that whatever the connection weight is, an
edge is given a chance to be in the main list and therefore in the graph, each time an in-
sertion query arrives.

Case 3: Edge {a, b} is in neither in the main or reserve edge-lists: this means that we
have no data related to the edge {a, b}. This is either because of the fact that this is the
first connection between these two edges or the previous connections have been signifi-
cantly old and/or weak and was not eligible to be a part of the graph or being kept in the
reserve-list. Therefore these edges are given weights using Eq. (4) and are again given a
chance to be added to the actual graph structure as we take an approach similar to case 2
after we add the edge to the main list.

Deleting data from the reserve list, which means discarding any previous connec-
tions between two nodes, can seem unfair but it should be noted that as it can be inferred
from the algorithm, if we discard the value of an edge, then the edge has been popped
from the main list and the reserve edge list at least once. That means that the calculated
weighted variance for this edge has been so low that even though it has been given a
chance to be a part of the main list on each of its insertions, it has somehow been popped
not only from the main list but also from the reserve list. (Since there have been connec-
tions with greater weight compared to {a, b}).

Graph Component Insertion: If a and b are not in the same cluster, their related clus-
ters have to be merged. If the size of the cluster which contains a (or b) exceeds the clus-
ter size limit, then delete the lowest weighted edge in the cluster using the deletion meth-
od in graph component. (Algorithms 4)

Graph Component Deletion:

 Insert the deleted edge into the reserve list.
 Delete all other edges in the cluster from the cluster, and the main list.
 Call the insert function each of the edges into the main list.

PRIORITY-BASED CLUSTERING IN WEIGHTED GRAPH STREAMS 479

Algorithm 1. EvaluateIncrementalGrpah
EvaluateIncrementalGrpah (G: Incremental
Graph)
Foreach Edge e(a, b, w) in G:
 EdgeArrival(e)
While size of the reserve list violates the
maximum size:
 Delete the lowest weighted edge from
the reserve list

Algorithm 2. EdgeArrival
EdgeArrival(e (a, b, w): Edge):
If e is in the main list:
 Update the weight of the (a-b) entry
in the main list using the formula e(4).
 Update the weight of the edge in the
cluster which holds it.
Else if e is in the reserve list:
 Temp(a, b, w) ← (a-b) entry in the
reserve list
 Delete (a-b) entry from the reserve
list
 Update temp using the formula and e
 Insert temp into the main list
 NewEdgeUpdate(temp)
Else
 Insert e into the main list
 NewEdgeUpdate(e)

Algorithm 3. NewEdgeUpdate
NewEdgeUpdate(e(a, b, w):Edge):
cla ← cluster which contains a
clb ← cluster which contains b
Merge(cla, clb).

Algorithm 4. Merge
Merge(cla: Cluster, clb: Cluster):
Foreach Edge e in clb:
 Insert e into cla
 Remove e from clb
HandleOversizedCluster(cla)

Algorithm 5. HandleOversizedCluster
HandleOversizedCluster(cla:Cluster):
If size of the nodes in cla violates
the maximum size

 Delete the lowest weighted edge
from cla and from the main list

 Remove cla, and assign all the
nodes previously contained in cla to
their initial clusters

Foreach Edge e(a, b, w) that was
previously in cla:

 NoUpdateInsert(e)

Algorithm 6. NoUpdateInsert
 NoUpdateInsert(e(a, b, w): Edge):
cla ← cluster which contains a
clb ← cluster which contains b
Insert e into cla
If cla != clb:
 Merge(cla, clb)

As depicted in the above pseudopods, the main algorithm is based on the four func-
tion. EvaluateIncrementalGrpah is the first one (Algorithm 1) which manages the graph
updates in a specific timestamp. For each input edge EdgeArrival(e) function is called
and then the length limitation of reserve list is verified. When the length is above the
specified limit, edges with minimum weight are removed until the reserve list obey its
length limitation. The complexity of this function is O(e*O(EdgeArriavl) + enlog(et)).
The number of input edges in timestamp t is shown by e and en is the number of edges
which have to be removed from the reserve list because of its length limitation. The
number of edges in the graph structure is shown by et and log(et) is the cost of deletion a
node from the binary search tree.

In Algorithm 2, if the input edge exists in the main list, its weight is updated and the
graph structure remains unchanged. If the input edge is in the reserve list it is removed
from the reserve list and its weight is updated. Then this edge is transferred to the main
list and the graph structure. When the input edges is new and it is not exists in both of
lists, NewEdgeUpdate is called. In the worst case when the entire input nodes are new
edges the complexity of Algorithm 2 is e*O(NewEdgeUpdate) which e is the number of
input edges.

MOHSEN SAADATPOUR, SAYYED KAMYAR IZADI, MOHAMMAD NASIRIFAR AND HAMED KAVOUSI

480

The two clusters which have vertex u and vertex v s are identified in NewEdgeUpdate
(Algorithm 3) and then the above selected clusters are merged using Merge function
(Algorithm 4). If the size of newly merged cluster is above the specified limit, it is man-
aged by HandleOversizedCluster function. ec(v)*(ec(u))+O(HandleOversizedCluster) is the
complexity of Merge function.

As mentioned above oversized clusters are pruned in HandleOversizedCluster func-
tion (Algorithm 5) by selecting edge with minimum weight is removed from the cluster
and the main list and is inserted into the reserve list. If such an edge has less weight than
the entire reserve list entries then it is directly deleted. When an edge is removed, its cor-
responded cluster may be divided to the two new smaller clusters.

In order to preserve the graph connected, like EAC method, first the entire cluster
edges are removed, then the required ones are inserted again. Considering that there is no
need to modify main and reserve lists structure and the cluster structure has to be updated,
we proposed to insert edges of cluster C(v) using NoUpdateInsert function. Therefore, the
complexity of HandleOversizedCluster function isec(v)*O(NoUpdateInsert). It ios worth
noting that NoUpdateInsert function as the last step, merges two clusters corresponding
to vertices u and v using Merge function.

3. EXPERIMENTAL RESULTS

In this section we compare the results of the proposed PCWGS algorithm with the
EAC algorithm on the four aforementioned real data sets using three measures. First, us-
ing the Normalized Mutual Information (NMI) to assess the quality and similarity in
clustering of the two algorithms. The second measure is the cut size in the clustering
process and third measure involves the comparison of execution time of the two algo-
rithms. In addition, to gain a better understanding of the evolutionary clustering process.
The procedure is implemented on a system with a 2.0 GHz Core 2 duo CPU, with 4GB
of RAM and operating under Windows 8 64bit. We also took advantage of Java as the
programming language.

3.1 Data Sets and Experimental Settings

Four real data sets are used in our experimental evaluation algorithms. A summary

of the characteristics of the four data sets is shown in Table 2.

Table 2. Summary of the test datasets: the overall number of nodes, edges, average de-
gree and metadata are listed.

Data set # of Nodes # of Edges Average degree Metadata
Dutch college 32 3,062 191.38 edges / vertex Timestamps

Haggle 274 28,244 206.16 edges / vertex Timestamps
Infectious 410 17,298 84.380 edges / vertex Timestamps
Facebook

friendships
63,731 817,035 25.640 edges / vertex Timestamps

PRIORITY-BASED CLUSTERING IN WEIGHTED GRAPH STREAMS 481

Dutch College Data Set [30]: This directed network contains friendship ratings between
32 university freshmen who mostly did not know each other prior to starting university.
Each student was asked to rate the other student at seven different time points. We note
that the origin of the timestamps is not accurately known but the distance between two
timestamps is given. A node represents a student and an edge between two students
shows that the left rated the right one. The edge weights show how good their friendship
is in the eye of the left node. The weight ranges from 1 (showing a risk of getting into
conflict) to +3 (showing a very close relationship).

Haggle Data Set [32]: This undirected network represents contacts between people
measured by carried wireless devices. A node represents a person, and an edge between
two persons shows that there was a contact between them.

Infectious Data Set [33]: This network describes the face-to-face behavior of people
during the exhibition INFECTIOUS: STAY AWAY in 2009 at the Science Gallery in
Dublin. Nodes represent exhibition visitors; edges represent face-to-face contacts that
were active for at least 20 seconds. Multiple edges between two nodes are possible and
denote multiple contacts. The network contains the data from the day with the most in-
teractions.

Facebook Friendships Data Set [31]: This undirected network contains friendship data
of Facebook users. A node represents a user and an edge represents a friendship between
two users.

We designed three kinds of experiments:

Quality: Using the cut-size quality measure, we show that our algorithm gives reasona-
ble results compared to the EAC Algorithm, which is assumed to be close to the best pre-
vious state-of-the-art clustering algorithms.

Performance: We test the performance of each approach in terms of average runtime.
We show that our approach has better performance than the EAC approach.

NMI: Normalized mutual information is one of the most widely used measures of clus-
tering quality [21].

Given a data set D of size n, the clustering labels  of C clusters and the other clus-
tering labels  of C clusters. A confusion matrix is built where entry (i, j) defines the
number ni

(j)
 of points in the ith cluster of  and the jth cluster of . then NMI can be com-

puted from the confusion matrix [25]:

() ()

1 1

() ()

1 1
2 log

.
() ()

C Ch i
i ii i

h h
l lC C

l h n n

n n n
n

NMI
H H 



 



   


 
 (14)

Where
1

() log
C

i
i in n

n nH 


  and

() ()

1
() log

j jC

j
n n
n nH 




  are the Shannon entropy of

482

clust
clust
two

3.2 W

prov
such
impl
form
betw
to la
and
only
algor
un-w
that
basis
weig
as im
feren
actio
rithm

Fig.

MOHSEN SAADA

ter labels  a
ter of  and in
clustering alg

Weighted Ver

We compare
ven to be mor
h as EIC and e
lemented the E

m the evaluatio
ween two clust
arge number o
for each inter

y 7 timestamp
rithm can be u

weighted netw
both algorith

s of the propo
ghts, frequenc
mportant para
ntly. Moreove
ons relatively
ms over four n

 3. Comparison
ferent time-s

ATPOUR, SAYYE

and , respect
n the jth clust

gorithms match

rsion vs. Un-w

ed the propos
re efficient in
extended MET
EAC algorithm
on and comp
tering method
of timestamps
rval the NMI

ps, which are
used both for

works and rega
hms have a sim
osed PCWGS
y of edges ov

ameters in clu
er these param
well. In Fig. 3

networks, for b

of the NMI va
stamp and the E

ED KAMYAR IZA

tively, with n
ter of , respe
h well.

weighted Ver

ed algorithm
n online and s
TIS in terms o
m in a similar
arison. The N

ds, is obtained
s, the edges' in
I is calculated

considered fo
weighted and

ardless of the f
milar perform
algorithm. On

ver time, and s
stering, the re

meters maintai
3 the NMI com
both weighted

lues for weight
EAC algorithm.

ADI, MOHAMMA

n(j) denoting th
ectively. A hig

rsion

with the EA
stream model
of clustering q
r condition an

NMI measure,
in four time i
nput time is d

d. In addition
for the calcula
d un-weighted
frequency of

mance. This is
n the other han
significance o
esults show th
in the evolutio
mparison resu
d and un-weig

ted and un-weig

AD NASIRIFAR AN

he number of
gh NMI value

C algorithm
l [28], compa
quality and ef
nd environmen
 which is a s
intervals. In th
divided into f
the Dutch Co

ation of NMI.
d graphs, we fi
edges over tim
s because we
nd if we take
f edges in rec
hat the algorit
onary process

ults are illustra
hted cases.

ghted PCWGS

ND HAMED KAV

f points in the
e indicates tha

because EAC
ared to algorit
fficiency. Thu
nt in order to
similarity mea
hese networks
five time inter
ollege dataset
 As the prop
irst considered
me, which sho

used EAC as
into account e
ent time interv
thms perform
s and strong in
ated for both a

algorithm with

VOUSI

he ith
at the

C has
thms

us we
per-

asure
s due
rvals
t has

posed
d the
owed
s the
edge

rvals,
m dif-

nter-
algo-

h dif-

3.3 Q

meth
param
size
ces i
comp
this
prov
for t
in Fi

ment
algor
ance
the c
clust
used
the o
over
(The

PR

Quality and P

Another mea

hod and the E
meters in the
of cut weight
in each cluste
pared to the E
measure are

vement rate of
the Infectious
ig. 4.
The next com

tal results sho
rithm in ident

ed binary tree
case of re-inse
ter the NoUpd

d. On the cont
ordinary inser
r four data set
e maximum siz

Fig

RIORITY-BASED

Performance

asure that is em
EAC method i

two algorithm
t. This measur
er. The result
EAC algorithm
illustrated fo

f 1.72 for the H
network, and

mparison mea
ow that the pr
tical condition
data structure
ertion of an e
dateInsert alg
trary, the EAC
rtion algorithm
ts with differe
ze of the wind

g. 4. Cut size ex

CLUSTERING IN

mployed to co
is the cut size
ms, the numb
re is calculate
s show that th
m. In Fig. 4 th
r four data s
Haggle netwo
d 1.12 for the

asure is the ex
oposed algori
ns. As it was m
e is used to sto
dge from a cl

gorithm, whic
C algorithm d
m. In Fig. 5
ent maximum
dow in EAC) i

periments with

N WEIGHTED GR

ompare the clu
e. Due to the
ber of edges in
ed for the max
the proposed
the results of
sets. Consequ
ork, 1.34 for th

Facebook net

xecution time
ithm performs
mentioned, in
ore edges and
luster and del
ch was discus
does not use t
the execution
clustering siz

is illustrated.

h different maxi

RAPH STREAMS

ustering qualit
difference in

n the cut is u
ximum numbe
algorithm has
the clustering
ently it show
he Dutch Coll
twork. These

e of the algor
s more efficien

n the PCWGS
their related i

leting another
ssed in the pr
this data struc
n time of thes
ze and maxim

mum cluster siz

ty of the prop
weight assig

sed instead of
er of distinct v
s a better cut
g quality base

ws an average
ege network,
results are sh

rithm. The exp
ntly than the E
algorithm the
information an

edge in the s
revious sectio
cture and emp
se two algorit

mum main list

zes.

483

posed
gning
f the

verti-
size

ed on
e im-

1.43
hown

xperi-
EAC

e bal-
nd in
same

on, is
ploys
thms
t size

484

recen
time
work

Fig. 5

MOHSEN SAADA

In this paper

nt interaction
. Our PCWG
k state at a pr

. Comparing th
size and maxi

ATPOUR, SAYYE

we presented
ns in the netw
S algorithm i
revious mom

he runtime of th
imum main list

ED KAMYAR IZA

4. CONCL

d a data structu
work and acce

s able to clus
ent, without r

he PCWGS and
size (sliding wi

ADI, MOHAMMA

LUSIONS

ure and a mea
ess to the occ
ster the netwo
re-initializatio

d EAC algorithm
window size).

AD NASIRIFAR AN

asure based on
curred cluster
ork at any mo
on of the netw

ms with differen

ND HAMED KAV

n the frequenc
ring changes
oment via the
work calculati

nt maximum cl

VOUSI

cy of
over
net-

ions.

luster

PRIORITY-BASED CLUSTERING IN WEIGHTED GRAPH STREAMS 485

According to the streaming model this property has caused the algorithm to incremental-
ly cluster weighted and un-weighted graphs and to yield satisfactory results. Moreover,
the obtained results from different data sets illustrated how algorithms can behave differ-
ently in terms of accessing changes and evolutionary trends. The EAC algorithm has
proven more efficient in clustering with respect to other algorithms. Thus we compared
our PCWGS algorithm with the EAC algorithm. For un-weighted networks in which the
number of interactions is not taken into account, the PCWGS behaves similar to the EAC
algorithm. However, if the network is weighted and other parameters such as number of
interactions over time is considered, the results of two algorithms differ and PCWGS will
have a higher quality than the EAC in terms of cut size. Moreover, comparing the execu-
tion time of both algorithms we found that with regard to network type, the PCWGS al-
gorithm has a relatively lower execution time.

 As a future direction, the PCWGS algorithm can be implemented with parallel ca-
pabilities in distributed environments in order to improve the execution time and the
power of the algorithm. Furthermore, in order to gain a higher quality in clustering pro-
cess, other measures that can identify graph clusters with respect to the frequency of re-
cent interactions can be explored. Also an area of future interest is to analysis of granular
computing for clustering dynamic networks in a given stream model that has not been
used yet.

REFERENCES

1. C. C. Aggarwal, Y. Zhao, and P. S. Yu, “On clustering graph streams,” in Proceed-
ings of SIAM International Conference on Data Mining, 2010, pp. 478-489.

2. S. S. Ahmad and W. Pedrycz, “The development of granular rule-based systems: a
study in structural model compression,” Granular Computing, Vol. 2, 2017, pp. 1-12.

3. K. J. Ahn, S. Guha, and A. McGregor, “Graph sketches: Sparsification, spanners,
and subgraphs,” in Proceedings of SIGMOD Symposium on Principles of Database
Systems, Vol. 2012, 2012, pp. 5-14.

4. M. Antonelli, P. Ducange, B. Lazzerini, and F. Marcelloni, “Multi-objective evolu-
tionary design of granular rule-based classifiers,” Granular Computing, Vol. 1, 2016,
pp. 37-58.

5. D. Ciucci, “Orthopairs and granular computing,” Granular Computing, Vol. 1, 2016,
pp. 159-170.

6. A. Clauset, M. E. J. Newman, and C. Moore, “Finding community structure in very
large networks,” Physical Review E, Statistical Physics, Plasmas, Fluids, and Relat-
ed Interdisciplinary Topics, Vol. 70, 2004, p. 66111.

7. M. S. Crouch, A. McGregor, and D. Stubbs, “Dynamic graphs in the sliding-window
model,” in Proceedings of European Symposium on Algorithms, LNCS, Vol. 8125,
2013, pp. 337-348.

8. D. Dubois and H. Prade, “Bridging gaps between several forms of granular compu-
ting,” Granular Computing, Vol. 1, 2016, pp. 115-126.

9. A. Eldawy, R. Khandekar, and K.-L. Wu, “Clustering streaming graphs,” in Pro-
ceedings of the 32nd IEEE International Conference on Distributed Computing Sys-
tems, Vol. 1, 2012, pp. 466-475.

MOHSEN SAADATPOUR, SAYYED KAMYAR IZADI, MOHAMMAD NASIRIFAR AND HAMED KAVOUSI

486

10. X. Dong, H. Lu, X. Yuanpu, and X. Ziming, “Decision-making model under risk
assessment based on entropy,” Entropy 18.11 404, 2016.

11. T. Hartmann, A. Kappes, and D. Wagner, “Clustering evolving networks,” arXiv
Preprint, 2014.

12. D. Guzenko and S. V. Strelkov, “Granular clustering of de novo protein models,”
Bioinformatics, Vol. 33, 2017, pp. 390-396.

13. D. R. Karger, “Random sampling in cut, flow, and network design problems,” in
Proceedings of the 26th Annual ACM Symposium on Theory of Computing, Vol. 24,
1994, pp. 648-657.

14. G. Karypis and V. Kumar, “A fast and high quality multilevel scheme for partition-
ing irregular graphs,” SIAM Journal on Scientific Computing, Vol. 20, 1998, pp.
359-392.

15. P. Lingras, F. Haider, and M. Triff, “Granular meta-clustering based on hierarchical,
network, and temporal connections,” Granular Computing, Vol. 1, 2016, pp. 71-92.

16. H. Liu, A. Gegov, and M. Cocea, “Rule-based systems: A granular computing per-
spective,” Granular Computing, Vol. 1, 2016, pp. 259-274.

17. L. Livi and A. Sadeghian, “Granular computing, computational intelligence, and the
analysis of non-geometric input spaces,” Granular Computing, Vol. 1, 2016, pp. 13-
20.

18. G. Peters and R. Weber, “DCC: a framework for dynamic granular clustering,”
Granular Computing, Vol. 1, 2016, pp. 1-11.

19. A. Skowron, A. Jankowski, and S. Dutta, “Interactive granular computing,” Granu-
lar Computing, Vol. 1, 2016, pp. 95-113.

20. I. Stanton and G. Kliot, “Streaming graph partitioning for large distributed graphs,”
in Proceedings of the 18th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, 2012, p. 1222.

21. A. Strehl and J. Ghosh, “Cluster ensembles – A knowledge reuse framework for
combining multiple partitions,” Journal of Machine Learning Research, Vol. 3, 2002,
pp. 583-617.

22. C. E. Tsourakakis, C. Gkantsidis, B. Radunovic, and M. Vojnovic, “FENNEL:
Streaming graph partitioning for massive scale graphs categories and subject de-
scriptors,” in Proceedings of the 7th ACM International Conference on Web Search
and Data Mining, 2014, pp. 333-342.

23. J. S. Vitter, “Random sampling with a reservoir,” ACM Transactions on Mathemati-
cal Software, Vol. 11, 1985, pp. 37-57.

24. N. Wale, X. Ning, and G. Karypis, Managing and Mining Graph Data, Springer,
Berlin, 2010.

25. C.-D. Wang, J.-H. Lai, and P. S. Yu, “Dynamic community detection in weighted
graph streams,” in Proceedings of SIAM International Conference on Data Mining,
2013, pp. 151-161.

26. G. Wilke and E. Portmann, “Granular computing as a basis of human-data interac-
tion: a cognitive cities use case,” Granular Computing, Vol. 1, 2016, pp. 181-197.

27. Y. Yao, “A triarchic theory of granular computing,” Granular Computing, Vol. 1,
2016, pp. 145-157.

28. M
g
t

29. H
R

30. D
m

31. F
n

32. H
t

33. I
c

PR

M. Yuan, K.-
graphs for ev
tional Confere
H. Zanghi, C
Rényi mixture
Dutch college
moreno_vdb,
Facebook frie
networks/face
Haggle netwo
tact, 2015.
Infectious net
ciopatterns-in

RIORITY-BASED

L. Wu, G. Jac
volution-aware
ence on Inform
. Ambroise, a
e,” Pattern Re

e network data
2015.

endships netw
ebook-wosn-li
ork dataset – K

twork dataset
nfectious, 2015

Moh
Science f
technic),
Shahid B
terests in
stream, d

Sayy
Universit
Science a
from the
M.Sc. de
2003. He
participat
ment syst

Moh
dent at Sh
areas of m

CLUSTERING IN

cques-Silva, a
e clustering,”
mation and Kn
and V. Miele,
ecognition, Vo
set – KONEC

work dataset –
inks, 2015.
KONECT. 77

– KONECT.7
5.

hsen Saadatp
from Amirkab
and received

Beheshti Univ
nclude social
ata mining, gr

yed Kamyar
ty. He obtaine
and Technolo
Isfahan Unive
gree at the Ira
 joined the DB
ted in the XT
tem) for one y

hammad Nas
hahid Behesht
machine learni

N WEIGHTED GR

and Y. Lu, “Ef
” in Proceedin

Knowledge Ma
, “Fast online
ol. 41, 2008, p

CT.76, http://k

– KONECT.7

7, http://konec

76, http://kone

pour received
bir University
the M.Sc. deg
ersity of Tech

networks, c
raph mining.

Izadi is an A
ed his Ph.D. d
ogy in 2011.
ersity of Tech
an University
BIS research

TC project (a
year to the end

sirifar is a B
ti University.

ning, robotics,

RAPH STREAMS

fficient proces
ngs of the 22
nagement, 20
graph cluster

pp. 3592-3599
onect.uni-kob

6, http://kone

ct.uni-koblenz

ect.uni-koblen

d the B.Sc. de
y of Technolo
gree in Comp
hnology, Iran

communicatio

Associate Pro
degree from I
He received

hnology in 200
y of Science a
group lead by
native XML

d of June 2008

B.Sc. in Comp
His research i
and control th

ssing of stream
nd ACM Inte
13, pp. 319-32
ring via Erd\H
9.
blenz.de/netwo

ct.uni-koblenz

z.de/networks

nz.de/network

gree in Comp
ogy (Tehran P
uter Science f

n. His research
n networks,

ofessor at Alz
Iran Universit
his B.Sc. de

01. He finished
and Technolog
y Prof. Härder
database man
8.

puter Science
interests are in
heory.

487

ming
erna-
28.
Hos–

orks/

z.de/

s/con

ks/so-

puter
Poly-
from
h in-
data

zahra
ty of
egree
d his
gy in
r and
nage-

 stu-
n the

488 MOHSEN SAADAATPOUR, SAYYE

Ham
Shahid B
of compu

ED KAMYAR IZA

med Kavousi
Beheshti Unive
uter vision, ma

ADI, MOHAMMA

is a B.Sc. in
ersity. His res
achine learnin

AD NASIRIFAR AN

n Computer S
search interes

ng, data mining

ND HAMED KAV

Science studen
ts are in the a
g.

VOUSI

nt at
areas

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

