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In recent years, breakneck advancements in technology and the prolifera-

tion of wireless handheld devices have drawn tremendous interest to study.

An opportunistic network (OppNets) refers to a number of wireless nodes

opportunistically communicating with each other which does not rely on any

fixed structure. Due to this, routing packets from source to destination in

OppNets remain a challenging issue. This paper proposes a multi-objective

optimization approach for cluster based routing in OppNets that maximizes

average delivery ratio, minimizes both the hop count and average delivery

delay. We propose a novel Variable Lie hypergraph theory for a unanimous

way of clustering and routing protocol to obtain the optimal solution. A

variable hypergraph is constructed by combining the Lie commutator. Variable

hyperedges are the clusters, and the variable hypergraph transversal is the

required set of cluster heads. Nodes of the variable hyperedges are positioned

appropriately in an upper triangular matrix which is an element of upper

triangular matrix Lie algebra. Furthermore, we propose the upper triangular

routing matrix algorithm that finds the path in identifying the neighbour node

by its location inside the upper triangular matrix using Lie commutators.

Simulation results using real mobility traces are presented, manifesting the

effectiveness of the proposed scheme with very less time.
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1. INTRODUCTION

Networks are now omnipresent for days, and many real-world applications
need to explore information in these networks. The fundamental evolution of
the Delay Tolerant Network is an opportunistic network which is self-organizing
with high mobility [1]. The transfer of data between nodes is a major issue due
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to intermittent communication links [2]. All nodes in the network are capable
of movement and can be dynamically connected arbitrarily, which makes routing
critical [3]. The significant challenges in routing are to find its relay node to carry
forward packets to the destination depending on the connectivity.

In order to better understand the limitations of opportunistic network data
sharing, lack of awareness of node’s mobility pattern, inconsistency in connectivity
and network topology and to eradicate, this paper proposes Multi-Objective
Optimization (MOO) [4] which combines many objectives providing optimized
cluster-based routing in OppNets. The Pareto optimal solution for MOO is ob-
tained by a novel variable hypergraph. A variable hypergraph is introduced with
the spark from variable set theory [5] and hypergraph. Variable hypergraph is
constructed by Lie commutators (operator of Lie algebra). Lie theory is concerned
with different areas of pure mathematics and various mathematical applications
such as algebra, analysis, topology, fractional, ordinary and partial differential
equations and many more but real time applications in Lie theory is very limited
as not yet much explored.

In the literature, Lie algebra has not been associated with an n-ary structure
called hypergraph (as well as variable hypergraph). But, representing structures
by hypergraph-based methods has been recently increasing because of its n-ary
relations [6], that is, it allows vertices to be multiply connected by hyperedges.
Hypergraphs can be modelled in plenty of ways, as in [7]. For this reason, various
practical problems like image processing [8], DNA sequencing [9], networking
[10] and so on use this representation. Here, we introduce variable hypergraph
theory, which handles parameters like time for clustering the nodes of OppNets.
Cluster Heads (CH) are elected using the variable hypergraph transversal property.
Finally, a novel routing algorithm is proposed using Lie commutators which
identifies relay nodes by the position of node inside an upper triangular matrix.

1.1 Related Work

Some significant works in the realm of routing in OppNets have been given in
this section.

Wireless communication is the skyrocketing technology that greatly increases
the data transmission, for which numerous routing protocols are proposed.
Recently, Yang Xu et al. [11] proposed a secure routing with the help of incentive
jammers. Source rewards selfish jammers in artificial jamming by designing an
incentive mechanism. Later the Stackelberg game of two stages is utilized to
circumscribe jamming power and rewards, finally, routing is employed by Dijkstra’s
or Bellman-Ford algorithm. In [12], Yang Xu et al. proposed QoS data transfer
scheme by incentive mechanism for security improvement in artificial jamming for
multi-hop wireless networks.

OppNet is the rapid evolution of wireless technology in short-range, Epidemic
routing is the most basic protocol for OppNets proposed by Vahdat and Becker [13].
It is a flooding-based protocol; here, an exchange of messages is done when two
nodes are encountered. It suffers from high overhead to overcome this Spyropoulos
et al. [14] proposed Spray and Wait technique which combines the direct and
epidemic routing. In the Spray phase, copies of messages are sprayed to neighbour
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nodes, and in the Wait phase message is transmitted to a destination node.
Later, fully context-aware protocols are developed to enhance the performance

of the routing. In [15], Musolesi and Cecilia introduced Context-Aware Routing
(CAR) to select the best forwarded for message transmission by Kalman-filter-
based prediction approach. In HBPR [16], the pattern of nodes mobility is pro-
phesied by node’s characteristics. A utility metric is measured based on the prior
behaviour of the node to transfer data.

Sharma et al. [17] unite the benefits of two routing schemes, namely, context-
aware and oblivious, for a higher delivery ratio with reduced overhead. kROp
is proposed by employing k-means clustering with a novel evaluation function
to select the best neighbours to forward the message. To overcome the message
flooding in earlier proposed methods, Khalid et al. [18] designed a Fuzzy-based
Check-and-Spray Geocast (FCSG) protocol, in which relay nodes are selected by
fuzzy-controller with check and spray mechanism.

Unlike previously discussed work, this paper proposes a novel cluster based
routing protocol by introducing the variable hypergraph theory for clustering and
matrix position based best forwarder is elected for routing by Lie commutators of
an upper triangular matrix.

1.2 Major Contributions

� Formulating in concert both clustering and routing problems in OppNets by
Multi-Objective Optimization problem with objectives, maximizing average
delivery ratio and minimizes both the average delivery delay and hop count.

� Novel variable hypergraph construction using Lie commutator is introduced
for optimized clustering. Cluster heads are determined by variable hyper-
graph transversal property.

� Novel Upper Triangular Routing Matrix protocol (UTRM), which finds
the relay node between source to destination using the element of upper
triangular matrix Lie algebra, is proposed.

1.3 Paper Organization

The remnant of the paper is organized as follows. Section 2 reviews some of
the preliminaries and Section 3 describes the system model with multi objective
optimization problem. Section 4 presents a novel theoretical framework of variable
hypergraph construction using Lie commutator and the algorithms for unanimous
clustering and routing technique. Section 5 gives experimental results and discus-
sion. Section 6 concludes with a short overview of contributions.

2. PRELIMINARIES

Definition 1 A Lie algebra g is a vector space with a second bilinear inner com-
position law ([., .]) called the bracket product or Lie bracket, which satisfies [θ, θ] =
0, for all θ ∈ g and J(θ, γ, ω) = 0, for all θ, γ, ω ∈ g where J is the Jacobiator
defined as, J(θ, γ, ω) = [[θ, γ], ω] + [[γ, ω], θ] + [[ω, θ], γ] known as Jacobi identity.
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Table 1. Notations.
g Lie algebra

B Basis of g

gd Lie algebra of upper triangular matrices

Bd Basis of gd

H Hypergraph

VH Variable hypergraph

VS Variable set

VX = {oi | i = 1, 2, . . . , p} Variable vertex set of VH

VE = {αi | i = 1, 2, . . . , q} Variable hyperedges of VH

CH Cluster Head

|αi| Number of vertices in the variable hyperedge αi

V (αi) Vertices inside αi

VHT Variable hypergraph transversal

T Transversal of hypergraph H

Definition 2 Given d ∈ N, the Lie algebra gd is the matrix algebra consisting of
all d× d upper triangular matrices. This algebra is solvable [19] and of dimension
d(d+1)

2 . Its vectors are expressed as,

gd(yr,s) =


y11 y12 . . . y1d
0 y22 . . . y2d
...

. . .
. . .

...
0 0 . . . ydd

 , yrs ∈ R. (1)

From here on, the basis is Bd = {Yi,j = gd(yr,s)}1≤i≤j≤d of gd, where yr,s takes
1 if (r, s) = (i, j) otherwise 0. The law with respect to the basis Bd for distinct i,j
and k with 1 ≤ i < j < k ≤ d is,

[Yi,j , Yj,k] = Yi,k(Type 1), [Yi,i, Yi,j ] = Yi,j(Type 2), (2)

[Yi,j , Yj,j ] = Yi,j(Type 3).

Definition 3 A hypergraph on X = {x1, x2, . . . , xm} is a family, H = (E1, E2,

. . . , En) of subsets of X such that Ei ̸= ∅, i = 1, 2, . . . , n and
n⋃
i=1

Ei = X. The el-

ements x1, x2, . . . , xm, of X are called vertices, and the sets E1, E2, . . . , En are the
edges of the hypergraph.

Definition 4 Let H = (X,E) be a hypergraph. A set T ⊆ X is called a transversal
of H if T ∩ Ei ̸= ∅,∀Ei ∈ E.

Definition 5 A set VS is variable set that contains variables that vary over time
τ or with some parameters. As time interval varies cardinality of VS fluctuates,
depending on this, we have following types of VS for any instances of time τ1 and
τ2 with τ1 ̸= τ2.

� VS is said to be increasing variable set when τ1 < τ2 then |VS(τ1)| < |VS(τ2)|.

� VS is said to be decreasing variable set when τ1 < τ2 then |VS(τ1)| > |VS(τ2)|.
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2.1 Associating Combinatorial Structures with Lie Algebras

Given a d-dimensional Lie algebra g with basis B = {ci}di=1, recall the method
introduced in [20, 21] for associating a combinatorial structure with g. If [cx, cy] =
d∑
z=1

fzx,ycz, a combinatorial structure can be associated with g as follows:

a) Make vertex x for each cx ∈ B.
b) Given three vertices x < y < z, draw the full triangle xyz if and only if

(fzx,y, f
x
y,z, f

y
x,z) ̸= (0, 0, 0). Edges xy, yz and xz have weight fzx,y, f

x
y,z and

fyx,z respectively.

b1) Use a discontinuous line (named a ghost edge) for edges with weight
zero.

b2) If two triangles xyz and xyl satisfy that fzx,y = f lx,y, draw only one edge
between vertices x and q shared by the two triangles.

c) Given two vertices x < y, draw a directed edge from y to x if fxx,y ̸= 0 or a
directed edge from x to y if fyx,y ̸= 0.

For upper triangular matrix Lie algebra gd, Ceballos in [22], have defined an
order for associating each vertex with a vector from the basis Bd of gd. More
concretely, the order is the one of the elements of each row of matrix gd(yr,s) in
Eq. (1) is given as, {Y1,1, Y1,2, . . . , Y1,d} with {c1, c2, . . . , cd}, {Y2,2, Y2,3, . . . , Y2,d}
with {cd+1, cd+2, . . . , c2d−1}, . . ., {Yd,d} with {c d(d+1)

2
}.

3. SYSTEM MODEL

OppNets can be modeled composing of p number of nodes, (o1, o2, o3, . . . , op)
and can cooperative via wireless technologies. Assuming the data transfer between
nodes occurs through the intermediate node by enabling the connection (Coa , Cob)
with sufficient energy and buffer to store. Communications amidst the nodes are
contact opportunities, and these opportunities are considered to be auto- nomous.
Contact duration is mentioned below in Eq. (3).

CD =
Drt

(Dr +Dt)/2
(3)

where Drt =
Lp∑
i=1

drt(i) =
Lp∑
i=1

(drtend
(i)−drtstart

(i)), Drt is a total contact duration

between relay/source (r) and the destination node (t) along the length of the path
Lp, drtstart

(Coa , Cob) and drtend
(Coa , Cob) are starting and ending connection time

between the relay node and destination node respectively. Ds and Dt is a total
duration of time of relay node and destination node that is in contact with all
other nodes respectively. The connectivity of nodes is assumed as symmetric.
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3.1 Deliberated Routing Objectives

The method proposed in this paper considers the Hop Count (HC), Average
Delivery Delay (AD), and Delivery ratio (DR) as routing decision objectives, where
the HC, calculates the number of nodes that are needed to transfer packets from
source to destination and is given as, HC =

∑
i,j∈L

eij − 1 where L is the set of con-

nections or links between nodes in the network and eij takes 1 if link (i, j) is used
in the path 0 otherwise.

Average Delivery Delay is a time taken to transfer a packet from source to
destination. Here, end-to-end delay, taken in each hop is considered for a packet

transfer. The Average Delivery Delay is, AD = 1
TPT

NH∑
i=1

Di where Di = ETi−STi
AD → Average Delivery Delay, NH → Number of Hops, TPT → Total number of
packets transmitted successfully, Di → Delay at node i, STi → Starting time at
which the packet enters hop i and ETi → Time at the packet delivered at hop i.

The delivery ratio is a significant measure of the number of packets received by

the number of packets sent. The average delivery ratio is, ADR = 1
NPS

p∑
i=1

NPRi

where p → Number of nodes, NPRi → Number of packets received at hop node 
i, NP S → Number of packets sent from source.

3.2 Multi-Objective Function

Multi-objective optimization encompasses more than one objective function 
subject to a variety of constraints. Objective functions to be minimized or maxi-
mized are,

        maximize/minimize Xa(s), a = 1, . . . , M subject to yj (s) ≥ 0, j = 1, . . . , J
zk(s) = 0, k = 1, . . . , K; sli ≤ si ≤ si

u, i = 1, . . . , n

where M is number of objective functions with M ≥ 2, gj (s) and hk(s) represents 
constraint functions, J inequalities and K equality constraints. Here, s is a solution
of n decision variables with sli and siu as lower and upper bound. A set of solutions 
found for the above optimization problem is known as pareto optimal sets.

This paper proposes the following multi-objective problem for cluster-based 
routing technique,

minimize HC

minimize AD

maximize ADR

subject to deg(oi) ≥ 1 i = 1, 2, . . . , p

CD(oi, oj) ≥ ϵ i, j = 1, 2, . . . , p

LC = 3 and deg(oi), CD(oi, oj), LC ≥ 0.

Classic scalarization methods based on mathematical programming designed
for MOO include linear weighted methods. By pre-multiplying each performance
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metric with a weight, the linear weighted sum process scalarises several perfor-
mance metrics into a single-objective function. Now, our problem becomes,

ψ(HC,AD,ADR) =W1ψ1 +W2ψ2 +W3ψ3

where ψ1 ∝ ψ(HC) = HC, ψ2 ∝ ψ(AD) = AD and ψ3 ∝ 1
ψ(ADR) = 1

ADR are the

functions associated with HC, AD and ADR respectively, weights are equal and

sum of the weights is equal to 1, that is,
3∑
i=1

Wi = 1. Here, we obtain the pareto

optimal sets using the state-of-the-art variable hypergraph.

4. PROPOSED METHODOLOGY

In this section, the former part introduces the variable hypergraph, and the
construction of variable hypergraph using Lie commutators, while in latter pro-
pose a novel unanimous approach of clustering and routing using variable hy-
pergraph. In the clustering phase, nodes of the network are clustered using variable
hyperedges and followed by fixing nodes inside Upper Triangular Matrix (UTM)
and finally conferred a novel routing protocol with Lie commutators.

4.1 Variable Hypergraph Construction using Lie Commutator

Definition 6 A Variable hypergraph is a pair VH = (VX ,VE) with both VX and VE
are variable sets where VX = {oi | i = 1, 2, . . . , p} and VE = {αi | i = 1, 2, . . . , q}

αi ̸= ∅ and
q⋃
i=1

αi = VX . The elements o1, o2, . . . , op of VX are called vertices, and

the sets α1, α2, . . . , αq are the variable hyperedges.

Definition 7 If VH = (VX ,VE) is a variable hypergraph. A set VHT ⊆ VX is call-
ed a variable transversal of VH if

VHT ∩ αi ̸= ∅,∀ αi ∈ VE . (4)

That is, variable hypergraph transversal is a variable set which changes with respect
to some parameter like time and has non-empty intersection with every variable
hyperedge of VH.

4.1.1 Construction of variable hypergraph

A variable hypergraph VH construction for Lie algebra gd for arbitrary d ∈ N
is introduced here with the Lie commutators of Type 1 and Type 2 defined in
equation 2, and by defining a new commutator (Type 4) with respect to the basis
Bd for distinct i, j and k with 1 ≤ i < j < k ≤ d.

[Yi,j , Yj,k] = Yi,k(Type 1), [Yi,i, Yi,j ] = Yi,j(Type 2) and

[[Yi,i, Yi,j ], Yj,j ] = Yi,j(Type 4).

The construction of VH for gd is as follows:
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a) Construct a variable hyperedge αi for the vertices corresponding to the dia-
gonal elements, by Type 4 by which each diagonal element is connected with
rest of the diagonal elements.

b) Given three vertices i, j and k make a hyperedge αi containing i, j and k
if and only if corresponding basis elements persuade Type 1 or Type 2 or
Type 4.

Lemma 1 If VH is associated with one of the elements of matrix Lie algebra gd
by Type 1 and Type 4, then the vertices corresponding to diagonal elements have
degree d, and the remaining vertices have degree d− 1.

Proof: Let VH be associated with an element of gd consisting of all d× d upper
triangular matrices. The possibility of combining diagonal elements by Type 4 is(
d
2

)
, and it is evident that each element occurs d− 1 times, and by first part of the

construction of VH, the αi contains all the diagonal elements in d× d matrices of
gd. Hence the degree of vertices corresponding to diagonal elements is d−1+1 = d.

There are
(
d
3

)
ways of aggregating non-diagonal elements of one of the d × d

matrices of gd, in which each element occurs d − 2 times, and by basis elements
Yi,i of Type 4, vertices corresponding to every non-diagonal elements is already
incident with a variable hyperedge, yields the desired result.

Theorem 2 If VH is a variable hypergraph of n vertices associated with an element
of Lie algebra of upper triangular matrix gd with d ≥ 2 then the number of variable
hyperedges is,

q =


(
d
3

)
+ 2 ∗

(
d
2

)
+ 1, if n = d(d+1)

2((
d
3

)
−

{
n0∑
i=1

(d− (i+ 1))

})
+ 2 ∗

((
d
2

)
− n0

)
+ 1, if d(d−1)

2 ≤ n ≤ d(d+1)
2

(5)

Proof: If n = d(d+1)
2 , according to the method expounded in Section 3, VH as-

sociated with an element of gd that has d(d+1)
2 vertices. In virtue of Lemma 1, d

vertices have degree d, and remaining vertices have degree d− 1 then the number
of variable hyperedges with respect to Types 1 and 4 commutator is given by

d(d− 1)

3
+
d ∗ 1
d

+

(
d(d+1)

2 − d
)
∗ (d− 2)

3
+

(
d(d+1)

2 − d
)
∗ 1

3

=
d(d− 1)

3
(1 +

1

2
) + 1 +

d(d− 1)(d− 2)

6
=

(
d

2

)
+

(
d

3

)
+ 1.

By encompassing the Type 2 commutator, we have
(
d
3

)
hyperedges therefore,

the number of variable hyperedges is
(
d
2

)
+ 2 ∗

(
d
3

)
+ 1.

Now, to prove for the case d(d−1)
2 < n < d(d+1)

2 . Let us suppose that n0 =
d(d+1)

2 −n. If n0 = 1 then y1d = 0, n0 = 2 then y1d = 0 and y2d = 0, . . . , n0 = d−1

then y1d = 0, y2d = 0, . . . , y(d−1),d = 0. It remains that there are
(
d
2

)
ways of fusing

the Type 4 and
(
d
3

)
ways of Type 1.
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If y1d = 0 then (d − 2) variable hyperedges does not exist. Similarly for
y2d = 0, . . . , y(d−2),d = 0, y(d−1),d = 0 then (d − 3), . . . , 1, 1 variable hyperedges

are non exant respectively. Now, this totally accounts
n0∑
i=1

(d − (i + 1)) which

proceeds to
(
d
3

)
−

n0∑
i=1

(d− (i+ 1)).
(
d
2

)
variable hyperedges gets diminished depen-

ding on n0. If n0 = 1 then single variable hyperedge is less. Hence it equals(
d
2

)
− n0 and by the first step of construction in VH, all diagonal elements are

made as a single hyperedge. Therefore, the number of variable hyperedges is((
d
3

)
−
{
n0∑
i=1

(d− (i+ 1))

})
+
((
d
2

)
− n0

)
+ 1.

Now, including the Type 2 commutator, we have the similar argument with
respect to the case n = d(d+ 1)/2, the number of variable hyperedges is,((

d
3

)
−
{
n0∑
i=1

(d− (i+ 1))

})
+ 2 ∗

((
d
2

)
− n0

)
+ 1.

Corollary 2.1 The number of variable hyperedges in Case 1 of Eq. (5) becomes

upper bound if no >
d(d+1)

2 − s.

4.2 Proposed Clustering Scheme: VHC

The proposed variable hypergraph clustering (VHC) technique partitions
the nodes in the opportunistic network as clusters. This clustering is made by
constructing variable hyperedges with respect to time parameter τ , which quan-
tifies the structural prominence of a node within the network. Algorithm 1 forges
a clusters (αi) from the network topology. Construction of variable hyperedges
(clusters) does not exceed Eq. (5) in Theorem 2.

4.2.1 Cluster head election

Variable transversal (VHT ) of variable hypergraph (VH) defined in Section 4.1
is effectual due to the time parameter. Cluster heads are determined using VHT
and it is presented in Algorithm 2 with VHT the set of cluster heads.

4.3 Fixing Nodes Position Inside an Upper Triangular Matrix

The resulting variable hyperedges VE = {αi | i = 1, 2, . . . , w} are now trans-
formed into a component of the upper triangular routing matrix which is an
element of upper triangular matrix Lie algebra through Type 1, Type 2 and Type
4 commutators. By constructing an upper triangular matrix, the best relay can
be found using the Lie commutator with significantly less time to forward data
from source to destination. Algorithm 3 fix the position inside the matrix of every
node in the network.

4.4 Novel Routing Technique using Lie Commutators

Several routing protocols and limited cluster-based routing protocols have
been designed for OppNets so far to ensure the shortest path between source and
destination. In cluster-based routing, clustering and routing are handled as
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Algorithm 1: VHC
1 INPUT: Network
2 OUTPUT: VE = {αi | i = 1, 2, . . . , w} with w ≤ q
3 Calculate degree of each node.
4 Find a vertex u with highest degree d from a vertex set VX . (If more than one

vertices say, oi, oj , . . . have highest degree then, if one of oi’s adjacent vertex has
degree 2 then take the vertex oi as u otherwise choose an arbitrary vertex)

5 Construct αi containing all the vertices that are adjacent to u.
6 L = VX - V(αi)
7 for li in L do
8 if li ∈ L is adjacent to any two vertices in αi then
9 Construct αx containing li with two vertices say oa and ob that are adjacent;

x=x+1.

10 if li ∈ L is adjacent to only one vertex in αi then
11 Construct αy containing li with its single adjacent vertex oc; y=y+1.

12 if every li ∈ L is not adjacent with any vertex in αi then
13 if lj ∈ L is adjacent to li in αp and lk ∈ L is adjacent to lj then
14 Construct αr containing li, lj and lk; r=r+1.

15 if lm ∈ L is adjacent to lj or lk ∈ αr and adjacent to ln ∈ L then
16 Construct αs containing lm, lj and ln or lm, lk and ln; s=s+1.

17 if lj ∈ L is adjacent to li in αq and lk ∈ L is adjacent to lj then
18 Construct αt containing li, lj and lk; t=t+1.

19 if lm ∈ L is adjacent to lj or lk ∈ αt and adjacent to ln ∈ L then
20 Construct αu containing lm, lj and ln or lm, lk and ln; u=u+1.

Algorithm 2: CH selection using VHT
1 INPUT: VE
2 OUTPUT: CHs
3 VHT = ∅
4 for αi in VE do
5 select a vertex oi from αi and add oi to VHT such that VHT ∩ αi ̸= ∅ (By Equation 4)

Algorithm 3: VE to Upper Triangular Routing Matrix (UTRM)

1 INPUT: VE = {αi | i = 1, 2, . . . , w} from Algorithm 1 where w ≤ q by Corollary 2.1.
2 OUTPUT: UTRM dimension=maxi|αi|
3 Create dimension× dimension UTRM matrix.
4 for αi in VE do
5 if |αi|==2 then
6 mate2.append(αi)

7 if |αi|==3 then
8 mate3.append(αi)

9 if |αi|==dimension then
10 mate1.append(αi)

11 si, sj , sk, sl ∈ {1, 2 . . . dimension}
12 Procedure MATPOSITIONFIX1(mate1,mate2,mate3)
13 Procedure MATPOSITIONFIX2(mate1,mate2,mate3)
14 Procedure MATPOSITIONFIX3(mate1,mate2,mate3)
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Algorithm 4: MATPOSITIONFIX1
1 for αi in mate3 do
2 for αj ̸= αi in mate3 do
3 if |αi ∩mate1| = 0 and |αj ∩mate1| = 0 and |αi ∩ αj | ̸= 0 then
4 for αk in mate3 do
5 if |αk ∩mate1| ̸= 0 and |αi ∩ αj | ̸= then
6 Place elements of V(αk) in sisi, sjsj and sisj position.
7 Place elements of V(αj) in sisj , sjsk and sisk position.
8 Place elements of V(αi) in sjsk, sksl and sjsl position.
9 for m in mate2 do

10 if |αk ∩m| ̸= 0 then
11 Place elements in V(αm) in (sisi and si(si + 1)) or

(sjsj and sj(sj + 1)) position.

12 for αm in mate2 do
13 if |αj ∩m| ̸= 0 then
14 Place elements of V(αm) in sisi and si(si + 1) position.
15 Place elements of V(αj) in si(si +1), (si +1)s2 and sisj position.
16 Place elements of V(αi) in sisj , sjsk and sisk position.

Algorithm 5: MATPOSITIONFIX2
1 for αi in mate3 do
2 for αj ̸= αi in mate3 do
3 if |αi ∩mate1|=0 and |αj ∩mate1| ̸= 0 and |αi ∩ αj | ̸= 0 then
4 Place elements of V(αi) in sisi, sjsj and sisj position.
5 Place elements of V(αj) in sisj , sjsk and sisk position.
6 for αk in mate2 do
7 if |αk ∩ αj | ̸= 0 then
8 Place element of V(αj) in (sisi and si(si + 1)) or

(sjsj and sj(sj + 1)) position.

9 for αk in mate2 do
10 if |αi ∩ αk| ̸= 0 then
11 Place elements of V(αk) in sisi and si(si + 1) position.
12 Place elements of V(αi) in si(si + 1), (si + 1)sj and sisj position.
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Algorithm 6: MATPOSITIONFIX3
1 for αi in mate3 do
2 if |αi ∩mate1|=0 then
3 for αi in mate2 do
4 a2.append(αi ∩ αj)
5 a3.append(αj)
6 if |a2|=2 then
7 Place elements of V(a3) in sisi, si(si + 1) and sjsj , sj(sj + 1)

position where i+1=j.
8 Place elements of V(αi) in si(si + 1), sj(sj + 1) and si(sj + 1)

position.

9 Find the remaining elements of mate1 and fix it in sisi, sjsj , sksk, . . . position.
10 for αi in mate3 do
11 u1 = αi ∩mate1
12 Find position of elements in u1 say sisi and sjsj and place the remaining element

in sisj position.
13 Find the hyperedges in mate2 intersection with i.
14 Find the matrix position of intersected element say sisi place it in si(si + 1)

position.

15 for αi in mate2 do
16 Find the matrix position of intersected element say sisi place it in si(si + 1)

position.

Algorithm 7: Upper Triangular Routing Matrix(UTRM) Algorithm

1 INPUT: Matrix Position of source and destination (say [i, j] and [k, l]) and UTRM from
Algorithm 3.

2 OUTPUT: Optimized Route
3 sourcelen=cardinality of variable hyperedge containing source node.
4 destinationlen=cardinality of variable hyperedge containing destination node.
5 if sourcelen=destinationlen=dimension then
6 Direct Path ([i, j] → [k, l])

7 else
8 if sourcelen=2 and 3 then
9 Procedure PATHDETECTION1

10 if sourcelen=2 then
11 Procedure PATHDETECTION2

12 if sourcelen=3 then
13 Procedure PATHDETECTION3

Algorithm 8: PATHDETECTION1
1 Repeat the Algorithm 9.
2 if destinationlen=3 then
3 if (i=a and j=b) or (i=δ or j=d) then
4 Path [i, j] → [k, l]
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different phases, but our approach unifies clustering and routing phases. It iden-
tifies the route in such a way that it can reduce data redundancy, selection of
best next hop and also handle well in a dynamic network. By matrix principle,
the nodes further reduce the overhead routing, which guarantees the free transfer
of packets, lowers the packet loss and defend against unnecessary latency in the
network. In the proposed routing strategy, the best relay node to forward the data
packets is selected according to Lie commutators of Types 1, 2 and 4 in Section
4.1. Algorithm 7 presents the routing scheme for OppNets.

Algorithm 9: PATHDETECTION2
1 Let the matrix position of nodes in a hyperedge containing the source node be [i, j]

and [β, γ].
2 if (destinationlen=2) or (destinationlen=2 and dimension) then
3 if β=γ and k=i then
4 Path [i, j] → [β, γ]
5 else
6 Path [i, j] → [β, γ] → [j, j]

7 else if destinationlen=2 and 3 then
8 Path [i, j] → [i, i] → [k, k] → [k, l]
9 else if destinationlen=3 then

10 Let the matrix position of nodes in a hyperedge containing the destination node be
[a, b], [δ, d] and [k, l].

11 if a==b and δ==d and a!=δ then
12 Path [i, j] → [i, i] → [a, b] → [k, l]

13 else if | Hyperedge containing [a, b] |=2 then
14 Path [i, j] → [i, i] → [a, a] → [a, b] → [k, l]
15 else if | Hyperedge containing [δ, d] |=2 then
16 Path [i, j] → [i, i] → [δ, δ] → [δ, d] → [k, l]
17 else if | Hyperedge containing [a, b] |=3 then
18 Let the matrix position of nodes in a hyperedge containing the [a, b] be [a,

b], [e, f] and [g, h].
19 if | Hyperedge containing [e, f ] |=2 then
20 Path [i, j] → [i, i] → [e, e] → [e, f ] → [a, b] → [k, l]
21 else if | Hyperedge containing [g, h] |=2 then
22 Path [i, j] → [i, i] → [g. g] → [g, h] → [a, b] → [k, l]

23 else if | Hyperedge containing [δ, d] |=3 then
24 Let the matrix position of nodes in a hyperedge containing the [δ, d] be [δ,

d], [e, f] and [g, h].
25 if | Hyperedge containing [e, f ] |=2 then
26 Path [i, j] → [i, i] → [e, e] → [e, f ] → [a, b] → [k, l]
27 else if | Hyperedge containing [g, h] |=2 then
28 Path [i, j] → [i, i] → [g, g] → [g, h] → [a. b] → [k, l]

Example 1. Consider the network scenario in Fig. 1 (a) for which Algorithm 1
generates the corresponding variable hypergraph given in Fig. 1 (b) and Algorithm
3 produces an element of upper triangular matrix Lie algebra whose dimension is
7× 7.

UTRM =



v8 v11 v12 0 0 0 0
0 v7 v10 0 0 0 0
0 0 v3 v2 v1 0 0
0 0 0 v4 0 0 0
0 0 0 0 v9 0 0
0 0 0 0 0 v6 0
0 0 0 0 0 0 v5


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Algorithm 10: PATHDETECTION3
1 Let the matrix position of nodes in a hyperedge containing the source node be [i, j],

[β, γ] and [r, s].
2 if destinationlen=dimension or destinationlen=3 and dimension then
3 if (i==k and j==r) or (j==k and i==β) then
4 Path [i, j] → [k, l]

5 else if | Hyperedge containing [β, γ] |=2 and β=k then
6 Path [i, j] → [β, γ] → [k, l]
7 else if | Hyperedge containing [r, s] |=2 and r=k then
8 Path [i, j] → [r, s] → kl
9 else if | Hyperedge containing [β, γ] |=2 then

10 Path [i, j] → [β, γ] → [β, β] → [k, l]
11 else if | Hyperedge containing [r, s] |=2 then
12 Path [i, j] → [r, s] → [r, r] → [k, l]

13 else if destinationlen=3 then
14 Let the matrix position of nodes in a hyperedge containing the destination node be

[a, b], [δ, d] and [k, l]. if (β=k and γ=l) or (r=k and γ=l) then
15 [i, j] → [k, l]

16 if β=γ and r=s and β!=r and a=b and δ=d and a!=δ then
17 if β!=a and β!=δ and r!=a and r!=δ then
18 Path [i, j] → [β, β] → [k, k] → [k, l]

19 else if | Hyperedge containing [a, b] |=2 then
20 Path [i, j] → [i, i] → [a, a] → [a, b] → [k, l]
21 else if | Hyperedge containing [δ, d] |=2 then
22 Path [i, j] → [i, i] → [δ, δ] → [δ, d] → [k, l]
23 else
24 Path [i, j] → [β, β] → [k, l]

Let us suppose that source = v1 and destination = v12 then Table 2 shows
the execution of the Algorithm 7 to get the path. Then the path from source to
destination is [3, 5] → [3, 3] → [1, 1] → [1, 2] → [1, 3] that is v1 → v3 → v8 →
v11 → v12.

Table 2. Steps involved in execution of Algorithm 7.
Source matrix position=[3,5] Destination matrix position=[1,3]

Step 1 [3, 5] → [3, 3] [3, 3]=v3

Step 2 [3, 3] → [1, 1] [1, 1]=v8

Step 3 [1, 1] → [1, 2] [1, 2]=v11

Step 4 [1, 2] → [1, 3] [1, 3]=v12

5. RESULTS AND DISCUSSION

This section presents the simulation settings and performance analysis of the
proposed technique. Python based simulator SimPy [23] is choosen for simulating
our proposed work in Google Colaboratory. The performance is evaluated with
Average Delivery Delay and Delivery Ratio as defined in Section 3.1.

In order to conduct, an informed design of network it is necessary to examine
the frequency and duration of communications between human-carried commu-
nicating device. So, we have choosen the real connectivity trace from Crawdad
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(a) Network topology. (b) Variable hypergraph for the network.

Fig. 1. VH for the network.

[24], by tiny handheld wireless radio (iMotes) tools that were distributed to various
people. Table 3 summarizes the characteristic of the data set.

Table 3. Characteristic of dataset [24].

User Population Cambridge

Device iMote

Network type Bluetooth

Duration(Seconds) 455609

Number of contacts 4228

Total number of entries 8456

Devices participated 12

Number of external contacts 2503

Fig. 2 (a) illustrates the time taken for the hypergraph construction with re-
spect to the number of entries in [24]. In particular, the time for construction of an
upper triangular matrix with respect to Lie commutators is depicted in Fig. 2 (b).
Fig. 2 (c) presents the changes in the number of clusters against simulation time.

Fig. 3 (a) depicts the total elapsed time for the construction of variable hy-
peredges and fixing it inside an upper triangular matrix. Our work achieves a
significant delivery ratio in routing packets from source to destination which is
presented in Fig. 3 (b). Fig. 3 (c) presents the Average Delivery Delay with res-
pect to simulation time.

A simulation scenario of 10 nodes have been setup for comparing with existing
methods like Epidemic Routing (ER) [13], Contact-duration based ER (CDER)
and Opportunistic Network Coding Routing (ONCR) [25]. It is shown from
Fig. 4 (a), delivery ratio of the proposed method outperforms the ER, CDER and
ONCR. From Fig. 4 (b) it is apparent that the delay in routing of the proposed
method is much lower than that of the others, because of variable hypergraph
construction with its position in a matrix for different instances of seconds. Our
technique is effective to route OppNets in identifying neighbours by preserving the
node position in the matrix for every second as the network shifts with minimal
time.
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(a) Elapsed time for VHT vs.

number of entries.

(b) Duration for construction

of UTRM.

(c) Simulation time vs. num-

ber of clusters.

Fig. 2. Output of simulation.

(a) Simulation time vs. elap-

sed time.

(b) Simulation time vs. deli-

very ratio.

(c) Simulation time vs. aver-

age delivery delay.

Fig. 3. Output of simulation.

6. CONCLUSION

In this paper, a novel routing protocol for OppNets has been proposed by a
novel construction of variable hypergraph by the combination of Lie commutator.
Variable hyperedges of variable hypergraphs are formed based on the connectivity
of nodes which are clusters. The unification of clustering and routing is done by
a significant theory called Lie algebra of upper triangular matrix by fixing no-
des in the upper triangular matrix. Later UTRM protocol is proposed based on
the position of every node in the upper triangular matrix where next-hop selection
uses Lie commutators. It is shown that multi objective optimization in terms of
delivery ratio, average delivery delay and hop count using variable hypergraph
is the pareto sets which results in a higher delivery ratio with significantly less
average delivery delay and hop count in very less elapsed time.

ACKNOWLEDGEMENT

The first author wishes to express sincere thanks to the INSPIRE fellowship
(DST/INSPIRE Fellowship/2019/IF190271) for their financial support. The au-
thors thank the Department of Science and Technology – Fund for improvement
of S & T Infrastructure in Universities and Higher Educational Institutions, Gov-
ernment of India (SR/FST/MSI -107/2015). We would like to thank reviewers for
their comments to improve the quality of the paper.



Variable Lie Hypergraph for Routing in Oppnets 107

(a) Delivery ratio versus TTL. (b) Delay vs. TTL.

Fig. 4. Performance comparison.
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