
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 34, 1287-1306 (2018)
DOI: 10.6688/JISE.201809_34(5).0011

1287

A Concurrent Approach for Improving the Efficiency
of Android CTS Testing

CHIEN-HUNG LIU, WOEI-KAE CHEN AND SHU-LING CHEN*

Department of Computer Science and Information Engineering
National Taipei University of Technology

Taipei, 106 Taiwan
E-mail: {cliu; wkchen}@ntut.edu.tw

*Department of Industrial Management and Information
Southern Taiwan University of Science and Technology

Tainan, 700 Taiwan
E-mail: slchen@stust.edu.tw

The Compatibility Test Suite (CTS) is a set of JUnit tests presented by Google to

help manufactures to ensure if their Android devices are in compliance with the Android
compatibility standards. However, the CTS contains a huge number of test cases and,
hence, it usually would take several hours to complete the CTS tests. This could seriously
affect the development schedule of Android devices, especially when the CTS test is in-
cluded in the daily system integration. To reduce the time to perform CTS tests and
shorten the time-to-market of Android devices, this paper presents a concurrent approach
for improving the CTS test efficiency. Particularly, the CTS tests are decomposed into
multiple tasks that are executed on different devices concurrently. The execution results
of the devices are then merged to generate the CTS test report. In addition, various task
scheduling algorithms are employed and different partitioning methods are presented in
the approach. A cloud-based testing platform is developed to support the proposed ap-
proach. To evaluate the effectiveness of the proposed approach, several empirical ex-
periments were conducted. The experimental results show that the efficiency of CTS test
can be much improved as the number of devices increases. Moreover, the results also in-
dicate that the Longest Job First scheduling and mixed partitioning methods can result in
better test efficiency.

Keywords: Android testing, software testing, Android compatibility testing, compatibility
test suite, CTS

1. INTRODUCTION

Recently, with the widespread popularity of smartphone, the number of Android
devices has increased tremendously. According to statistics, the installed base of An-
droid smartphones worldwide in July, 2016 was over 2.156 billion [1]. Particularly, ac-
cording to Gartner, Android has about 84.1% market share of the global smartphone op-
erating systems in 2016 [2]. From these statistics, it can be observed that Android has
become the top-selling mobile device platform and will continue to dominate the smart-
phone market in the near future.

As the open-source Android platform is continuously getting popular worldwide, it
has attracted many smartphone manufacturers to develop Android devices. According to
[3], there are 4,000 unique Android devices on the market from more than 400 manufac-

Received February 2, 2017; revised March 22, 2017; accepted April 22, 2017.
Communicated by Ren-Hung Hwang.

CHIEN-HUNG LIU, WOEI-KAE CHEN AND SHU-LING CHEN

1288

turers in 2015. In particular, these devices often have different versions of Android oper-
ating system because Android has evolved very quickly in recent years and has more
than 10 major versions so far. Moreover, different types of Android devices, even from
the same manufacturer, usually have customized hardware implementations or options,
such as different sizes and resolutions of screens, cameras, and network configurations.
This can raise a concern about the compatibility of Android devices called Android
fragmentation [4, 5] which can result in poor user experiences.

For building a healthy ecosystem to ensure that the Android devices developed by
diverse manufactures are compatible so that applications can be executed on the variety
of compatible Android devices correctly, Google has presented the Android compatibil-
ity program. The core of the program is composed of the Compatibility Definition Doc-
ument (CDD) [6] and the Compatibility Test Suite (CTS) [7]. The CDD enumerates the
software and hardware requirements of a compatible Android device and should be fol-
lowed by the device manufactures. The CTS is used to ensure that an Android device
meets the requirements of the CDD. That is to verify whether an Android device is in
compliance with the CDD. Note that achieving compatibility (i.e., passing CTS test) is a
prerequisite for Android devices to have access to Google Play and Google Mobile Ser-
vices [8]. In addition, CDD and CTS will have different version every time when the
Android operating system is updated.

The CTS consists of two major components: a test harness that runs on a desktop
for managing the test execution and a set of JUnit test cases which are packaged as .apk
files and executed on the target device attached to the desktop. The CTS test cases are
organized hierarchically into various test packages and classes to cover different areas of
the Android platform for ensuring the compatibility of the devices. These CTS test cases
are usually executed in the daily system integration process when building a device in
order to reveal the possible incompatibilities as soon as possible.

The CTS testing is important since Android device manufactures have to submit the
CTS test report of a newly built device to Google in order to get the approval for in-
stalling the Google Play application on the device. However, CTS is a commercial-grade
test suite that currently contains over 20,000 test cases and expects to grow continuously.
Thus, it usually takes at least several hours to execute all the test cases of CTS for most
Android devices although the test execution time is device dependent. For example, it
may take 5~6 hours to complete the CTS tests on a HTC One smartphone. As the con-
sequence, the development schedule of Android devices could be seriously affected if
the CTS test is included in the daily system integration or continuous integration testing
of the device implementation.

To reduce the execution time of CTS for shortening the time-to-market of Android
devices, this paper presents an approach to improve the efficiency of CTS tests. Particu-
larly, the proposed approach partitions the CTS test suite into multiple testing tasks and
executes these tasks on multiple Android devices concurrently. The test results on dif-
ferent devices are then collected and merged together to generate the CTS test report. In
addition, to improve the CTS test efficiency further, the proposed approach also supports
various task scheduling algorithms and task partitioning methods. A cloud-based testing
platform is developed to support the proposed approach.

To evaluate the effectiveness of the proposed approach, several empirical experi-
ments were conducted. The experimental results show that the efficiency of CTS tests

APPROACH FOR IMPROVING ANDROID CTS TEST EFFICIENCY 1289

can be improved as the number of devices increases. Moreover, the results also indicate
that the Longest Job First scheduling and the mixed partitioning methods can result in
better test efficiency.

The rest of the paper is structured as follows. Section 2 briefly reviews existing
work related to our approach. Section 3 presents the proposed approach to partitioning
and performing the CTS tests concurrently. Section 4 describes the design of the cloud-
based testing platform for supporting the approach. Section 5 presents and discusses the
experimental results. Section 6 provides concluding remarks and future work.

2. RELATED WORK

Due to the diversity of Android devices and operating systems, the Android frag-
mentation problem has increasingly captured the attention of software developers. Thus,
Android compatibility testing has drawn much attention recently. However, most of ex-
isting work focuses on the compatibility of Android applications which is to test and
verify whether an application can be executed correctly on different Android devices.
Test cases for such compatibility testing can be application dependent. On the other
hands, the CTS testing concerns about the compatibility of an Android device which is to
verify if the CDD has been carried out correctly by the device. Test cases for the CTS
compatibility is dependent of Android operating systems. The following briefly describes
several studies related to CTS testing and our work.

Wei et al. [5] studied the symptoms and root causes of 191 real-world fragmenta-
tion-induced compatibility (FIC) issues collected from popular open source Android ap-
plications. They found that API evolution and problematic hardware driver implementa-
tion are two dominant root causes of FIC. Based on the study, they also reported that
checking device information and component availability before invoking certain APIs is
the common pattern used for fixing the FIC issues in practice. Further, an API-context
pair model has been proposed to capture the common patterns in fixing FIC issues.
Based on the model, a static analysis technique, called FicFinder, has been designed to
detect the FIC issues automatically in Android applications. The evaluation of FicFinder
on 27 large-scale subjects has indicated that FicFinder can uncover many FIC issues and
provide useful information to developers.

Ham and Park [9] proposed a mobile application compatibility test system design
for Android fragmentation. Particularly, they have proposed two methods that aim to
detect the fragmentation problems at the code level and at the API level, respectively. In
the proposed methods, the source code of the mobile applications are analyzed. Those
code statements that might be dependent on the Android devices or APIs are extracted
and compared with the compatibility database of each device. Based on the proposed
methods, a system has been designed to test the compatibility of mobile applications.
Further, a case study is presented in [10] to illustrate the effectiveness of the proposed
methods.

Kaasila et al. [11] presented an online testing platform, called Testdroid, for An-
droid applications. The Testdroid allows users to record their interactions with the GUI
of an Android application and generate a corresponding test script automatically. The
test script then can be uploaded to the platform along with the application and is execut-

CHIEN-HUNG LIU, WOEI-KAE CHEN AND SHU-LING CHEN

1290

ed on a set of available physical devices concurrently. The test results across multiple
devices then can be accessed through the platform. By analyzing the test results, the
compatibility issues of the application among different Android devices can be identified
and resolved by developers.

Huang [12] presented a mobile application automated compatibility testing service,
called AppACTS. The AppACTS has a master/slave architecture based on the Hadoop
Distributed File System (HDFS). The master node is responsible for controlling the test-
ing process. Each slave node is responsible for executing tests and connects a mobile
server that controls the physical devices. The users of AppACTS can upload their mobile
applications, select the target devices, perform the tests, and view the test results. A set
of commands, such as install/uninstall, start, press, and swipe, are provided and users can
use these commands to execute and test the applications.

Zhang et al. [13] proposed a mobile compatibility testing method that can generate a
compatibility test sequence for a set of devices in order to cover most of the compatibil-
ity features, such as camera, screen resolution, and network connections, and reduce the
test cost of Android compatibility testing. In particular, a tree model is proposed to rep-
resent the compatibility features. Based on the tree model, the set of devices are clustered
using the K-Means algorithm. The clusters are then ranked by the market shares of the
devices. Finally, one popular device is selected form each cluster in sequence for the
mobile compatibility testing.

Liu et al. [14] presented a Cloud Testing Platform (CTP) that can execute the com-
patibility testing for Android applications automatically on a set of real devices concur-
rently. The CTP is based on the OpenStack cloud platform [15]. For each device, the
CTP will allocate a corresponding virtual machine (VM) to interact with the device for
executing the tests. To perform the compatibility testing, the users need to select the tar-
get devices and upload the test script and the application under test to CTP. The CTP
then executes the tests on the selected devices in parallel and generates the test reports,
including the screen snapshots and video files of the tests.

Joorabchi et al. [16] proposed a technique, called CHECKCAMP, to automatically
detect the inconsistencies between the iOS and Android implementations of the same
application. Specifically, the technique first instruments the application on iOS and An-
droid platforms and generates traces for a set of user scenarios. By capturing and ana-
lyzing the traces, an abstract model for each platform then can be inferred. The abstract-
ed models are compared to expose any differences using a set of code-based and GUI-
based criteria. A visualization of the models is produced to show any detected inconsist-
encies between the different implementations. An evaluation was conducted to show the
effectiveness of the proposed approach.

Liu et al. [17] proposed a strategy to allocate Android physical devices efficiently
among the compatibility testing tasks. Specifically, they have abstracted the components
of testing platforms into testing models. Based on the models, they propose a wait-time
fairness scheduling strategy to allocate devices among the testing tasks. A prototype tool,
called Apsaras, is presented and several experiments were conducted using 80 physical
devices. The results show that the proposed approach can allocate devices more effi-
ciently and more fairly as compared with traditional methods, such as first-come-first-
served.

In addition to above researches, there are several Android application testing ser-

APPROACH FOR IMPROVING ANDROID CTS TEST EFFICIENCY 1291

vices available on the market [18-22]. These testing services provide various automated
tests and allow users to test their mobile applications on a set of selected devices in par-
allel. By using these services, the compatibility test cost of mobile applications can be
greatly reduced.

3. THE APPROACH OF CONCURRENT CTS TESTING

This section presents the proposed approach of concurrent CTS testing. The strate-
gies for CTS test task scheduling and partitioning which may affect the efficiency of the
approach are also described.

3.1 The Approach of Concurrent CTS Testing

As compared with the techniques that prioritize or select only a subset of test cases
to perform a test, one way to improve the test efficiency is to perform the test in parallel
by dividing a single test job into multiple tasks and executing the tasks concurrently to
shorten the overall test time at the expense of increasing the test cost. Especially, as
cloud testing becomes prevalent, the cost of concurrent test executions can be largely
reduced by leveraging the characteristics of cloud computing, such as elastic provision,
virtualization, and pay-as-you-go price plan [23]. Thus, dividing and concurrently exe-
cuting tests would become an attractive alternative to improve test efficiency if the po-
tential benefit of increasing test efficiency is larger than the additional test cost.

Since Android CTS is a set of JUnit tests that have been organized hierarchically in
terms of test packages and classes, it would be possible to partition the CTS tests into
multiple test packages (or classes) and execute the partitioned packages (or classes) in
parallel if there has no dependency between the packages (or classes). Therefore, to im-
prove CTS test efficiency, this paper adopts the notion of parallel test execution and
proposes a concurrent CTS testing approach using cloud. As shown in Fig. 1, the main
idea of the proposed approach is to partition the CTS tests into multiple testing tasks and
execute the tasks on different devices concurrently. The test results of the tasks are then
merged to generate the CTS test report for the devices under test.

Fig. 1. The process of concurrent CTS testing.

Fig. 2 shows the overview of the testing platform developed to support the concur-

rent CTS testing approach. A user can submit a CTS test request to the Integration Server
on demand or schedule the CTS integration tests periodically through a web-based user
interface. The CTS test packages (or classes) are then checked out from the repository
and executed concurrently on multiple Android physical devices under test according to
specified configurations. Each physical device is controlled by a VM of the cloud envi-
ronment through wireless connection. The execution results of the devices are collected
and combined to generate a CTS test report in XML format. The test log is also recorded.

Partition CTS
tests to multi-

ple tasks

Schedule and
allocate tasks

Execute tasks
on devices

concurrently

Merge and
generate the

CTS test report

CHIEN-HUNG LIU, WOEI-KAE CHEN AND SHU-LING CHEN

1292

Once the CTS test is completed, the user can see the test result of each device and the
integrated CTS test report from the web-based user interface.

Fig. 2. The overview of the concurrent CTS testing platform.

3.2 The Strategy of Task Scheduling and Partitioning

Although parallel execution intuitively can improve the efficiency of CTS tests, the
amount of improvement can be affected by many factors, such as the number of devices
used in the test, the algorithms of task scheduling, and the number and the size of the
partitioned tasks. The followings describe the strategies used to schedule and partition
the CTS testing tasks in the proposed approach.

3.2.1 The number of devices and the size of tasks

It is not surprising that the test efficiency would be improved as the number of de-
vices used in the concurrent CTS testing increases. However, the speedup improvement
usually becomes saturated gradually when the number of devices exceeds a certain
threshold. The saturation of speedup may result from the overheads of concurrent pro-
cessing, such as task partitions, communications, and result integration. Thus, to be cost-
effective for concurrent CTS tests, the proposed approach monitors the speedup tenden-
cy and conducts experiments to obtain the expected saturation point for the number of
devices used in the concurrent CTS testing.

Moreover, the efficiency can also be affected by the number and size of the tasks
allocated to the devices. The number and size of tasks would depend on the task parti-
tioning methods which are described in section 3.2.3. As of the size measurement unit,
the proposed approach uses the test execution time to measure the size of the task, not
the number of test cases contained in the task. This is because that two tasks with an
equal number of test cases may not take equal time to complete since the execution time
of each test case can be varied. By using the test execution time as size measurement unit
to partition a CTS test job, more equal-sized tasks in terms of execution time can be ob-
tained. We assume that each test package (and test class) has been executed before so
that its execution time has been known. This is achievable in practice since CTS tests are
usually continuously re-executed to uncover any regression errors of the device imple-
mentations.

APPROACH FOR IMPROVING ANDROID CTS TEST EFFICIENCY 1293

3.2.2 The scheduling of tasks

Task scheduling concerns about how to map tasks appropriately to available com-
pute nodes in order to optimize certain performance indexes, such as completion time
and resource utilization, while satisfying given constraints, such as task precedence and
deadline. Task scheduling is considered important, particularly in parallel and distributed
computing systems, since different task scheduling schemes can result in different per-
formance of the system.

To observe how different task scheduling algorithms influence the efficiency of
concurrent CTS testing, we have implemented several typical task scheduling algorithms,
including Random, First-Come First-Served (FCFS), Longest Job First (LJF), and
Shortest Job First (SJF). Ideally, a better speedup of CTS tests can be obtained if the
algorithms can map the tasks to a set of devices so that the CTS testing workload can be
distributed as evenly as possible among the devices. The results of these task scheduling
algorithms will be described in section 5.2.

It should be noted that task scheduling problem has been studied extensively in the
literature and many heuristic algorithms have been proposed to address the problem. For
our study, task scheduling can be straightforward since the execution time of each task
can be measured and derived in compiler time, the objective of the scheduling is simply
to reduce the overall completion time of concurrent CTS testing, and there are no prece-
dence constraints between the tasks.

Fig. 3 shows the main idea of the LJF scheduling scheme used in our approach. The
SJF scheme is similar to LJF and can be inferred easily. Assumes that the CTS test job is
partitioned into ten tasks and the sizes (i.e., execution time) of the tasks are 20.5,
57.8, …, and 86.7 seconds, respectively. Suppose that four devices are used in the test.
To map these ten tasks to four devices using LJF, the tasks are firstly sorted in descend-
ing order according to their sizes and put into a waiting queue. Then, each task is se-
quentially and dynamically allocated to a device whenever the device is available. The
process is repeated until all of the tasks have been assigned. As shown in Fig. 3, after
task scheduling and allocation, the total task completion time of each device is 86.7, 76.7,
77.9, and 78.0 seconds respectively and is approximately equivalent.

Fig. 3. An example of the LJF scheduling scheme.

57.8 23.0 18.9 1.8 33.3 10.1 24.2 43.020.5 86.7

57.8 43.0 33.3 24.2 23.0 20.5 18.9 10.186.7 1.8

sort in descending order
allocate dynamically

78.077.976.7

86.7 57.8 43.0 33.3
18.9

10.1
23.0

1.8

24.2
20.5

86.7

CTS tests

CHIEN-HUNG LIU, WOEI-KAE CHEN AND SHU-LING CHEN

1294

3.2.3 The partitioning of tasks

In addition to the number of devices and task scheduling, the efficiency of concur-
rent CTS tests can also be affected by the task partitioning which can result in different
number of tasks and different sized tasks. As mentioned before, the test suite of CTS are
organized in different test packages hierarchically. Fig. 4 shows an example of CTS test
suite organization where each test package contains a set of test suites (i.e., test classes).
The test classes are corresponding to the Android API classes being tested. A test class
may contain other test classes and/or multiple test cases. Each test case is designed for
exercising a method of a particular Android API class. Thus, based on the structure of
CTS, the approach employs three types of task partitioning methods: the package parti-
tioning, class partitioning, and mixed partitioning which decompose the CTS test suite
into various test packages, test classes, and mixtures of test packages and classes, respec-
tively.

Fig. 4. An example of CTS test suite organization.

Specifically, in the package partitioning, each task contains a single test package. In

the class partitioning, each task contains a single test class. For the mixed partitioning, it
will break a large test package into several smaller test classes. This would result in a set
of tasks in which a task can be either a test package or a test class. Therefore, the pack-
age partitioning can create fewer larger-grained tasks. On the other hand, the class parti-
tioning can generate a large number of fine-grained tasks. The mixed partitioning, how-
ever, would have the number of tasks somewhere between the other two partitioning
methods.

To apply the mixed partitioning method, we need to select target test packages and
break them into test classes. To identify which test packages to break, we analyze the
size (i.e., execution time) of each package for Android CTS 4.2 test suite. Fig. 5 shows
the analysis result in which the execution time percentages of major test packages are
highlighted. The result indicates that only very few test packages can take much longer
time to execute than others. For example, the android.core.tests.libcore.package.libcore
and android.media packages take 28% and 11% of the total execution time to complete,
respectively. Particularly, the top five largest packages together will take nearly 65% of
the overall execution time of CTS testing. This suggests that the mixed partitioning

APPROACH FOR IMPROVING ANDROID CTS TEST EFFICIENCY 1295

method may just need to break a few packages for achieving a better test efficiency. Note
that the gain of test efficiency could be offset by the overheads of dividing test packages,
task download, communications, and merging test results if too many packages are dis-
integrated.

Fig. 5. The percentage of text execution for CTS test package.

4. DESIGN OF THE CTS CLOUD TESTING PLATFORM

To support the proposed approach, a cloud-based testing platform, called An-
droidCTS, has been developed. The AndroidCTS is constructed based on the Eucalyptus
[24], a widely used open source cloud platform. Fig. 6 shows the system architecture of
the AndroidCTS. Basically, the AndroidCTS consists of two parts: the CTS Server and
the CTS Station. The CTS Server and CTS Station communicate with each other using
the Message Queue (Rabbit MQ [25]) and File System.

Fig. 6. The system architecture of the AndroidCTS.

The CTS Server consists of the Web UI and Project Information Center subsystems
where the Web UI is responsible for providing the user interface and the Project Infor-
mation Center is responsible for controlling and managing the CTS tests. Particularly,

CHIEN-HUNG LIU, WOEI-KAE CHEN AND SHU-LING CHEN

1296

the Project Information Center is composed of the CTS Controller, Task Generator,
Scheduler, Result Integrator, and Project Manager. The CTS Controller controls the
concurrent CTS testing process. The Task Generator is in charge of task partitioning.
The Scheduler is responsible for task scheduling. The Result Integrator is used to merge
test results and generate CTS test reports. The Project Manager is in charge of managing
the test projects and resources.

The CTS Station is composed of the Build Controller, CTS Builder, and Result
Collector. There are multiple concurrent instances of CTS Station. Each CTS Station
instance runs on a VM and connects a device emulator and Google CTS test harness.
Moreover, the Build Controller is in charge of controlling the CTS test on the device.
The CTS Builder is responsible for executing the task on the device. The Result Collec-
tor is used to collect and return the test result of the task back to the CTS Server.

To execute CTS testing using the AndroidCTS, users first need to configure the
CTS test project, including selecting the type and the number of devices, the test pack-
ages, the task scheduling algorithm, and the task partitioning method used for the testing.
Then, after users submitting the test execution request, the platform will automatically
build the CTS Station instances based on the specified type and the number of the devic-
es. Fig. 7 shows the screen snapshot of the CTS building process. Once a CTS Station
instance is built successfully, the instance will retrieve and perform the test tasks auto-
matically. The test result of each instance finally will be integrated to generate a CTS test
report.

Fig. 7. A screen snapshot of the AndroidCTS.

5. PERFORMANCE EVALUATION OF THE APPROACH

To evaluate the effectiveness of the proposed concurrent CTS testing approach, the
following research questions are proposed.

RQ1. How does the efficiency of CTS tests being improved using the proposed concur-

rent CTS testing approach?
RQ2. How does the efficiency of CTS tests being affected by task scheduling algorithms?
RQ3. How does the efficiency of CTS tests being affected by different partitioning

methods?

APPROACH FOR IMPROVING ANDROID CTS TEST EFFICIENCY 1297

To address the above questions, several experiments were conducted. The experi-
mental environment includes a Eucalyptus cloud platform that consists of 1 cluster con-
troller and 5 nodes. The controller and each node has a Hexa-Core Intel Xeon 2.0GHz
CPU, 64GB of memory, and 600GB of storage. The operation systems of both controller
and nodes are Linux Ubuntu Desktop 12.04. Each node can contain multiple VMs where
each VM is m1.large type and has an Intel Xeon 2.0GHz CPU, 2048MB of memory, and
6GB of storage. The operation system of each VM is Linux Ubuntu Desktop 10.10. The
device connected to each VM is Android 4.2.2 emulator with 512MB of memory. The
version of CTS test suite is 4.2 that contains more than 18,000 test cases and 60 packages.
For the experiments, three packages (about 240 test cases) were excluded since they can
only be executed on the physical Android devices. The total execution time of these test
packages is about 8 hours on a single VM.

5.1 Speedup of Different Number of Devices

To evaluate the amount of the efficiency improvement for the proposed CTS testing
approach, we partition the CTS test into multiple tasks where each task contains a single
test package. These tasks are scheduled and allocated to multiple VMs in FCFS order.
The test results of the tasks are then merged and the execution time of VMs is recorded.
Table 1 shows the longest and shortest execution time for different number of VMs. The
results suggest that the overall CTS test time can be reduced as the number of VMs in-
creases. However, the relatively large standard deviation of the execution time also indi-
cates that there exist workload variations among the VMs and the task assignment seems
unbalanced.

Table 1. The CTS test execution time for different number of devices (hh:mm:ss).

Device quantity
Execution time

1 2 4 8 16 32

The Shortest 08:02:57 04:13:28 01:42:22 00:46:25 00:12:56 00:02:41

The Longest 08:02:57 05:35:19 03:58:20 03:05:23 02:42:09 02:43:22

Std. deviation  00:57:53 01:03:38 00:46:12 00:37:18 00:30:35

Fig. 8 shows the speedup ratio of this experiment. The result indicates that the CTS

test efficiency was improved proportionally to three times as the number of VMs in-
creases up to 16 and then it became saturated. Thus, from the results of Table 1 and Fig.
8, the answer to RQ1 is that “the efficiency of CTS tests can be improved using the pro-
posed approach. The amount of improvement can be affected significantly by the number
of VMs used in the testing and the workload variations of the VMs.”

5.2 Speedup of Different Task Scheduling Algorithms

To evaluate how the task scheduling methods affect the CTS test efficiency in the
proposed approach, the tasks in the above experiment were scheduled with different al-
gorithms. Table 2 shows the test completion time for the FCFS, random, SJF, and LJF
scheduling algorithms under different number of VMs where the test completion time is
the longest execution time required by each VM to complete its assigned tasks. The re-

CHIEN-HUNG LIU, WOEI-KAE CHEN AND SHU-LING CHEN

1298

sults suggest that the overall CTS test time can be influenced by using different schedul-
ing algorithms. The effects of scheduling algorithms would decrease as the number of
VMs increases.

Fig. 8. The speedup for package partition under FCFS scheduling.

Table 2. CTS test completion time for different scheduling algorithms (hh:mm:ss).
 Device number

Completion time
1 2 4 8 16 32

FCFS 08:02:57 05:35:19 03:58:20 03:05:23 02:42:09 02:43:22

Random 08:02:57 05:53:23 04:11:50 03:07:01 02:51:56 02:48:53

SJF 08:02:57 06:03:08 04:08:59 02:59:31 02:50:21 02:45:05

LJF 08:02:57 04:23:10 02:45:29 02:33:44 02:34:20 02:45:28

Fig. 9 shows the speedup ratios of different scheduling algorithms. The result indi-
cates that the speedup of the LJF algorithm can quickly reach the saturation point as
compared with others. Specifically, the speedup of LJF can reach 2.92 times as the
number of VMs increases up to 4 while other scheduling methods may require up to 16
VMs before their speedup ratios can nearly reach the same value of LJF. The reason why
LJF outperforms other scheduling methods (speed up 4 times faster) perhaps can be ob-
served from the distributions of test execution time on individual VMs in Fig. 10.

As shown in Fig. 10, the distributions of test execution time on individual VMs are
depicted when the CTS testing is performed using 2, 4, 8, and 16 VMs, respectively.
From Fig. 10, we can observe that the variation of test execution time on individual VMs
for LJF is smaller than that of others when the CTS testing is performed using 2, 4, or 8
VMs. Moreover, for each scheduling algorithm, the variation of test execution time on
different VMs becomes closer as the number of VMs used in the CTS testing increases.
Further, when the number of VMs increases up to 16, the variation of test execution time
on individual VMs for all the scheduling methods as well as their speedup ratios become
close. This result may suggest that the LJF scheduling method is more likely to reduce
the overall workload (i.e., test execution) variations among the VMs than others for the
proposed approach. The reason may be because the short jobs will be executed with a
low priority in LJF. Consequently, when the concurrent CTS testing is close to finish,

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

1 4 7 10 13 16 19 22 25 28 31

S
pe

ed
up

Quantity of Devices

APPROACH FOR IMPROVING ANDROID CTS TEST EFFICIENCY 1299

Fig. 10. The distributions of test execution time on different number of devices.

only small sized tasks are left behind and, hence, the workload variations of these tasks
could be small.

Thus, according to the results of Table 2 and Fig. 9, the answer to RQ2 is that “the
test time of CTS and the number of VMs required to achieve maximum CTS test effi-
ciency can be affected by the task scheduling algorithms. For the proposed approach, the
LJF scheduling algorithm could quickly reach the speedup saturation point of test effi-
ciency with less number of VMs.

Notice that in Fig. 10 we can observe that, no matter how many VMs are employed
in the CTS testing, one VM persistently takes more than 2.5 hours to complete its task

Fig. 9. The speedup for package partition under different scheduling.

(a) The distribution of execution time on 2 de-
vices.

(b) The distribution of execution time on 4 de-
vices.

(c) The distribution of execution time on 8 de-
vices.

(d) The distribution of execution time on 16 de-
vices.

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

1 4 7 1 0 1 3 1 6 1 9 2 2 2 5 2 8 3 1

S
pe

ed
up

Quantity of Devices
FCFS LJF SJF Random

CHIEN-HUNG LIU, WOEI-KAE CHEN AND SHU-LING CHEN

1300

while the time needed by the rest of VMs to finish their tasks can decrease to less than 1
hour as the number of VMs increases. This indicates that some tasks (i.e., test packages)
might take a long time to complete as compared with others. These tasks can become the
bottleneck of the efficiency improvement unless they are divided into smaller ones with
task partitioning methods.

5.3 Speedup of Different Task Partitioning Methods

To evaluate how the task partitioning methods affect the CTS test efficiency in the
proposed approach, the CTS test suite was decomposed in different ways using the
package, class, and mixed partitioning methods. As mentioned in section 3.2.3, the CTS
is decomposed so that each task is a single test package for the package partitioning
method or a single test class for the class partitioning method. For the mixed partitioning
method, we decompose several large test packages of CTS into test classes and a test
task may be either a single test package or a single test class.

Specifically, to evaluate how the mixed partitioning method affects the test effi-
ciency, the mixed partitioning of CTS tests is further classified into Mixed-1, Mixed-2,
Mixed-3, Mixed-4-1, and Mixed-4-2 groups based on which test packages are selected to
disintegrate. The Mixed-1 decomposes only the top one largest test package into corre-
sponding test classes while the Mixed-2 and Mixed-3 decompose the top two largest and
top three largest test packages into test classes, respectively. Moreover, according to Fig.
5, both android.app and android.core.vm-tests-tf are the fourth largest packages and
have about the same size. Thus, two additional groups Mixed-4-1 and Mixed-4-2 are
presented in which the top four largest test packages are partitioned into corresponding
test classes. However, the fourth largest package in Mixed-4-1 and Mixed-4-2 are dif-
ferent. Table 3 shows the number of test tasks generated by each partitioning method and
the target packages that are selected to break for the mixed partitioning method.

Table 3. The number of test tasks for partitioning methods.
Partitioning

method
Number of
packages

Number of
test classes

Total number
of test tasks

The packages being disintegrated

Package 57 0 57
Class 0 2029 2029

Mixed-1 56 457 513 android.core.tests.libcore.package.libcore

Mixed-2 55 457+38 550
android.core.tests.libcore.package.libcore,

android.media

Mixed-3 54 457+38+13 562
android.core.tests.libcore.package.libcore,

android.media, android.mediastress

Mixed-4-1 53
457+38+13+

47
608

android.core.tests.libcore.package.libcore,
android.media, android.mediastress, an-

droid.app

Mixed-4-2 53
457+ 38+13

+225
786

android.core.tests.libcore.package.libcore,
android.media, android.mediastress, an-

droid.core.vm-tests-tf

Fig. 11 shows the speedup ratios of different partitioning methods combined with
FCFS task scheduling. The result indicates that the mixed partitioning groups commonly

APPROACH FOR IMPROVING ANDROID CTS TEST EFFICIENCY 1301

have a better test efficiency than the package and the class partitioning methods. In par-
ticular, the speedup of Mixed-3 outperforms others as the number of VMs increases. The
reason that the mixed partitioning method could result in a better improvement of CTS
test efficiency may be because the large test packages usually dominate the execution
time of CTS testing and can be the bottleneck of the efficiency improvement as indicated
in Fig. 10. Thus, by breaking a large test package into several smaller test classes, the
workload variation among the tasks can be more likely reduced and, hence, the test effi-
ciency can be improved.

However, the result of Fig. 11 also suggests that the mixed task partitioning cannot
be carried out too far. As shown by the results of Mixed-4-1and Mixed-4-2, if we parti-
tion too many packages into classes, the overheads imposed by the task partitioning,
such as task download, communications between server and devices, and test results in-
tegration, could offset the improvement of test efficiency.

Fig. 11. The speedup of different partitioning methods under FCFS.

Therefore, based on the result of Fig. 11, the answer to RQ3 is that “the CTS test ef-
ficiency can be affected by the task partitioning methods. For the proposed approach, the
mixed task partitioning method generally can result in a better test efficiency than oth-
ers.” Especially, a much better test efficiency can be achieved if the top three largest
packages, i.e., android.core.tests.libcore.package.libcore, android.media, and android.
mediastress, are disintegrated into corresponding classes.

Moreover, the above separate experimental results indicate that the CTS test effi-
ciency can be better improved if using a large number of devices, the LJF scheduling, or
the mixed task partition. To take into account all these observations together, an addi-
tional experiment was conducted. Fig. 12 shows the speedup ratios of CTS tests under
different number of devices with the LJF and FCFS scheduling algorithms and the mixed
partitioning methods. The result indicates that the speedup of Mixed-3 combined with
LJF scheduling outperforms others as the number of VMs increases. This result is con-
sistent with the findings of previous experiments. Further, the result of Fig. 12 also indi-
cates that, when combined with different mixed partition groups, LJF has better speedups
than FCFS as the number of VMs increases, except for Mixed-4-2. This result is in ac-
cordance with the finding in Fig. 9 where package partition was used. Note that the
speedup values of FCFS combined with mixed partitioning groups in Fig. 11 and those

0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00

1 4 7 10 13 16 19 22 25 28 31

S
pe

ed
up

Quantity of Devices

Package

Mixed-1

Mixed-2

Mixed-3

Mixed-4-1

Mixed-4-2

Class

CHIEN-HUNG LIU, WOEI-KAE CHEN AND SHU-LING CHEN

1302

in Fig. 12 are a little different because these two experiments were conducted using dif-
ferent Android emulators. The result of Fig. 11 was obtained using Android SDK emu-
lator 4.2.2 while the result of Fig. 12 was obtained using VirtualBox Android emulator
4.2.2. Although the speedup values of FCFS with mixed partition in Fig. 11 and their
counterparts in Fig. 12 are slightly different, they have similar tendency as the number of
VMs increases, and in both cases Mixed-3 has the highest speedup. This outcome also
implies that the speedup of concurrent CTS tests can be somewhat affected by the emu-
lators or devices used in the experiments.

Fig. 12. The speedup of mixed partitioning methods with FCFS and LJF.

5.4 Threats to Validity

The threats to internal validity can come from the implementation of AndroidCTS
and how the experiments were carried out. Although AndroidCTS has been carefully
tested through automated unit testing and acceptance testing, it might still have some
defects that could possibly compromise the validity of the results. Moreover, the experi-
ments were conducted using Android emulators instead of physical devices. The results
of test execution time might be different if different Android emulators or physical de-
vices are used for running the CTS tests. Further, another possible threat is that a random
scheduling algorithm is used in the experiments. To reduce the threat caused by random-
ization, experiments involving random task scheduling should be repeated several times
to take the randomness into account.

The threats to external validity lie in the subjects (i.e., CTS test suite) selected for
the experiments. The experiments had dropped out three CTS packages (android.holo,
android.opengl, and android.renderscript) since they can only be executed on the phys-
ical devices. The execution time might be slightly affected because of leaving out the
packages. However, the sizes of these three packages take up only a small portion of the
entire CTS suite (240 out of 18,000 test cases) and, hence, the results of partitioning
methods and parallel execution might not be affected much. Moreover, the subject of this
empirical study is CTS 4.2 test suite. Nevertheless, there are several CTS versions cur-
rently available since Android operating system has evolved quickly in recent years. The

0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00

10.00

1 4 7 10 13 16 19 22 25 28 31

Sp
ee

du
p

Quantity of Devices

LJF+Mixed-1

LJF+Mixed-2

LJF+Mixed-3

LJF+Mixed-4-1

LJF+Mixed-4-2

FCFS+Mixed-1

FCFS+Mixed-2

FCFS+Mixed-3

APPROACH FOR IMPROVING ANDROID CTS TEST EFFICIENCY 1303

sizes and structures of different CTS versions might not be the same as CTS 4.2. Thus,
the experimental results might not extend to other CTS versions.

5.5 Discussions and Suggestions

From the aforementioned studies and experimental results, the followings are some
observations.

1. The notion to improve CTS test efficiency by dividing a single test job to multiple

tasks and executing the tasks concurrently on different Android devices to shorten the
overall test time can be feasible and easy to implement if a supporting cloud testing
infrastructure, such as AndroidCTS, has been provided.

2. The speedup of test efficiency can be improved if the number of VMs (or devices)
used in the CTS testing increases. However, the speedup of the improvement can be-
come saturated if too many VMs are used. Further, the more VMs the testing uses, the
higher expense the testing costs. The number of VMs used for the concurrent testing
might be dependent of the tradeoff between the test efficiency and test cost. Other
concerns, such as the deadline of testing, might be considered as well.

3. The LJF scheduling algorithm with dynamic task allocation can reach the saturation
point of efficiency improvement much faster than others. This is because LJF could
reduce the workload variations of the tasks at the end of testing since, at that time,
only short jobs are left behind, and the workload variations of short jobs could be
small. If the available number of VMs (or devices) is less than 8, the LJF scheduling
method can perform better than others.

4. The distribution of test cases in CTS is not well-balanced. The top five largest pack-
ages take almost 65% of the total execution time to complete the testing. The effi-
ciency of concurrent CTS testing is largely dominated by these packages.

5. The size and the number of the tasks created by the partitioning methods are critical.
The partitioning methods that generate a small number of large-size or a large number
of small-size tasks may not lead to a better speedup of test efficiency. The mixed par-
titioning method, however, may result in a better improvement since the workload of
the tasks can be distributed more evenly while the overheads imposed by the parti-
tioning can be reduced without compromising the gain of efficiency.

6. The increment of test efficiency obtained from the partitioning methods can be higher
than that obtained from the scheduling algorithms. This suggests that task partitioning
plays an important role in the concurrent CTS testing approach. For Android CTS 4.2,
the test efficiency can be much improved if the top three largest packages are disinte-
grated to corresponding test classes.

7. According to the experimental results, a good practice for a test engineer to perform
CTS tests in parallel could be that at least 16 Android devices, LJF scheduling, and
the Mixed-3 partition are deployed so as to gain an optimal test efficiency. If, howev-
er, the number of available devices has a limitation, the practice that uses at least 4
devices in combined with LJF scheduling and Mixed-3 partition is suggested. More-
over, if there exists a concern to disintegrate the CTS packages, at least 4 devices,
LJF scheduling, and the package partition should be deployed in order to obtain a
satisfactory CTS test efficiency improvement, say twice and above.

CHIEN-HUNG LIU, WOEI-KAE CHEN AND SHU-LING CHEN

1304

6. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a concurrent approach to improve the efficiency of
CTS tests for shortening the time-to-market of Android devices. The main idea of the
approach is to partition the CTS tests into multiple tasks that are executed on different
devices concurrently. In particular, the proposed approach also considers various task
scheduling and partitioning methods. A cloud-based testing platform called AndroidCTS
that supports the approach is developed. Several experiments were conducted and the
results indicate that the CTS test efficiency can be improved depending on the number of
VMs, the task scheduling algorithm, and the task partitioning method used in the pro-
posed approach. The observations of the study are also described.

In particular, the speedup of CTS testing can be improved proportionally as the
number of VMs (or devices) increases. However, the improvement will become saturated
when the number of VMs (or devices) is more than 16. Further, the LJF scheduling
method can reach the speedup saturation point 4 times faster than other traditional
scheduling methods. Moreover, the CTS test efficiency can be dominated by only a few
large packages. By breaking the top three largest packages into corresponding classes,
the speedup of test efficiency can be much improved.

In the future, we plan to extend the proposed approach to support more task sched-
uling algorithms as well as more task partitioning methods. Further, we plan to conduct
the empirical study of the proposed approach using physical Android devices instead of
emulators so that all CTS packages can be executed and the experimental results can be
observed in a close to real-world environment. Moreover, we also plan to consider the
cost-benefit of the proposed approach while taking into account the deadline of CTS
testing.

ACKNOWLEDGMENT

This work was supported in part by the Ministry of Science and Technology, Tai-
wan, under the grant No. MOST 105-2221-E-027-086, which is gratefully acknowl-
edged.

REFERENCES

1. Stastics, Installed base of smartphones by operating system from 2015 to 2016 (in
million units), https://www.statista.com/statistics/385001/smartphone-worldwide-ins-
talled-base-operating-systems/.

2. Gartner, Gartner says worldwide smartphone sales grew 3.9 percent in first quarter
of 2016, http://www.gartner.com/newsroom/id/3323017.

3. Expanded Ramblings, 108 amazing Android statistics, http://expandedramblings.com
/index.php/android-statistics/. [Accessed: Jan. 2017]

4. Android Fragmentation, http://en.wikipedia.org/wiki/Fragmentation_%28programm-
ing%29.

5. L. Wei, Y. Liu, and S.-C. Cheung, “Taming Android fragmentation: Characterizing
and detecting compatibility issues for Android apps,” in Proceedings of the 31st

APPROACH FOR IMPROVING ANDROID CTS TEST EFFICIENCY 1305

IEEE/ACM International Conference on Automated Software Engineering, 2016, pp.
226-237.

6. Android 7.1 Compatibility Definition Document, http://source.android.com/compati-
bility/android-cdd.html.

7. Compatibility Test Suite, https://source.android.com/compatibility/cts/.
8. Google Mobile Services, https://www.android.com/gms/.
9. H. K. Ham and Y. B. Park, “Mobile application compatibility test system design for

Android fragmentation,” Software Engineering, Business Continuity, and Education,
in the series Computer and Information Science, Vol. 257, 2011, pp. 314-320.

10. H. K. Ham and Y. B. Park, “Designing knowledge base mobile application compa-
tibility test system for Android fragmentation,” International Journal of Software
Engineering and Its Applications, Vol. 8, 2014, pp. 303-314.

11. J. Kaasila, D. Ferreira, V. Kostakos, and T. Ojala, “Testdroid: Automated remote UI
testing on Android,” in Proceedings of the 11th International Conference on Mobile
and Ubiquitous Multimedia, 2012.

12. J.-F. Huang, “AppACTS: Mobile app automated compatibility testing service,” in
Proceedings of the 2nd IEEE International Conference on Mobile Cloud Computing,
Service, and Engineering, 2014, pp. 85-90.

13. T. Zhang, J. Gao, J. Cheng, and T. Uehara, “Compatibility testing service for mobile
applications,” in Proceedings of IEEE Symposium on Service-Oriented System En-
gineering, 2015, pp. 179-186.

14. C.-H. Liu, S.-L. Chen, and W.-K. Chen, “Improving resource utilization of a cloud-
based testing platform for Android applications,” in Proceedings of IEEE Inter-
national Conference on Mobile Services, 2015, pp. 202-208.

15. Openstack, https://www.openstack.org/.
16. M. E. Joorabchi, M. Ali, and A. Mesbah, “Detecting inconsistencies in multi-plat-

form mobile apps,” in Proceedings of the 26th IEEE International Symposium on
Software Reliability Engineering, 2015, pp. 450-460.

17. T. Liu, C. Cao, J. Chen, Z. Lu, and X. Ma, “Apsaras: Efficient allocation of physical
devices for Android testing,” in Proceedings of the 40th IEEE Annual Computer
Software and Applications Conference, 2016, pp. 269-274.

18. Testdroid Cloud, http://testdroid.com/.
19. CloudMonkey, https://www.cloudmonkeymobile.com/.
20. Xamarin Test Cloud, http://xamarin.com/.
21. Appurify, http://appurify.com/.
22. Firebase Test Lab for Android, https://developers.google.com/cloud-test-lab/.
23. J. Gao, X. Bai, W. T. Tsai, and T. Uehara, “SaaS testing on clouds – issues, challenges,

and needs,” in Proceedings of the 7th IEEE International Symposium on Service-
Oriented System Engineering, 2013, pp. 409-415.

24. Eucalyptus, http://www.eucalyptus.com/.
25. Rabbit MQ, http://www.rabbitmq.com/.

CHIEN-HUNG LIU, WOEI-KAE CHEN AND SHU-LING CHEN

1306

Chien-Hung Liu (劉建宏) received his Ph.D. degree in Com-
puter Science and Engineering from the University of Texas at
Arlington in 2002. He is currently an Assistant Professor of Com-
puter Science and Information Engineering Department at National
Taipei University of Technology, Taiwan. His research interests
include software testing, software engineering, and cloud compu-
ting.

Woei-Kae Chen (陳偉凱) received M.S. and Ph.D. degrees
in Computer Engineering from North Carolina State University in
1988 and 1991, respectively. He is currently a Professor at the
Department of Computer Science and Information Engineering
and the director of Software Development Research Center of the
National Taipei University of Technology, Taiwan. His research
interests include software testing, software engineering, visual
programming, and cloud computing.

Shu-Ling Chen (陳淑玲) received her Ph.D. degree in Indus-
trial and Manufacturing Systems Engineering from the University
of Texas at Arlington in 2002. She is currently an Assistant Pro-
fessor of Industrial Management and Information Department at
Southern Taiwan University of Science and Technology. Her re-
search interests include information management systems, e-busi-
ness, and software testing.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

