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In this paper, we propose a new approach to reducing redundancy in the answers to 

a keyword query over large graph databases. Aiming to generate query results which are 
not only relevant but also has diverse structures and content nodes, we propose a method 
to find top-k answer sub-trees which should be in reduced forms and duplication-free in 
regard to the set of content nodes. To process keyword queries efficiently over large 
graph data, we suggest an efficient indexing scheme on the most relevant paths from 
nodes to keyword terms in the graph. We present a top-k query processing algorithm 
which exploits the pre-constructed indexes to search for a set of most relevant and 
non-redundant answers. We also provide a state space search algorithm to find most rel-
evant duplication-free answers in an efficient way. We show effectiveness and efficiency 
of the proposed approach in comparison with the previous methods using extensive ex-
periments on real graph datasets. 
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1. INTRODUCTION 
 

Recently, graph-structured data is widely used in various fields such as social net-
working, semantic web, linked open data, knowledge management and bio-informatics. 
A relational database also can be modeled as a directed graph based on foreign-key rela-
tionships existing among tuples. A graph database consists of nodes and edges, which 
represent relationships between entities effectively. As the amount of graph data increas-
es rapidly, an efficient and effective query system is much in need. Keyword search has 
been attracting a lot of attention since it provides a simple and user-friendly interface to 
querying graph data and allows users to express their information need using only a set 
of keyword terms [2, 6, 7, 11, 12, 14, 15, 17, 20, 21, 24]. 

Keyword search on graph data usually returns a set of connected sub-structures, 
such as sub-trees or sub-graphs, showing that which nodes include query keywords and 
how they are inter-connected in the graph database. Many approaches find minimal con-
nected sub-trees containing query keywords as succinct answers to a given query [2, 6, 7, 
11, 12, 14]. Since there can be a significant number of answer sub-trees in a large graph 
database, a relevance scoring function is often used to rank candidate answers and select 
top-k ones having the highest relevance. There have been proposed several approaches 
based on distinct root semantics, where for each node in the graph, at most one sub-tree 
rooted at the node is considered a possible answer to the query [6, 12, 14, 20]. The an- 
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swer tree consists of a set of content nodes containing all the query keywords as well as 
the nodes and edges on the shortest paths from the root to each content node. Its rele-
vance is usually computed by a function of the shortest paths, such as the sum of the path 
lengths. By reducing the number of sub-trees to be explored in the graph significantly, 
the search methods based on the distinct root semantics can process keyword queries 
over a large volume of data more efficiently than other approaches. It also facilitates ex-
ploiting indexes on graph data to improve query performance [12]. 

However, the previous methods have a common limitation; they can produce two 
kinds of ineffective answer trees called a non-reduced tree and a duplicate tree. The for-
mer is an answer tree where the root node has only a single child node and contains no 
query keyword. Note that a non-reduced answer tree always contains at least one reduced 
sub-tree which shares keyword nodes while it provides no more useful information than 
the reduced sub-tree. For example, consider a directed weighted graph G in Fig. 1, where 
nodes v4-v9 contain keyword terms and edges are labeled with a weight value indicating 
distance between adjacent nodes. Given a keyword query q1 = {k1, k2, k3} over graph G, 6 
trees shown at the right of G can be answers to query q1 since they are sub-trees of G 
which have all the keywords in q1 in their nodes. Note that T2 and T 2 are rooted at the 
same node v2 while having different nodes for keyword k3, i.e. v8 and v5, respectively. 
Since the distance from v2 to v8 is shorter than that from v2 to v5, conventional search 
methods based on the distinct root semantics usually select T2 as the answer tree rooted at 
v2. However, it should be noted that T2 is in a non-reduced form and has a smaller re-
duced answer tree T1 as a sub-tree, while T 2 is a reduced answer tree. Assuming that T1 is 
included in top-k query results earlier, selecting T 2 makes the search results more diverse 
than choosing T2 even though T 2 has a lower relevance score than T2. Similarly, it is also 
desirable to choose a reduced sub-tree T 3 instead of a non-reduced sub-tree T3 as an an-
swer tree rooted at node v1.  

The other ineffectiveness of the previous approaches is that their search results may 
have a lot of answer trees containing the same set of content nodes for given keywords. 
In many applications of keyword search on graph data, users often have interest in find-
ing different sets of content nodes which cover all the keywords in the query and are 
closely related to each other. For instance, in keyword search on the Web, users want to 
find different sets of Web pages that are close to each other and might not be interested 
in browsing multiple relations to see how the Web pages are related to each other [16]. 
However, a large amount of similar answers with a duplicate set of content nodes are 
often found in search on the Web, as well as in real graph data such as the Internet Movie 
Database and DBLP computer science bibliography. Thus, it is more desirable to find a 
set of relevant sub-trees containing a distinct set of content nodes than to retrieve a lot of 
sub-trees having duplicate content nodes with different connecting structures. 

For example, given a query q2 = {k1, k3, k4} over G in Fig. 1, a set of top-3 answers 
based on the distinct root semantics can be {T4, T5, T6}. Note that these sub-trees share 
the same set of content nodes {v4, v5} even though they have a different root node and 
connecting structure. Given that T4 is the most relevant answer with the highest relevance 
score, the other sub-trees T5 and T6 are called duplicate with T4 regarding content nodes. 
Meanwhile, if we select sub-trees T 5 and T 6 instead of T5 and T6, the set of answer trees 
{T4, T 5, T 6} are duplication-free and thus can provide more diverse results for q2. We 
also observe that in a set of reduced answer trees {T1, T 2, T 3} for query q1 = {k1, k2, k3} 
over G, T 3 has the same set of content nodes as T2. Therefore, it should be replaced with 
T 3 in order to avoid duplication in the sets of content nodes of the answer trees. 



REDUCING REDUNDANCY IN KEYWORD QUERY PROCESSING ON GRAPH DATABASES 553

 
Fig. 1. Answers to example keyword queries q1 and q2 over graph data G. 

 
Top-k search results including many redundant answer trees such as non-reduced 

and duplicate trees have drawbacks. First, a lot of similar answers decrease diversity of 
the search results and they do not satisfy users who want to get various answers rather 
than similar ones. Second, if an answer tree in the query results turns out to be irrelevant 
to the query, most of the non-reduced or duplicate answer trees related with it would be 
also irrelevant to the query. It can degrade the quality of the query results severely.   

In this paper we propose a new approach to reducing redundancy in keyword search 
over graph databases and producing answer trees not only minimal and relevant to the 
query but also diverse in their structures and content nodes. Main contributions of the 
paper are as follows: 

 
 We suggest a non-redundant result structure for keyword queries over graph databases 

which includes only reduced and duplication-free sub-trees. 
 We present an effective indexing scheme on a subset of useful paths from nodes to 

keywords in graph databases. 
 We propose an efficient top-k query processing algorithm using the path indexes to find 

most relevant and non-redundant answer trees. 
 The effectiveness and efficiency of the proposed approach are evaluated with extensive 

experiments on real graph databases. 
 
The rest of the paper is organized as follows. Section 2 describes related work on 
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keyword search over graph data, and Section 3 defines an answer tree structure and a 
relevance measure for the answer trees. In Section 4, we propose three kinds of indexes 
on the paths in the graph. In Section 5, we describe an efficient query processing algo-
rithm to find top-k non-redundant answer trees using indexes and a state space search 
strategy. We demonstrate performance of the proposed method by extensive experi-
mental results in Section 6 and draw a conclusion in Section 7. 

2. RELATED WORK 

Most previous approaches to keyword search on graph data find minimal sub-trees 
containing query keywords [2, 6, 7, 11, 12, 14, 20, 24] while some recent studies propose 
to search for sub-graphs to provide more informative answers [15, 19, 21]. In this paper 
we adopt a tree-based approach to provide users with succinct answers to a query as well 
as to support efficient query processing over a large volume of graph databases. 

Most approaches searching for sub-trees in the graph are based on two different se-
mantics, namely Steiner tree semantics and distinct root semantics [27]. The Steiner tree 
semantics defines the weight of an answer tree by the total weight of the edges in the tree. 
Search methods based on this semantics aim to find answer sub-trees with the smallest 
weights. However, finding only an optimal answer sub-tree with the smallest weight, 
called a group Steiner tree, is known to be NP-complete [13]. Under distinct-root seman-
tics, sub-trees returned as query results must be rooted at a distinct node. Thus, for each 
potential root node in the graph, only a single sub-tree having a minimal weight is con-
sidered a candidate answer to the query, where the weight of a sub-tree is typically de-
fined by the sum of the weights of the shortest paths from its root to each keyword node. 
This semantics can deal with queries over a large graph database more efficiently than 
Steiner tree semantics [27].  

BANKS [2] presents a keyword search strategy performing backward expansion of 
the graph starting from the set of nodes containing query keywords to find relevant an-
swer sub-trees under the Steiner tree semantics. The Bi-directional Search proposed in 
[14] is based on distinct root semantics and enhances BANKS by allowing forward ex-
pansion from a potential root of an answer tree toward keyword nodes in addition to 
backward exploration. However, it does not take advantage of any prior knowledge on 
the graph and depends on a heuristic activation strategy hence it shows poor performance 
on large graph databases. BLINKS [12] uses an efficient indexing scheme on graph data 
to speed bi-directional exploration with a good performance guarantee. It pre-computes 
the shortest paths and their distances from nodes to keywords in the graph and stores 
them in sorted inverted lists and a hash map. By exploiting indexes, it can avoid a lot of 
explorations of the graph data and thus can find top-k answers efficiently. A study in [6] 
suggests creating and utilizing a multi-granular representation of a graph data to mini-
mize disk I/O, and presents search algorithms on multi-granular graphs extended from 
BANKS and Bi-directional Search. A recent work in [20] has proposed an extended an-
swer tree structure and search algorithm to produce various and effective top-k answers. 

These approaches, however, have a common drawback of producing sub-trees that 
are non-reduced or duplicate in content nodes as mentioned in the previous section. Alt-
hough graph exploration approaches such as BANKS and Bi-directional Search can de-
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tect and exclude such redundant answers, an exponential number of answer sub-trees 
should be probed in the graph, resulting in severe performance overhead. BLINKS does 
not take redundancy among query answers into account and creates indexes only on the 
single optimal path from each node to a keyword term in the graph. Therefore, even if a 
redundant answer tree is detected, it cannot find alternative answer trees rooted at the 
same node as the root of the redundant answer. For example, BLINKS cannot produce 
answer trees T 2, T3, T 5, and T 6 in Fig. 1 as the alternatives to the redundant answers T2, 
T3, T5, and T6, respectively.   

The problem regarding non-reduced answers and structural similarity in search re-
sults has been discussed in [11], but they suggest a search algorithm to enumerate answer 
sub-trees under the Steiner-tree semantics in an approximate order of their heights with 
polynomial delay. A recent study in [16] deals with duplication of content nodes in the 
answers to a keyword query. Their approach is different from ours in that it focuses on 
enumerating top-k duplication-free sets of content nodes in an approximate order of 
proximity of the nodes. It only finds a set of content nodes that covers input keywords as 
an answer to a query while our approach produces a sub-tree which exhibits relationships 
among the content nodes. Even if the other method is employed to retrieve an optimal 
sub-tree connecting the content nodes, sub-trees derived from different answers might 
share the same root node. Moreover, the proximity measure to evaluate the rank of the 
answers might not accurately represent the relevance of the sub-trees to the given query. 
The enumeration algorithm produces top-k duplication-free answers one by one with 
polynomial delay. Even though it exploits a pre-built index on the shortest distance be-
tween every pair of nodes and computes the proximity of the answer approximately, it is 
not practical and scalable for large amount of graph data. 

Diversifying search result has been studied in the literature of information retrieval, 
Web search, and recommender systems [1, 5, 8, 22, 23, 25, 26, 31]. However, it is not 
straightforward to adopt those approaches to keyword search over graph data since the 
structures of underlying data and query answers as well as relevance measures are dif-
ferent from those of the previous applications. 

On the other hand, spatial keyword search is extensively studied in the literature of 
spatial databases. It aims to find spatial objects which contain a set of keyword terms and 
are closest to a specified query location. Most approaches propose to use index structures 
which are usually based on a spatial indexing scheme such as R-tree and the inverted list 
index for text retrieval [4, 10, 18, 28, 29, 30]. [10] proposes an Information Retrieval 
R-Tree which combines R-Tree with text signatures to answer top-k spatial keyword 
queries. [29] uses a quad-tree structure to decompose data space into hierarchical cells 
and proposes a scalable integrated inverted index to manipulate spatio-textual infor-
mation efficiently. [30] also proposes an inverted linear quad-tree indexing scheme based 
on the inverted index and the linear quad-tree to effectively organize spatio-textual ob-
jects and a top-k spatial keyword search algorithm. [18] considers a direction constraint 
in spatial keyword queries and proposes an effective direction-aware index structure to 
prune search space in unnecessary directions. Some approaches consider finding a set of 
objects that cover the query keywords collectively. [28] focuses on the problem of 
m-closest keyword search which retrieves a set of closest objects matching m keywords. 
In addition, [4] studies the problem of collective spatial keyword search to find a group 
of spatial objects that contain query keywords and are nearest to the query location. 
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However, the spatial keyword search approaches mentioned above are inherently differ-
ent from the keyword search over graph-structured data because the spatial objects typi-
cally do not have relationships represented by a graph, the query includes a specific que-
ry location as well as keywords, and the query answers are usually single objects that are 
not only relevant to the keywords but also closest to the query location. Even though 
some approaches suggest a method to find spatially related objects as a collective answer 
to the query, they do not have a sub-tree or a sub-graph structure. Therefore, it is difficult 
to adopt the indexes and algorithms proposed by the spatial keyword search methods to 
the problem of keyword search on graph data. Moreover, redundancy in top-k answers 
has not been addressed in the previous approaches to spatial keyword search. 

3. PROBLEM DEFINITION 

A data graph G(V, E) is a directed weighted graph where nodes in V contain key-
words and edges in E have a weight representing distance between two incident nodes. 
The nodes containing a keyword k are called keyword nodes or content nodes regarding k 
and the set of those nodes is denoted by V(k). The length of a directed path between two 
nodes in G is defined as the sum of the weights on the edges in the path. Based on the 
general scheme suggested in [27], we define an answer to a keyword query over graph 
data as follows. 

 
Definition 1 (An answer to a keyword query). Given a graph G(V, E) and a query q = {k1, 
k2, …, kl} over G, an answer to q is a sub-tree T of G which contains a multiset C = {v1, 
v2, …, vl} of keyword nodes where vi  V(ki) (1  i  l) and satisfies the followings: (a) T 
contains the shortest path from its root to each node in C, (b) all the leaf nodes of T be-
long to C, and (c) if the root of T has only one child, it also belongs to C.             

 
We denote an answer tree having a root node n and a multiset C of keyword nodes 

by T(n, C). The shortest path from root n to a keyword node vi in C is called a root-to- 
keyword path for ki and denoted by nki or nvi. The conditions in Definition 1 specify 
that answer trees should only have the nodes that are necessary and sufficient to connect 
their content nodes. In particular, condition (c) requires that answer trees should be re-
duced, i.e., the root of an answer tree should have at least two child nodes or be a key-
word node in itself. Assume that the root of an answer tree T has only one child and is 
not a keyword node. Then there exists a sub-tree T' in T which is reduced and contains 
the same set of keyword nodes as T. Since T' is usually given the higher relevance score 
than T and thus preferred by search methods, T is a redundant answer to the query.  

To find the most relevant answers to a given query, we propose a measure to the 
relevance of answer trees taking both content nodes and root-to-keyword paths into ac-
count. First, given a node v having a query keyword k, the relevance of v to k can be 
computed based on the TF-IDF weighting scheme which is usually employed in infor-
mation retrieval over text documents [3]. For instance, adopting the weighting scheme 
used in Apache Lucene text search engine [32], the relevance of v to k is defined by 

2( ,  ) ( , ) (1 log( ))
( ) 1

V
rel v k tf k v

V k
  


 (1) 
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where |V| and |V(k)| are the numbers of nodes in V and V(k), respectively, and tf(k, v) is 
the number of occurrences of k in v. 

We also consider the length of the shortest path from a possible root node of an an-
swer tree to a keyword node containing a query keyword to measure the structural rele-
vance of the answer. Since the root node connects all the keyword nodes with each other 
in a given answer tree, it can be considered that the smaller the sum of the shortest dis-
tances from the root to each keyword node is, the more relevant to the query the answer 
tree is. We measure the relevance of a root-to-keyword path nvi by 

1
( ,  ) 1 log( )

( ,  ) 1i
i

rel n v
dist n v

 


                    (2) 

where dist(n, vi) denotes the length of the shortest path from n to vi. Now, the relevance 
measure for answer trees can be defined based on the above two scoring factors as fol-
lows. 
 
Definition 2 (A relevance scoring function for answer trees). Given an answer tree T(n, 
{v1, v2, …, vl}) to a query q = {k1, k2, …, kl}, the relevance of T to q is defined by 

1 1 max

( ,  )
( ,  ) ( ,  ,  ) ( ,  )

i l i l

i i
i i i

rel v k
rel T q rel n v k rel n v

r
   

     

where rmax is the maximal value of rel(v, k) for all keyword terms and nodes in G.     

 
In the above definition, the relevance of an answer tree to the given query is meas-

ured by the sum of relevance scores rel(n, vi, ki) of each root-to-keyword path from root n 
to keyword node vi for keyword ki contained in the answer tree. Given a graph data, we 
can pre-compute the shortest paths from each node to keyword nodes containing key-
word terms, as well as their relevance scores based on the above definition. Note that the 
pre-computed information can be used to build an effective index for processing queries, 
which will be described in detail in Section 4. Therefore, the proposed scoring function 
allows us to find the most relevant answer trees in an efficient way by exploiting path 
index. 

In this paper, we take a set of answer trees into consideration which are not only re-
duced but also duplication-free in regard to their content nodes containing query key-
words. It means that answer trees returned as a result of a query should have different 
sets of content nodes as well as a distinct root node to enhance diversity of the query re-
sult. Under these constraints, we search for the most relevant answers to the given query 
in an efficient way. 

4. INDEXING SCHEME 

To enable efficient search of top-k answers in a large graph database, we propose an 
indexing scheme for selected node-to-keyword paths in the graph data. Similar to the 
indexes used in BLINKS [12], it pre-computes the most useful paths using the relevance 
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measure proposed in the previous section and stores them in the keyword-node lists and 
node-keyword maps. 

Keyword-node lists, denoted by KNLists, are a set of inverted lists defined for each 
keyword term in the graph. A list KNList(k) for keyword k stores the most relevant 
node-to-keyword path from each node in the graph to a node containing k. Formally, let 
P(n, k) = {nvi | vi  V(k)} for node n and keyword k, and pm(n, k) be the optimal path in 
P(n, k) which has the highest relevance score, i.e.,  

( , )
( ,  ) arg max ( ,  ,  ).m

n v P n k
p n k rel n v k

 
  

KNList(k) stores index entries for the optimal paths pm(n, k) for all nodes n in the graph. 
The entry of pm(n, k) contains a quadruple (n, vm, fm, rm) where vm is the end node of pm(n, 
k) containing keyword k, fm is the first node on the path besides node n (i.e., the next 
node of n), and rm is the relevance score of the path, i.e., rel(n, k, vm). All the entries in 
KNList(k) are sorted in a decreasing order of relevance.  

KNLists index allows us to find the paths from a node to a keyword which are most 
relevant to a given query in an efficient way without performing backward exploration in 
the graph data proposed by BANKS [2]. Backward exploration means expanding nodes 
in the directed graph backwards starting from the set of keyword nodes containing any 
query keyword to find relevant paths for query answers. Our query processing algorithm 
can avoid such graph exploration using the proposed index. Specifically, given a query 
containing keyword k, the keyword-node list for k, i.e. KNList(k) is read sequentially and 
the most relevant paths from a node to a keyword node for k can be easily found in the 
order of relevance scores. The start nodes of the retrieved paths can be a potential root of 
a candidate answer tree. 

A primary node-keyword map, denoted by NKMap, is a hash map to store infor-
mation on the most relevant paths for each pair of node and keyword in the graph. For-
mally, for a pair of node n and keyword k, it stores an ordered list of entries for a pre- 
defined number of n-to-k paths which have the highest relevance scores in P(n, k), in-
cluding the optimal path pm(n, k) defined above. An entry for an n-to-k path contains a 
triple (vi, fi, ri), where the attributes denote the end node, first node, and relevance of the 
path, respectively, similar to the entry in the keyword-node list. The entries are stored 
and looked up in a hash map using the pair of n and k as a search key.  

NKMap index is used to find the optimal paths from the root node of a potential 
answer tree to the query keywords efficiently. We can find the most relevant paths from a 
given root node to any query keyword directly from the NKMap, and thus we can avoid 
forward exploration of the graph data which expands a lot of nodes along the directed 
edges starting from a set of potential root nodes towards some keyword nodes to find 
relevant paths for query keywords [14]. Moreover, since it stores alternative paths in ad-
dition to the optimal path from a node to a keyword term, our search algorithm can find 
an alternative answer tree for a given root node efficiently in case duplication of content 
nodes occurs among the candidate answer trees, which will be described in detail in Sec-
tion 5.3. 

In addition to NKMap, we also introduce a secondary node-keyword map, denoted 
by NKMaps, to store a node-to-keyword path as an alternative to the optimal path pm(n, k) 
for each pair of node n and keyword term k in the graph. It is the most relevant one 
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among the paths in P(n, k) which have a first node different from that of pm(n, k). This 
index is used to find the optimal reduced answer tree rooted at a given node, which will 
be detailed in Section 5.2. 

5. QUERY PROCESSING 

In this section, we propose a query processing algorithm to find k best non-redun- 
dant answer trees for a keyword query over graph databases, based on the answer struc-
ture, relevance measure, and path indexes presented in the previous sections. 
 
5.1 Outline of Top-k Query Processing  
 

Our query processing model is based on the Threshold Algorithm [9] which is pop-
ularly used to evaluate top-k queries on multi-dimensional data such as multimedia ob-
jects. It performs sequential scan on the pre-computed index lists of data items, which are 
sorted in a descending order of per-attribute scores, and searches for top-k items with the 
highest total scores aggregated from the index lists.  

 
Algorithm 1: Keyword Query Processing 
Input: a keyword query q = {w1, w2, …, wl} and kZ+ 
Output: a set of top-k answer trees for q 
1: a priority queue Qt  ; a set C   
2: curRel[i]  0.0 for all i[1, l] 
3: Let L(q) = {Li = KNList(wi) | wiq (1il)}. 
4:  while an entry exists in a list in L(q) do 
5:  Select a list Li in L(q) in a round-robin manner. 
6:  Read an entry (n, v, f, r) at the current position in Li. 
7:  curRel[i]  r 
8:  if n  C then 
9:   V[i]  (v, f, r) 
10:     for-each wj  q such that j  i do 
11:      Look up the first entry (vj, fj, rj) with key (n, wj) in NKMap. 
12:      if the entry was found then V[j]  (vj, fj, rj)  
13:      else goto line 21 
14:     if T(n, V) is a non-reduced sub-tree then   
15:      V  findReducedAnswer(n, V, q) 
16:     if V ≠  and T(n, V) is a duplicate answer tree then 
17:      V  findUniqueAnswer(n, V, q) 
18:     if V ≠  then Qt  Qt  {(n, V)} 
19:     C  C  {n} 
20:  if |Qt| = k and relk  1il curRel[i] then break 
21: Derive top-k answer trees from the top-k entries in Qt. 

 

Algorithm 1 shows a sketch of our keyword search algorithm. It employees a prior-
ity queue Qt to maintain k most relevant answer trees retrieved from the graph data. Given 
a keyword query q = {w1, w2, …, wl}, let L(q) be a set of keyword-node lists KNList(wi) 
for all wi in q. The algorithm performs sequential scan on the lists in parallel. That is, it 
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selects a list in L(q) in a round-robin manner and reads an entry from the list (see lines 
5-6). Whenever a new entry is retrieved from a list, its relevance value is recorded in an 
array curRel of the current relevance from each list in L(q) (line 7). If an entry (n, v, f, r) 
read from a list for a query keyword is the first one regarding an optimal root-to-keyword 
path from node n to a query keyword in q, entries regarding the optimal paths from n to 
all the other keywords in q are looked up in the node-keyword map NKMap and are 
stored in an array V (lines 8-13). If all the optimal paths for query keywords are found 
from NKMap, an optimal answer tree rooted at n can be derived. Then, the algorithm 
examines whether the tree is in a reduced form and contains a unique set of content nodes 
compared with the other candidate trees in top-k queue Qt. If it does not, an alternative 
answer tree rooted at n should be searched for using two algorithms which will be de-
tailed later (lines 14-17). The answer tree is stored in Qt if it is one of the k most relevant 
which have been found (line 18).  

In the scan of the keyword-node lists, if at least k answer trees are found and their 
relevance scores are no less than those of the answer trees that are not found yet from the 
lists, the query processing algorithm can terminate safely with the correct top-k answer 
trees in Qt for the given query. Since the entries in keyword-node lists are sorted in a 
decreasing order of relevance, the sum of the relevance values in the array curRel can 
serve as an upper bound of the relevance of the answer trees that have not been found yet. 
Thus, the algorithm stops list scan and returns the top-k answers in Qt if the following 
condition is satisfied: 

 

|Qt| = k and relk  1il curRel[i],     
 

where relk is the relevance score of the kth relevant answer tree in Qt (lines 20-21). 
 
5.2 Finding Reduced Answers 
 

Given a potential root node, Algorithm 1 searches for an optimal answer tree con-
sisting of the most relevant root-to-keyword paths for query keywords. It is a non-re- 
duced answer tree if and only if the first nodes of all the root-to-keyword paths in the tree 
are equal to the only child of the root. Thus, we can see if an answer tree is reduced or 
not by examining the first nodes of all root-to-keyword paths. However, it should be 
considered that if the root is selected as a keyword node for all the query keywords, the 
root node itself can be a reduced answer tree. 

Assume that an optimal answer tree T(n) rooted at node n is not a reduced tree. If 
there exist more than one reduced answer tree rooted at the same node n, the one with the 
highest relevance score should be chosen as an alternative to T(n). For a keyword w in q, 
let pa(n, w) be the path from n to a keyword node v in V(w) which has the first node dif-
ferent from that of pm(n, w) and has the highest relevance score. Formally, assuming that 
Pa(n, w) = {nv | vV(w), f(nv)  f(pm(n, w))} where f is a function from a path to the 
first node of the path, 

 

( , )

( , ) arg max  ( , , ).
a

a
n v P n w

p n w rel n v w
 

      
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Also suppose that Ti(n) be a sub-tree derived from T(n) by replacing the optimal path 
pm(n, wi) with pa(n, wi) for a keyword wi in q. That is,  

 
Ti(n) = {pa(n, wi)}{pm(n, wj) | wj  q, j  i}. 

 
Note that Ti(n) is a reduced answer to q since the first node of pa(n, wi) is not equal to 
those of the other root-to-keyword paths pm(n, wj) for keywords wj in q (j  i). Now, 
among l alternative sub-trees Ti(n) of T(n) (1  i  l), the one with the highest relevance 
is the best reduced answer tree rooted at n.  

For example, a graph shown in Fig. 2 contains keywords w1 and w2 in the set of 
nodes V(w1) and V(w2), respectively. Assuming that all nodes have the same relevance to 
the keywords they contain, the most relevant paths pm(n, w1) from n to w1 is nv1 and 
pm(n, w2) from n to w2 is nv2. Thus, given a query q = {w1, w2} over the graph, the op-
timal answer tree T(n) rooted at n consists of these two paths. However, T(n) is a 
non-reduced sub-tree since two paths share the same first node f3. Note that an alternative 
path pa(n, w1) from n to a node in V(w1) is nv4 and a path pa(n, w2) from n to a node in 
V(w2) is nv5. Using one of these paths, we can get two relevant reduced answer trees 
rooted at n, i.e., T1(n) = {pa(n, w1)}  {pm(n, w2)} = {nv4}  {nv2} and T2(n) = 
{pm(n, w1)}  {pa(n, w2)} = {nv1}  {nv5}. Since T1(n) has the higher relevance 
score than T2(n), it is the most relevant one among 36 reduced answer sub-trees rooted at 
n in the graph, and thus it should be selected as a candidate answer to the query. Note 
that if we choose path nv3 as an alternative path to pm(n, w1) or pm(n, w2), it will lead to 
another non-reduced sub-tree the root of which has only one child node f3. 

 
Fig. 2. An example of finding the optimal reduced answer tree. 

 
Algorithm 2: Find Reduced Answer 
Input: a nodeID n, an array V of (nodeID, nodeID, rel)’s, and a query q 
Output: an array V[1..l] of (nodeID, nodeID, rel)’s 
1: A[i]  null for all i[1, l] 
2: for-each wi  q do  
3:   Look up an entry (vi, fi, ri) with key (n, wi) in NKMaps. 
4:  if the entry was found then A[i]  (vi, fi, ri) 
5: if A[i] = null for all i[1, l] then return  
6: else  
7:    Find i[1, l] such that (V[i].rel  A[i].rel) is minimal. 
8:    V[i]  A[i] 
9:  return V 
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To find optimal reduced answer trees efficiently without exploring the entire graph 
data, Algorithm 2 exploits the NKMaps index proposed in Section 4.1, which stores the 
optimal alternative paths pa(n, w) defined above for all pairs of node n and keyword w in 
the graph. Given a non-reduced optimal answer tree T(n), it first looks up in NKMaps the 
entries for alternative paths from n to all the query keywords (lines 2-4). An optimal re-
duced answer tree can be easily obtained by selecting such a query keyword wi that dif-
ference between pm(n, wi) and pa(n, wi) is the smallest and then by replacing pm(n, wi) 
with pa(n, wi) in T(n) (lines 7-8). 

 

5.3 Finding Duplication-Free Answers 
 

Now, we focus on finding top-k answer trees which are duplication-free in regard to 
content nodes. An answer tree T1 which belongs to a set A of top-k answer trees to a giv-
en query is a duplicate answer if and only if there exists an answer tree T2 in A (T2  T1) 

which contains the same set of content nodes as T1 and has no smaller relevance score 
than T1. When a duplicate answer tree T(n, C) rooted at a specific node n is produced in 
query processing, we aim to find an alternative answer tree T(n, C') which is rooted at the 
same node n and has a set C' of content nodes different from those of all the other candi-
date answer trees in top-k queue Qt. Assuming that the graph has at most p paths from 
node n to each keyword in the query of size l, pl answer trees rooted at n can be derived 
from the combinations of root-to-keyword paths. To find an optimal one which is not a 
duplicate tree and has the highest relevance score efficiently without taking all the possi-
ble answer trees into consideration, we suggest a state space search algorithm based on a 
branch-and-bound strategy.  

As shown in Fig. 3, search space consists of an ordered tree of states. Each state 
represents a unique combination of l paths from the same node to all query keywords and 
thus defines an answer tree. In the tree of states, each state has p child states, which 
choose one of p paths from the root to keyword nodes containing the same keyword in a 
decreasing order of relevance from left to right. Without loss of generality, we assume 
that the states at level i (1  i  l) choose a different root-to-keyword path for a keyword 
wi in a given query q = {w1, w2, …, wl}. We also assume that they inherit from their par-
ent state the root-to-keyword paths to the keywords in {w1, w2, …, wi-1} while they have 
the most relevant root-to-keyword path for the keywords in {wi+1, wi+2, …, wl}. For ex-
ample, suppose that a query q = {w1, w2, w3} is given and the graph has three different 
paths from root n to each query keyword. Fig. 3 shows a part of the state tree where each 
state contains an array of index numbers indicating root-to-keyword paths selected for 
the query keywords. We can see that the sibling states shown at level 2 contain one of 
three paths to keyword w2 identified by a different index number, and all the states inherit 
a root-to-keyword path to keyword w1 identified by the index number 1 from their parent 
state s0. For keyword w3, they all have the optimal path to w3 denoted by the index num-
ber 1 stored in the third entry of the arrays. Note that in the tree of states, an answer tree 
represented by state s has no smaller relevance score than those derived from the de-
scendent states of s. It should be also noted that since sibling states contain a different 
path to the same query keyword in a descending order of relevance, the answer tree de-
rived from state s has no smaller relevance than those derived from the right siblings of s. 
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Considering these characteristics, we can explore the search space in an efficient way by 
pruning a large number of irrelevant states.  

  
Fig. 3. A tree of states generated in state space search to find an optimal duplication-free answer. 

 
Algorithm 3: Find Unique Answer.
Input: a nodeID n, an array V of (nodeID, nodeID, rel)’s, and a query q 
Output: an array V[1..l] of (nodeID, nodeID, rel)’s 
1: UB  rel(T(n, V), q), LB  relk, bestSolution   
2: a priority queue Qs {s0}, where s0 is an initial state. 
3: while there exists a state in Qs do 
4:  e  a state in Qs whose score is maximal 
5:  Qs  Qs / {e} 
6: if score(e)  LB then break 
7:  repeat  
8:   if e has the next sibling state then 
9:   Generate the next sibling state s of e using NKMap. 
10:  if score(s) > LB then  
11:  if score(s)  UB then 
12:     if s is a solution state then  
13:     bestSolution  s; LB  score(s) 
14:    else Qs  Qs  {s}  
15:    else Qs  Qs  {s}  
16: if e is a non-leaf state then 
17:   Generate the first child state c of e. 
18:   e  c 
19: else  e   
20:  until e =  
21: if bestSolution   then 
22:   for-each wi  q do  
23:  V'[i]  (vi, fi, ri) of the path from n to wi selected by bestSolution  
24:   return V' 
25: else return  

 
Algorithm 3 shows a pseudo-code of our best-first state space search algorithm. It 

uses a priority queue Qs to store non-solution states which should be further expanded. 
As shown in line 2, it is initialized by state s0 which represents a duplicate answer sub- 
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tree given to the algorithm. We assume that it consists of the best root-to-keyword paths 
for all the query keywords (see Fig. 3). The state search starts from the initial state s0 in 
Qs. At each round of the algorithm, a state e with the highest score is selected from the 
priority queue (line 4), where the score of a state is defined by the sum of relevance of 
the paths chosen by the state, i.e. the relevance of the answer tree defined by the state. If 
the score of e is greater than that of the best state found, denoted by LB, the next sibling 
state s of e is generated and investigated (lines 8-15). NKMap index is used to retrieve 
information on a relevant path for a new state efficiently. If the score of s is no greater 
than LB, all of its descendent states can be safely excluded from further exploration (refer 
to line 10). Otherwise, if the score of s is no greater than that of the duplicate answer tree 
denoted by state s0 and s is a solution state, i.e., a reduced and unique answer tree with 
respect to the candidate answers in top-k queue, it is a new best solution (lines 11-13). 
Otherwise, it is stored in the queue Qs. Subsequently, if e is not a leaf state, the first child 
of e is generated and the above process is repeated on it (lines 16-18). In Fig. 3, for ex-
ample, the shaded nodes indicate the states generated and investigated in the first round 
of the outermost loop of the algorithm. Note that during the best-first search, if a state 
chosen in Qs derives no better answer trees than the current best solution state, the algo-
rithm terminates and returns the information on the root-to-keyword paths selected by the 
best solution state. It represents the most relevant and unique answer tree rooted at a 
given node n (line 6 and lines 21-24).  

It should be noted that if the new answer tree found replaces one of the previous 
candidate answer trees in the top-k queue which is duplicate with regard to the new an-
swer (line 18 of Algorithm 1), an alternative to the duplicate answer tree should be sub-
sequently searched in the graph. We omit the details in the algorithm above for the sake 
of simplicity of description. 

 
5.4 Performance Analysis  
 

The query processing algorithm proposed above exploits the path indexes consisting 
of inverted lists for keywords and hash maps for node-keyword pairs. As shown in Algo-
rithm 1, it performs parallel scan of the inverted lists for query keywords in parallel 
based on the Threshold Algorithm [9]. BLINKS method also adopts a similar strategy, 
which is proven to be optimal within a factor of the size of the query [12].  

Given a graph with n nodes, the size of the proposed Keyword-Node List for a key-
word term k is O(n) since for each node in the graph it stores the most relevant one 
among the paths from the node to the keyword, if any. Thus, given an l-keywords query, 
lines 5-20 in the outermost loop in Algorithm 1 execute in O(l·n) in worst case. In prac-
tice, however, the number of entries in KNList(k) is much smaller than n if a keyword k 
appears a subset of nodes and they are also reachable from a subset of nodes in the graph.  

Note that lines 9-19 in Algorithm 1 executes at most n times since our approach is 
based on the distinct root semantics. NKMap index is looked up l1 times in line 11, and 
NKMaps is used l times in line 3 of Algorithm 2 which is invoked in line 15 of Algorithm 
1. On the other hand, Algorithm 3 which is invoked in line 17 generates at most pl states 
in state space search where p is the number of relevant paths stored in NKMap index for 
a pair of node and keyword. Thus, it costs O(pl) in worst case while the proposed best- 
first search algorithm can prune a large portion of irrelevant states in the search space, as 
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shown in the experiments in Section 6. As a result, the total time complexity of the pro-
posed top-k query processing algorithm is O((l + pl)·n). 

6. PERFORMANCE EVALUATION 

We evaluate effectiveness and efficiency of the proposed approach by conducting 
experiments using real graph datasets. Two variants of our approach are tested: a method 
called Reduced which searches only for reduced answer trees without considering con-
tent nodes duplication and the other one called Red&Dup-free which produces answers 
that are both reduced and duplication-free. We selected BLINKS as a baseline method 
for performance comparison since it is most popular and practical top-k keyword search 
algorithm for a large amount of generic graph data. Similar to our approach, it finds 
sub-trees under the distinct root semantics and exploits pre-computed indexes on the 
graph to find optimal top-k answer trees efficiently in large graph data. We also experi-
ment with a modified version of BLINKS, called BLINKS-N, which detects non-reduced 
or duplicate sub-trees and excludes them from the candidate answers to the query during 
search process. All the considered algorithms are implemented in Java 6.  

As for the test dataset, we use two real graph data, a geographic database Mondial1 
and a movie database IMDB2. From Mondial, we select a subset of entities and relation-
ships and build a graph including 6,431 nodes, 19,951 edges, and 15,815 keyword terms. 
In IMDB, we use data on about 147K movies as well as data on actors, actresses, and 
directors related to the movies to construct a large graph consisting of about 831K nodes, 
2.82M edges, and 303K keyword terms. In implementation of indexing and search algo-
rithms, we used JGraphT3 library to construct in-memory data structures and to compute 
the shortest paths between pairs of nodes in the graphs based on Bellman-Ford algorithm. 
We also exploited Apache Lucene4 library to extract keywords from nodes in the graph 
and compute the relevance of the nodes to keyword terms based on Eq. (1). For the sake 
of simplicity and efficiency of experiments, we assume that all edges have the same 
weight of 1 and consider only the node-to-keyword paths the length of which are no 
longer than 5. Table 1 shows a set of test keyword queries over two graph datasets, which 
have been processed by considered methods to find top-k answers. The experiments have 
been conducted on a LINUX server having 10 1.7GHz hexa-core CPUs and 32GB RAM. 

 
Table 1. Test queries. 

Dataset Query Keyword list Dataset Query Keyword list 

Mondial 

Q1 Alaska, arctic, sea 

IMDB

Q11 elf, dwarf, fantasy 
Q2 cape, gulf, Africa Q12 earthquake, flood, disaster 
Q3 Vienna, Donau, Alps Q13 alien, robot, attack 
Q4 caldera, lake, America  Q14 explosion, collapse, rescue 
Q5 lake, Quebec, Canada Q15 disaster, rescue, hero 
Q6 Himalaya, India, Pakistan Q16 emperor, war, battle 
Q7 river, Minnesota, Louisiana Q17 space, earth, return 
Q8 lake, Michigan, Ontario Q18 travel, moon, mars 
Q9 city, desert, California Q19 earth, sea, ocean 
Q10 island, Vancouver, Seattle Q20 time, travel, future 

 
 1 http://www.dbis.informatik.uni-goettingen.de/Mondial/ 
2 http://www.imdb.com/ 
3 http://www.jgrapht.org/ 
4 http://lucene.apache.org/ 
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6.1 Goodness of Answers 
 

Fig. 4 shows the number of non-reduced and duplicate sub-trees included in the 
answers to the test queries produced by BLINKS method. It indicates that top-10, top-20, 
and top-30 answers to the queries over Mondial data have 1, 6, and 13 non-reduced an-
swers and 3, 10, and 18 duplicate answers respectively on average. For the queries over 
IMDB data, BLINKS returns 1, 4, and 9 non-reduced trees and 5, 14, and 23 duplicate 
trees respectively in top-10, top-20, and top-30 answers on average. We can observe that 
as the number of query answers increases, the proportions of non-reduced trees and du-
plicate trees in the results also grow. The average numbers of non-reduced and duplicate 
trees in top-30 answers to a test query generated by BLINKS amount to about 37% and 
70%, respectively, of the entire answers. In contrast, BLINKS-N and Reduced have pro-
duced no answer tree in a non-reduced form, and Red&Dup-free has returned neither 
non-reduced nor duplicate answer trees for all the test queries.  

 

 
                        (a) Number of answers in a non-reduced form. 

 
(b) Number of answers having a duplicate set of content nodes. 

Fig. 4. Redundant answers in top-k results produced by BLINKS. 
 

To evaluate and compare the effectiveness of different search methods, we use a 
measure for goodness of top-k answers produced by each method, which is based on two 
factors, i.e. diversity and relevance of the answers. Given a keyword query q, let A = {T1, 
T2, …, Tk} be an ordered set of top-k answer trees which satisfies rel(Ti, q)  rel(Tj, q) for 
all i < j, and let o(Ti, A) denote the order of Ti in A. The diversity of A is defined as the 
proportion of the answer trees in A which are reduced and also unique in terms of content 
nodes containing query keywords. Formally,  
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( )
( ) ,

N A
div A

A
      

 
where N(A) = {Ti | Ti is a reduced tree in A, and there is no Tj in A such that o(Tj, A) < o(Ti, 
A) and Tj has the same set of content nodes as Ti}. 

The relevance of A is measured by the average of the relevance scores of the answer 
trees in A normalized by the highest relevance score of the best answer tree. That is, 

 

11

1
( )= ( , ),

( , ) i
i k

rel A rel T q
k rel T q         

 
where rel(Ti, q) is the relevance score of the ith answer tree Ti in A for query q. Finally, 
the goodness of A is computed as the multiplicative combination of diversity and rele-
vance of A as follows. 
 

( ) ( ) ( ),goodness A div A rel A       

 
where  is a weighting parameter, which is set to 1 in our experiments. 

Figs. 5-7 respectively present the diversity, relevance, and goodness of top-30 an-
swers to each test query obtained by each method. As shown in Fig. 5, it is obvious that 
Red&Dup-free produces the most diverse results without either non-reduced or duplicate 
answer trees. Meanwhile, diversity of the answers by BLINKS is the lowest among all 
methods, which is only about 37% of that of the answers by Red&Dup-free on average 
over Mondial data. The query answers generated by Reduced and BLINKS-N include 
many duplicate trees hence their average diversity scores are also small, which are about 
54% of that of Red&Dup-free. For the queries on IMDB, differences in diversity between 
Red&Dup-free and the other methods are larger than those for the queries over Mondial. 

On the other hand, relevance of query answers is shown to be in contrast with their 
diversity. Fig. 6 indicates that all relevance scores obtained by the methods other than 
BLINKS are no higher than those by BLINKS and the result by Red&Dup-free has the 
lowest in the most of queries. Specifically, the relevance of the query answers on Mondi-
al generated by BLINKS-N, Reduced, and Red&Dup-free is respectively about 8.8%, 
6.1%, and 11.8% lower than that of BLINKS on average. This is due to the fact that the 
methods besides BLINKS make an attempt to avoid non-reduced and/or duplicate answer 
trees even though they are the best answers in terms of relevance to the query. Note that 
our Reduced method has achieved more relevant answers than BLINKS-N in the most 
queries by finding the most relevant reduced answer tree as an alternative to a non-re- 
duced one. For the queries on IMDB data, the differences in relevance of the answers are 
not significant and the average relevance score of our Red&Dup-free method is only 
about 4.4% lower than that of BLINKS. 

Fig. 7 shows goodness of top-30 answers to each test query generated by each 
method. For the most queries, goodness of the answers by Red&Dup-free is much higher 
than that of the results by BLINKS due to a large gap in diversity of the answers between 
two methods.  
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(a) Queries on Mondial.                     (b) Queries on IMDB.   

Fig. 5. Diversity of top-30 answers. 
 

 
(a) Queries on Mondial.                       (b) Queries on IMDB.   

Fig. 6. Relevance of top-30 answers. 
 

 
(a) Queries on Mondial.                      (b) Queries on IMDB.   

Fig. 7. Goodness of top-30 answers. 
 

Fig. 8 indicates that average goodness of top-30 answers by Red&Dup-free on the 
Mondial and IMDB data has improved by more than 140% and 310%, respectively, over 
the answers by BLINKS. Meanwhile, the goodness score of Reduced has increased by 
about 34.4% on Mondial data and by about 10% over IMDB data on average compared 
to the result by BLINKS. Figs. 9 (a) and (b) show that goodness of the answers by all 
methods degrades as the number of answers to be found increases. However, we can ob-
serve in Figs. 9 (c) and (d) that goodness of the answers by three methods besides 
BLINKS improves more over the results by BLINKS as the value of k grows. Especially, 
Red&Dup-free method has achieved significant enhancement on the goodness of answers, 
which is nearly proportional to the number of query answers to be returned. 
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Fig. 8. Average goodness of top-30 answers obtained by each method. 

 

 
(a) Average goodness (Mondial).           (b) Average goodness (IMDB). 

 
(c) Improvement over BLINKS (Mondial).  (d) Improvement over BLINKS (IMDB). 

Fig. 9. Average goodness of top-k answers with varying k. 
 

6.2 Execution Efficiency  
 

To evaluate execution efficiency of our approach, we measure and compare the time 
spent by each method in processing test queries. Fig. 10 presents the execution time of 
each method in finding top-30 answers to the queries. While the results vary depending 
on queries, average execution time tends to increase in the order of BLINKS, BLINKS-N, 
Reduced, and Red&Dup-free, as shown in Fig. 10(c). For the queries over Mondial data, 
Reduced and Red&Dup-free take time respectively about 17% and 25% more than 
BLINK on average. On IMDB data, their average execution times increase by about 37% 
and 51% respectively than that of BLINKS. This is due to the overhead required in the 
search of optimal reduced answers and duplication-free answers to the given queries.  

Fig. 11 shows that average execution time of each method spent in finding top-k 
answers to the queries over IMDB data increases linearly with the number k of answers 
to be found. The proposed methods have a little larger growth rate than BLINKS while 
the execution time of BLINKS-N increases most rapidly.   
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(a) Queries on Mondial.                     (b) Queries on IMDB. 

 
(c) Average execution time. 

Fig. 10. Execution time to find top-30 answers. 
 

 
Fig. 11. Average execution time to find top-k answers with varying k. 
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about 50% and 80% respectively on Mondial and IMDB on average. Fig. 13 indicates 
that in both strategies, execution time as well as the numbers of states generated increas-
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es in proportion to the number of answers to be returned, while our best-first search 
strategy can achieve a large amount of performance improvement over the naïve ap-
proach with increasing values of k.  

 

 
                         (a) Number of states generated. 

 
(b) Execution time. 

Fig. 12. Performance of the state search algorithm to find top-30 duplication-free answers. 
 

 
(a) Average number of states generated.          (b) Average execution time. 

Fig. 13. Performance of the state space search algorithm with varying k. 
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top-k answers efficiently by exploiting the pre-constructed indexes. Effectiveness and 
efficiency of the proposed method have been demonstrated by extensive experimental 
study using real graph datasets in comparison with the previous methods. By producing 
non-redundant and relevant answer trees for a given keyword query, our approach can 
provide the users with diverse and meaningful results to satisfy their various information 
need on large graph databases. 
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