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Sequential pattern mining analyzes the ordered user behaviors, such as ordered list of 

the products purchased by most of the users. Because the user transactions will be in-

creased every day, the current sequential patterns may be different from the previous ones. 

Therefore, how to efficiently update the original sequential patterns in real time is a very 

important research topic. If the original sequential patterns cannot be updated in time, then 

the information may no longer represent the user behaviors. For the previous studies in 

this area, some approaches may loss information, and some methods need to re-find the 

previous discovered patterns. In this article, we propose a novel approach for mining and 

maintaining the discovered sequential patterns without losing any information and re-dis-

covering the existed patterns. The experiments also represent that our approach is more 

efficient than the current most efficient algorithm. 

 

Keywords: sequential pattern maintenance, transaction database, data mining, user se-

quence, data stream 

1. INTRODUCTION 

Mining sequential patterns [2, 14] can find a set of ordered lists of purchasing behav-

iors for most users from a user transaction database. A transaction database contains a set 

of user transactions, which contain user identifier (UID), date and time of the transaction, 

and the purchased products (items) in the transaction. A transaction contains the products 

purchased together by a certain user. For example, a sequential pattern “<{computer}{prin- 

ter}{toner cartridge}> 80%” means that 80% of the users purchase printer after purchasing 

computer, and they purchase toner cartridge after purchasing printer. This information can 

be used to predict which products the users will purchase after they purchased a set of 

products. Therefore, after a user bought a set of products, we can promote or recommend 

the items to the user according to the sequential patterns. 

There are more terminologies for mining sequential patterns: A sequence can be de-

noted as an ordered list <s1, s2, …, sn>, which si is a set of items. A sequence <y1, y2, …, 

ym> contains another sequence <x1, x2, …, xn> if x1yi1, x2yi2,…, xnyin, in which i1 < i2 

< … < in, and 1≦ik≦m. A user sequence is an ordered transaction purchased by a user 

according to the transaction date and transaction time, which is stored in a user sequence 

database. For example, Table 1 can be transformed to the user sequence database shown 

in Table 2. 

The support (sup) of a sequence s is defined as the number of user sequences contai-

ning s divided by the total number of the user sequences in a user sequence database. The 
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Table 1. A transaction database. 

UID Date, Time Items 

1 2016/1/1, 10:30 EF 

1 2016/1/1, 11:36 EFH 

1 2016/1/1, 11:40 FGH 

2 2016/2/1, 12:20 EF 

2 2016/3/2, 15:36 FH 

3 2016/2/2, 09:12 FG 

4 2016/1/23, 17:11 FH 

 

Table 2. A user sequence database transformed from Table 1. 

UID User Sequence 

1 <(EF)(EFH)(FGH)> 

2 <(EF)(FH)> 

3 <(GH)> 

4 <(FH)> 

 

number of the user sequences containing sequence s is the support count (SupCount) of 

sequence s. A sequence s is called a sequential pattern or a frequent sequence if the support 

of sequence s is no less than a user-defined minimum support (min-sup). A sequence con-

taining k items is called a k-sequence, and a frequent sequence containing k items is called 

a frequent k-sequence. For example, the minimum support is set to 40% for Table 2, that 

is the minimum support count is 2 user sequences. Since 4-sequence <(EF)(FH)> is con-

tained in two user sequences, and the support of <(EF)(FH)> is 2/4 = 50%, sequence <(EF) 

(FH)> is a frequent sequence or a sequential pattern.  

Lin and et al. [10] proposed an algorithm FUSP-tree, which finds the frequent se-

quences according to the created FUSP-tree when some transactions are increased. The 

algorithm FUSP-tree is based on FUFP-tree [6] and the algorithm IncSpan [3]. That is, 

only frequent items stored in the tree structure, and the added transactions are scanned to 

count support for each item. There are four cases for each sequence when some transac-

tions are added: Case 1. The sequence was originally frequent and is also frequent after 

adding the transactions. Case 2. The sequence was originally frequent, but becomes infre-

quent after adding the transactions. Case 3. The sequence was not frequent originally, but 

turns out to be frequent after adding transactions. Case 4. The sequence was not frequent 

originally and is not frequent either, after adding the transactions. For Cases 1-3, FUSP-

tree algorithm takes a large amount of time to adjust and update the structure of FUSP-tree. 

For Case 3, because there is no information about infrequent item in the tree structure, 

FUSP-tree needs to rescan the original user sequence database to count supports for these 

sequences. After adjusting the FUSP-tree structure, the algorithm applies the algorithm 

FP-Growth [7] to re-discover all the sequential patterns. 

Hijawi and Saheb [8] proposed an algorithm DSSPM for sequence pattern mining in 

data stream. This algorithm first scans the added user transactions to count support for each 

item, and removes the items which do not satisfy the minimum support threshold. For the 

items which meet the minimum support, this algorithm permutates these items in each 

added sequence to generate all the candidate set and increment the count for each permu-

tation (i.e., candidate sequence). The algorithm DSSPM finally inserts the permutations 
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(i.e., frequent sequences) which achieve the minimum support into a sequence tree. Alt-

hough this algorithm does not need to re-scan the original database, the counts of some 

items and sequences will be lost, since infrequent items were removed and there is no 

information to obtain the support of the originally infrequent sequence, such that the final 

set of frequent sequences may be incorrect. Moreover, this algorithm generates all the per-

mutations of frequent items in all the user sequences, which is very time consuming to 

search and count all the candidate sequences. 

The previous approaches [3, 5, 9-13] for maintaining sequential patterns also re-scan 

the original transaction database and re-find the previous generated sequential patterns, 

which are not efficient. Therefore, we propose an efficient approach for mining and main-

taining sequential patterns to address the disadvantages of the previous approaches. 

2. THE MAINTENANCE OF SEQUENTIAL PATTERNS 

Because user transactions will continue to increase over time, we converted the trans-

action database into a date-stamped user transaction database, which records the user ID 

(UID), transaction date (time), and purchased items. The transaction date (time) is denoted 

by DTi (i≧1) in order. As the date increases, the value of i also increases. Table 3 is an 

example of date-stamped user transaction database, which records the items purchased by 

each user on date DTi. 

 
Table 3. A date-stamped user transaction database. 

UID DT1 DT2 DT3 

1 F G FGH 

2 E FI F 

3 G FGH G 

 

In this section, we represent our approach for mining and maintaining sequential pat-

terns when a set of transactions on date DTi is added. There are two algorithms SPStream 

and SPStream_Ins proposed for mining and maintaining the sequential patterns. After de-

scribing SPStream algorithm, we point out the problems of SPStream and explain how 

SPStream_Ins can improve these problems. 

2.1 SPStream Algorithm 

SPStream considers the transactions day by day, and sequentially adds each item in 

the transactions to the status table of this item, which we designed to record the information 

for an item or a sequence according to the order of the transaction date. The status table 

for a sequence s includes the sequence s, its support count (SupCount), and the UID of the 

user who purchased the items in the sequence and the list of the dates the user purchased 

these items. For example, in Table 3, the status table for sequence <G> is shown in Table 

4, where the support count of sequence <G> is 2, since there are 2 users which purchased 

item G. In Table 3, item G was purchased by user UID1 on dates DT2 and DT3, so the list 

of dates is (2, 3), and item G was purchased by user UID3 on three dates DT1, DT2 and 

DT3, so the list of dates is (1, 2, 3).  
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Table 4. The status table for sequence <G>. 

<G> 

SupCount: 2 

UID 1: (2, 3) 

UID 3: (1, 2, 3) 

 

Table 5. The status tables for 1-sequences after adding the transactions on DT1. 

<E> <F> <G> 

SupCount: 1 SupCount: 1 SupCount: 1 

UID 2: (1) UID 1: (1) UID 3: (1) 

 

Our algorithm SPStream updates or creates the status tables for 1-sequences after add-

ing the transactions on DTi. For example, assume min-sup = 50% in Table 3, that is the 

minimum support count is 350% = 1.5, because there are three users. Table 5 shows the 

status tables for the sequences created after adding all the transactions on DT1. 

If the supports of 1-sequences are no less than min-sup, then these 1-sequences can 

be joined with each other to generate candidate 2-sequences, and their status tables would 

be created. For instance, after adding the transactions on DT1, there is not any frequent 

item generated. SPStream adds the dates DT2 to UID2 and UID3 in the status table for 

sequence <F> after adding the transactions on DT2. At the same time, date DT2 is also 

added into UID1 in the status table for sequence <G> and the list of the dates for UID3 is 

updated as (1, 2), and the status tables for sequences <H> and <I> are created. Table 6 

shows status tables for 1-sequences. 

 

Table 6. The status tables for 1-sequences after adding the transactions on DT1 and DT2. 

<E> <F> <G> <H> <I> 

SupCount: 1 SupCount: 3 SupCount: 2 SupCount: 1 SupCount: 1 

UID 2: (1) UID 1: (1) UID 1: (2) UID3: (2) UID2: (2) 

 UID2: (2) UID3: (1, 2)   

 UID3: (2)    

 

From Table 6, the 1-sequences <F> and <G> are frequent, SPStream generates the 

candidate 2-sequences <FG>, <GF>, <(FG)>, <FF> and <GG> and their status tables are 

created. For two frequent k-sequences A = <a1, a2, ..., ak> and B = <b1, b2, ..., bk>, if ai = bi 

(i, 1≦i≦k − 1) and ak  bk, then the candidate (k + 1)-sequences C1 = <a1, a2, ..., ak, bk>, 

C2 = <a1, a2, ..., ak-1, bk, ak> and C3 = < a1, a2, ..., ak-1, (ak, bk)> can be generated. For ex-

ample, suppose there are two frequent 3-sequences A = <p, q, r> and B = <p, q, s>. The two 

frequent 3-sequences can be joined to generate candidate 4-sequences C1 = <p, q, r, s>, C2 

= <p, q, s, r> and C3 = <p, q, (r, s)>. 

SPStream creates the status tables for candidate sequences C1, C2 and C3. If the status 

tables for frequent k-sequences A and B have the same UID, and the lists of dates for the 

UID are (d1, ..., dn) and (e1, ..., em), respectively, the two lists of dates are scanned from left 

to right. If d1 < ej, and there is no eh (h < j) such that d1 < eh, then the list of dates of the 

status table for sequence C1 in the UID is (ej, ej+1, ..., em); For example, if the lists of dates 
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for A and B in the same UID are (2, 4, 5) and (1, 2, 3, 5), respectively, then the list of dates 

for C1 is (3, 5). If e1 < di, and there is no dh (h < i) such that e1 < dh, then the list of dates 

of the status table for sequence C2 in the UID is (di, di+1, ..., dn); If di = ej, (1≦j≦n, 1≦i

≦m), then di is inserted into the list of dates in this UID for the status table of sequence 

C3. For the above example, the list of dates for C3 is (2, 5). 

Besides, SPStream generates the candidate sequences <a1, a2, ..., ak, ak> and <b1, b2, ..., 

bk, bk> for sequences A and B themselves, and the lists of dates for the two candidate se-

quences on the UID are (d2, ..., dn) and (e2, ..., em), respectively. For the two frequent k-

sequences A = <a1, a2, ...ap-1, (ap, ..., ak)> and B = <a1, a2, ..., ap-1, (ap, ..., ak-1, bk)>, and ak  

bk, only one candidate sequence <a1, a2, ..., ap-1, (ap, ..., ak, bk)> is generated, and di is in-

serted into the list of dates in this UID for the candidate sequence if ej = di, (1≦j≦n, 1≦
i≦m). For the two frequent k-sequences A = <(a1, a2, ..., ak)> and B = <(a1, a2, ..., ak-1), bk)>, 

only one candidate (k+1)-sequences <(a1, a2, ..., ak) , bk> can be generated. If d1 < ej, and 

there is no eh (h < j) such that d1 < eh, then the list of dates for the status table of the candi-

date sequence in the UID is recorded as (ej, ej+1, ..., em). 

For the example in Table 6, Table 7 shows the status tables for the candidate 2-se-

quences <FG>, <GF>, <(FG)>, <GG> and <FF>. 

After adding the transactions on date DT3 in Table 3, for 1-sequence <F>, DT3 is 

inserted into the lists of dates in UID1 and UID2, and inserted into the lists of dates in 

UID1 and UID3 for 1-sequence <G>, and in UID1 for 1-sequence <H>. Table 8 shows the 

status tables for 1-sequences in Table 3. 

 

Table 7. The status tables for candidate 2-sequences on DT1 and DT2. 

<FG> <GF> <(FG)> <GG> <FF> 

SupCount: 1 SupCount: 1 SupCount: 1 SupCount: 1 SupCount: 0 

UID 1: (2) UID 3: (2) UID 3: (2) UID 3: (2)  

 

Table 8. The status tables for 1-sequences after adding all the transactions in Table 3. 

<E> <F> <G> <H> <I> 

SupCount: 1 SupCount: 3 SupCount: 2 SupCount: 2 SupCount: 1 

UID 2: (1) UID 1: (1,3) UID 1: (2,3) UID 2: (3) UID 2: (2) 

 UID 2: (2,3) UID3: (1,2,3) UID 3: (2)  

 UID 3: (2)    

 

From Table 8, we can see that the generated frequent 1-sequences are <F>, <G>, and 

<H>. Therefore, the candidate 2-sequences <(FG)>, <FG>, <GF>, <(FH)>, <FH>, <HF>, 

<(GH)>, <GH>, <HG>, <FF>, <GG> and <HH> can be generated. If the status tables for 

the candidate sequences have been created, they only need to be updated. For example, 

items F, G and H are purchased by user UID1 on DT3, the status tables for the candidate 

sequences with last items F, G and H need to be updated. That is, UID1: (3) is added into 

the status table for sequence <GG>, and DT3 is also added into the list of dates in UID3 

for <GG>. Table 9 shows the updated status tables for candidate 2-sequences. For the can-

didate sequences which their status tables have not been created, SPStream constructs the 

status tables for these candidate sequences as shown in Table 10. 
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From Tables 9 and 10, we can see that the generated candidate 2-sequences are fre-

quent sequences. Table 11 shows the generated candidate 3-sequences and their status ta-

bles. From Table 11, the frequent 2-sequences <GF> and <GH> are joined to generate 

candidate sequence <G(FH)>; the frequent 2-sequences <GF> and <GG> are joined to 

generate candidate sequence <G(FG)>; the frequent 2-sequences <(FG)> and <(FH)> are 

joined to generate candidate sequence <(FGH)>; the frequent 2-sequences <(GG)> and 

<GH> are joined to generate <G(GH)>. Finally, the frequent 3-sequences <G(FH)> and 

<G(FG)> are joined to generate 4-sequence <G(FGH)>. Table 12 shows the status table 

for sequence <G(FGH)>. 

 

Table 9. Updated status tables for candidate 2-sequences after adding the transactions. 

<FG> <GF> <(FG)> <GG> <FF> 

SupCount: 2 SupCount: 2 SupCount: 2 SupCount: 2 SupCount: 2 

UID 1: (2,3) UID 1: (3) UID 1: (3) UID 1: (3) UID 1: (3) 

UID 3: (3) UID 3: (2) UID 3: (2) UID 3: (2,3) UID 2: (3) 

 

Table 10. Created status tables for candidate 2-sequences after adding the transactions. 

<(GH)> <GH> <(FH)> 

SupCount: 2 SupCount: 2 SupCount: 2 

UID 1: (3) UID 1: (3) UID 1: (3) 

UID 3: (2) UID 3: (2) UID 3: (2) 

 

Table 11. The status tables for the candidate 3-sequences. 

<G(FH)> <G(GH)> <G(FG)> <FGH> 

SupCount: 2 SupCount: 2 SupCount: 2 SupCount: 2 

UID 1: (3) UID 1: (3) UID 1: (3) UID 1: (3) 

UID 3: (2) UID 3: (2) UID 3: (2) UID 2: (2) 

 

Table 12. The status table for the candidate 4-sequence. 

<G(FGH)> 

SupCount: 2 

UID 1: (3) 

UID 3: (2) 

2.2 SPStream_Ins Algorithm 

In this section, we present another algorithm SPStream_Ins to improve the efficiency 

of SPStream algorithm to reduce the number of generated candidate sequences. For any 

two frequent k-sequences (k≧2), only one candidate (k + 1)-sequence will be generated by 

SPStream_Ins. Let V = <v1, v2, …, vk> and W=<w1, w2, …, wk> be the two frequent k-

sequences. If the two sequence <v1, v2, …, vk> and <w1, w2, …, wk-1, wk> are the same, in 

which itemset v1 is formed by eliminating the first item from v1 and wk is formed by 

eliminating the last item from wk, then a candidate (k + 1)-sequence can be generated by 

joining the two frequent k-sequences V and W. There are two cases for candidate generation: 
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The first case is that if wk contains only one item x, then the candidate (k + 1)-sequence is 

generated by concatenating x after vk in sequence V. For instance, V = <(A, B) (C) (D)> and 

W = <(B) (C) (D) (E)> would be joined to generate candidate sequence <(A, B) (C) (D) 

(E)>. The second case is that if wk contains more than one items and the last item is x, then 

the candidate (k + 1)-sequence is generated by adding x into itemset vk in sequence V. For 

instance, V = <(A, B) (C) (D, E)> and W = <(B) (C) (D, E, F)> would be joined to generate 

the candidate sequence <(A, B) (C) (D, E, F)>. For any two frequent items x and y, all the 

candidate 2-sequences <xy>, <yx>, <(xy)> <xx>and <yy> need to be generated. 

If V and W are joined to generate a candidate sequence, and they have the same UID 

c in their status tables, then the list of dates for the UID c in status table for the candidate 

sequence can be generated as follows. Suppose the lists of dates for the UID c in the status 

tables of V and W are (d1, …, dn) and (e1, …, em), respectively. If the last itemset in V 

contains only one item, d1 < ej and d1>ek (ek, k < j), then the list of dates for UID c in the 

status table for the generated candidate sequence is (ej, ej+1, …, em). If the last itemset in 

W contains more than one item, and ej = di (j, i, 1≦j≦m,1≦i≦n), then di will be added 

to the list of dates for UID c in the status table for the generated candidate sequence.  

SPStream_Ins is more efficient than SPStream, since SPStream_Ins can generate less 

candidate sequences than SPStream, and can shorten the time for calculating the lists of 

dates. For example, for the two sequential patterns <AB> and <BC>, only one candidate 

sequence <ABC> will be generated for SPStream_Ins algorithm. However, for the two se-

quential patterns <AB> and <AC>, SPStream generates three candidate sequences <ABC>, 

<ACB> and <A(BC)>.  

In the following, we describe how SPStream_Ins handles the newly added user se-

quences. When there are new users added into the user sequence database, the minimum 

support count will increase, such that some frequent sequences may turn out to be infre-

quent. If they turn out to be not candidate sequences either, SPStream_Ins removes them 

from the constructed status tables. 

For the newly added transactions, SPStream_Ins updates the status tables and sup-

ports for the items in these transactions firstly. For a k-sequence, if it is not a frequent 

sequence originally, but becomes frequent after the update, then the frequent k-sequence 

can be joined with the other frequent k-sequences to generate candidate (k + 1)-sequences, 

and the status tables also need to be constructed for these candidate sequences. If a k-

sequence X is frequent before the update, but turns out to be infrequent after the update, 

then sequence X will be put in a Deletion Set DelSequence, and the status tables for the 

(k+1)-sequences containing X will be removed, since these (k+1)-sequences are no longer 

candidate sequences after the update. 

For example, Table 13 is a date-stamped user transaction database after adding the 

transactions on date DT4 to Table 3, in which there are two users UID 4 and UID 5 added. 

Table 14 shows the 1-sequences and the status tables for these 1-sequences. 

 

Table 13. The date-stamped user transaction database on date DT4. 

UID DT1 DT2 DT3 DT4 

1 F G FGH  

2 E FI F G 

3 G FGH G F 

4    EFI 

5    EG 
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Table 14. The status tables for 1-sequences in Table 13. 

<E> <F> <G> <H> <I> 

SupCount: 3  SupCount: 4  SupCount: 4 SupCount: 2 SupCount: 2 

UID 2: (1) UID 1: (1,3) UID 1: (2,3) UID 1: (3) UID 2: (2) 

UID 4: (4) UID 2: (2,3) UID 2: (4) UID 3: (2) UID 4: (4) 

UID 5: (4) UID 3: (2,4) UID 3: (1,2,3)   

 UID 4: (4) UID 5: (4)   

 

When the transactions for the new users UID4 and UID5 are added, the minimum 

support count is increased to 2.5 (550%). The frequent 1-sequence <H> becomes infre-

quent due to the increase of minimum support count, indicating that the original candidate 

sequences which generated by joining 1-sequence <H> with the other sequences are no 

more candidate sequences. Therefore, sequence <H> is put into the deletion set DelSe-

quence. And then, all the status tables for the 2-sequences containing the sequences in 

DelSequence are removed. For this example, the status tables for the 2-sequences <(FH)>, 

<FH>, <(GH)>, <GH>, <HF>, <HG> and <HH> are removed. 

The status tables for the sequences containing <F> or <G> need to be updated, since 

frequent 1-sequences <F> and <G> remain frequent. Table 15 shows the updated status 

tables for the 2-sequences. The 1-sequence <E> was not frequent before adding the trans-

actions on date DT4, and becomes frequent after adding the transactions on date DT4. 

Therefore, the candidate sequences will be generated by joining 1-sequence <E> with the 

other frequent 1-sequences, and the status tables for these candidate 2-sequences are cre-

ated as above, which are shown in Table 16. 

 

Table 15. Updated status tables for the 2-sequences after adding transactions on DT4. 

<FG> <GF> <(FG)> <GG> <FF> 

SupCount: 3 SupCount: 2 SupCount: 2 SupCount: 2 SupCount: 3 

UID 1: (2,3) UID 1: (3) UID 1: (3) UID 1: (3) UID 1: (3) 

UID 2: (4) UID 3: (2,4) UID 3: (2) UID 3: (2,3) UID 2: (3) 

UID 3: (3)    UID 3: (4) 

 

Table 16. Created status tables for the 2-sequences after adding the transactions on DT4. 

<EF> <FE> <(EF)> <EG> <GE> <(EG)> 

SupCount:1 SupCount:0 SupCount:1 SupCount:1 SupCount:0 SupCount:1 

UID 1: (2,3)  UID 4: (4) UID 2: (4)  UID 5: (4) 

 

After the updating, the frequent 2-sequences <(GF)>, <(FG)> and <GG> turn out to 

be infrequent, which are added into the deletion set DelSequence = {<H>, <(FG)>, <GF>, 

<GG>}. SPStream_Ins removes the status tables of the 3-sequences containing the se-

quences in the set DelSequence. Therefore, only the status table for 3-sequence <FFG> is 

remained after the deletion, which is generated by joining sequences <FF> and <FG>. So, 

the status table for the 3-sequence <FFG> need to be updated according to the status tables 

for sequences <FF> and <FG>. The 4-sequence <G(FGH)> will be removed since there is 
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no frequent 3-sequence generated. Finally, all the sequential patterns <F>, <G>, <FG> and 

<FF> will be generated. 

When the set T of all the transactions on date d (d≧1) is added, our proposed algo-

rithm SPStream_Ins is shown in Algorithm 1, in which STs is the set of status tables for 

all the sequences generated from the original user sequence database; F is the set of all the 

frequent sequences, Fk is the set of all the frequent k-sequences, Ck is the set of all the 

candidate k-sequences, and I is the set of all items in the database. The proposed algorithm 

SPStream_Ins for maintaining sequential patterns is presented as Algorithm 1. 

 

Algorithm 1: SPStream_Ins algorithm                                                   

 SPStream_Ins (STs, T, I, F, min-sup) 

1 DelItemset =ψ 

2  for each transaction t in T { 

3   for each item i in t { 

4     update sequence structure for <i> 

5     if i  I   

6       create status table for sequence <i> 

7 I = I  {<i>}}} 

8  for each item i I { 

9    if <i>  F1 and sup(<i>) < min-sup { 

10     F1 = F1 − {<i>} 

11     DelItemset = DelItemset  {<i>}} 

12    if <i>  F1 and sup(<i>)≧min-sup 

13     F1 = F1  {<i>}} 

14 k = 1; 

15  while STs is updated { 

16    Ck+1 = the set of candidates generated from Fk 

17    for each candidate cCk+1 { 

18     if there is a subset of c in DelItemset {  

19 remove the status table for sequence c 

20 Ck+1 = Ck+1 − {c} 

21 DelItemset = DelItemset  {c}}} 

22    for each candidate cCk+1 { 

23       if c exists in STs 

24       update sequence structure for c 

25     else 

26 create status table for sequence c 

27     if cFk+1 and sup (c) < min-sup { 

28       Fk+1 = Fk+1 − {c} 

29       DelItemset = DelItemset  {c}} 

30     if cFk+1 and sup(c)≧min-sup 

31     Fk+1 = Fk+1  {c}} 

32    k = k+1} 
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3. EXPERIMENTAL RESULTS 

We compare the efficiency of the most efficient algorithm FUSP-tree [10] with our 

proposed algorithms SPStream and SPStream_Ins. The algorithm FUSP-tree is the exten-

sion of the two algorithms FUFP-tree and IncSpan [3] for discovering sequential patterns 

from the whole FUSP tree after adding the transactions. For synthetic dataset generation, 

we used IBM Generator in SPMF [4], where the number N of items is 10K, the number C 

of the total users is 1000, the average number T of the transactions per user is 4, and the 

average number I of the items contained in each transaction is 2. After generating the syn-

thetic dataset, we randomly distribute the transactions for 168 days to facilitate the pro-

cessing for daily transactions. 

For the first experiment, the transactions are increased from the first date to the 168th 

date. The execution time for FUSP-tree, SPStream and SPStream_Ins are shown in Fig. 1-

6, in which the minimum support (min-sup) is increased from 1.4% to 1.9%, respectively. 

From which x axis is the date, 28 days is an interval, and the execution time for each 28 

days is shown in y axis. 

 

    
Fig. 1. The execution times with min-sup = 1.4%.   Fig. 2. The execution times with min-sup = 1.5%. 

 

  
Fig. 3. The execution times with min-sup = 1.6%.    Fig. 4. The execution times with min-sup = 1.7%. 

         
Fig. 5. The execution times with min-sup = 1.8%.    Fig. 6. The execution times with min-sup = 1.9%. 
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     Because tree structure is relatively complex, FUSP-tree algorithm take much time 

to adjust the existing tree structure. From the updated tree structure, all the frequent se-

quences need to be re-discovered. SPStream and SPStream_Ins update and create the status 

tables from the shorter sequence to the longer sequence according to the newly added 

transactions, which is not necessary to re-discover the existing sequential patterns. From 

these experimental results, we can see that our algorithms initially need to take more time 

to construct the status tables for all the candidate sequences, but the tree structure for 

FUSP-tree algorithm only contains frequent items, which is small and easier to handle. 

Therefore, FUSP-tree takes less time than our algorithms at the beginning. 

However, the transactions continue to increase as the number of dates increases. 

There are more and more frequent items generated, such that the tree structure for 

FUSP_tree is getting larger and more complicated. Since FUSP_tree needs to rescan the 

original large transaction database and more nodes in the tree structure need to be adjusted, 

it takes a large amount of time to re-discover all the frequent sequences. When the size of 

user transaction database is getting larger, the sequential patterns and candidate sequences 

gradually become stable. Our approach just updates a small part of status tables, and it is 

not necessary to re-processing the originally transaction database and re-find the previous 

frequent sequences. Therefore, the execution time for our algorithm would be much less 

than that of FUSP_tree. SPStream_Ins algorithm improves the candidate generation 

method for SPStream, which generates less candidate sequences and reduces the execution 

time for updating the status tables and calculating the list of dates, such that the storage 

space also can be reduced. Therefore, SPStream_Ins is more efficient than SPStream algo-

rithm. 

We generate another synthetic dataset I3T6 by setting the average number T of the 

transactions per user to 6, the average number I of the items contained in each transaction 

to 3, and the other parameters are the same as the previously generated dataset I2T4. The 

execution time from the first date to the 168th date for the three algorithms on the two 

datasets I2T4 and I3T6 under different minimum support threshold are shown in Fig. 7 and 

Fig. 8, respectively, from which we can see that SPStream and SPStream_Ins significantly 

outperform FUSP-tree as the support threshold decreases when the minimum support be-

low 1.6%, because the nodes in FUSP-tree, and the time to update FUSP-tree and to re-

discover the frequent sequences increase, as the minimum support decreases. Our approach 

just updates and creates the status tables according to added transactions, which is unnec-

essary to re-discover the frequent sequences. Therefore, FUSP-tree needs to take more time 

than our approach. 

 

  
Fig. 7. The execution time for the three algorithms 

on dataset I2T4. 

Fig. 8. The execution time for the three algo-

rithms on dataset I3T6. 
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The memory space used by the algorithms FUSP-tree, SPStream and SPStream_Ins 

on the two datasets I2T4 and I3T6 under different minimum supports are shown in Figs. 9 

and 10, respectively, in which our approach uses less memory space than FUSP-tree, since 

FUSP-tree needs large space to store the entire tree. Although our algorithms also need to 

store the status tables, they are all in digital form. Because SPStreams generates more can-

didate sequences than SPStream_Ins, it uses more memory space than SPStream_Ins algo-

rithm. From these experiments, the execution time and memory usages for I3T6 are more 

than I2T4, since the number of transactions and the number of items contained in a trans-

action for I3T6 are more than those of I2T4. 

 

 
Fig. 9. The memory usages on dataset I2T4.      Fig. 10 The memory usages on dataset I3T6. 

4. CONCLUSIONS 

This article presents an efficient approach for maintaining and updating sequential 

patterns as the user transactions are added continuously, which can provide users under-

standing the users’ purchasing behaviours in real time. Our algorithms mainly use and 

maintain the status tables for candidate sequences to update the sequential patterns during 

the process of transaction addition. The advantage of our algorithms is that the frequent 

sequences can be updated immediately, without re-discovering the existing sequential pat-

terns and re-scanning the whole transaction database. Our algorithms outperform FUSP-

tree algorithm and SPStream_Ins is better than SPStream algorithm according to the ex-

periments. In the future, we will study how to further improve SPStream_Ins algorithm in 

terms of execution time and memory usages. 
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