
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 40, 201-213 (2024)

DOI: 10.6688/JISE.202401_40(1).0013

201

An Efficient Approach for Discovering

and Maintaining Sequential Patterns

SHOW-JANE YEN AND YUE-SHI LEE+

Department of Computer Science and Information Engineering

Ming Chuan University

Taoyuan, 222 Taiwan

E-mail: {sjyen; leeys}@mail.mcu.edu.tw

Sequential pattern mining analyzes the ordered user behaviors, such as ordered list of

the products purchased by most of the users. Because the user transactions will be in-

creased every day, the current sequential patterns may be different from the previous ones.

Therefore, how to efficiently update the original sequential patterns in real time is a very

important research topic. If the original sequential patterns cannot be updated in time, then

the information may no longer represent the user behaviors. For the previous studies in

this area, some approaches may loss information, and some methods need to re-find the

previous discovered patterns. In this article, we propose a novel approach for mining and

maintaining the discovered sequential patterns without losing any information and re-dis-

covering the existed patterns. The experiments also represent that our approach is more

efficient than the current most efficient algorithm.

Keywords: sequential pattern maintenance, transaction database, data mining, user se-

quence, data stream

1. INTRODUCTION

Mining sequential patterns [2, 14] can find a set of ordered lists of purchasing behav-

iors for most users from a user transaction database. A transaction database contains a set

of user transactions, which contain user identifier (UID), date and time of the transaction,

and the purchased products (items) in the transaction. A transaction contains the products

purchased together by a certain user. For example, a sequential pattern “<{computer}{prin-

ter}{toner cartridge}> 80%” means that 80% of the users purchase printer after purchasing

computer, and they purchase toner cartridge after purchasing printer. This information can

be used to predict which products the users will purchase after they purchased a set of

products. Therefore, after a user bought a set of products, we can promote or recommend

the items to the user according to the sequential patterns.

There are more terminologies for mining sequential patterns: A sequence can be de-

noted as an ordered list <s1, s2, …, sn>, which si is a set of items. A sequence <y1, y2, …,

ym> contains another sequence <x1, x2, …, xn> if x1yi1, x2yi2,…, xnyin, in which i1 < i2

< … < in, and 1≦ik≦m. A user sequence is an ordered transaction purchased by a user

according to the transaction date and transaction time, which is stored in a user sequence

database. For example, Table 1 can be transformed to the user sequence database shown

in Table 2.

The support (sup) of a sequence s is defined as the number of user sequences contai-

ning s divided by the total number of the user sequences in a user sequence database. The

Received October 21, 2022; revised December 9, 2022 & January 19, 2023; accepted January 29, 2023.

Communicated by Tzung-Pei Hong.
+ Corresponding author.

SHOW-JANE YEN AND YUE-SHI LEE

202

Table 1. A transaction database.

UID Date, Time Items

1 2016/1/1, 10:30 EF

1 2016/1/1, 11:36 EFH

1 2016/1/1, 11:40 FGH

2 2016/2/1, 12:20 EF

2 2016/3/2, 15:36 FH

3 2016/2/2, 09:12 FG

4 2016/1/23, 17:11 FH

Table 2. A user sequence database transformed from Table 1.

UID User Sequence

1 <(EF)(EFH)(FGH)>

2 <(EF)(FH)>

3 <(GH)>

4 <(FH)>

number of the user sequences containing sequence s is the support count (SupCount) of

sequence s. A sequence s is called a sequential pattern or a frequent sequence if the support

of sequence s is no less than a user-defined minimum support (min-sup). A sequence con-

taining k items is called a k-sequence, and a frequent sequence containing k items is called

a frequent k-sequence. For example, the minimum support is set to 40% for Table 2, that

is the minimum support count is 2 user sequences. Since 4-sequence <(EF)(FH)> is con-

tained in two user sequences, and the support of <(EF)(FH)> is 2/4 = 50%, sequence <(EF)

(FH)> is a frequent sequence or a sequential pattern.

Lin and et al. [10] proposed an algorithm FUSP-tree, which finds the frequent se-

quences according to the created FUSP-tree when some transactions are increased. The

algorithm FUSP-tree is based on FUFP-tree [6] and the algorithm IncSpan [3]. That is,

only frequent items stored in the tree structure, and the added transactions are scanned to

count support for each item. There are four cases for each sequence when some transac-

tions are added: Case 1. The sequence was originally frequent and is also frequent after

adding the transactions. Case 2. The sequence was originally frequent, but becomes infre-

quent after adding the transactions. Case 3. The sequence was not frequent originally, but

turns out to be frequent after adding transactions. Case 4. The sequence was not frequent

originally and is not frequent either, after adding the transactions. For Cases 1-3, FUSP-

tree algorithm takes a large amount of time to adjust and update the structure of FUSP-tree.

For Case 3, because there is no information about infrequent item in the tree structure,

FUSP-tree needs to rescan the original user sequence database to count supports for these

sequences. After adjusting the FUSP-tree structure, the algorithm applies the algorithm

FP-Growth [7] to re-discover all the sequential patterns.

Hijawi and Saheb [8] proposed an algorithm DSSPM for sequence pattern mining in

data stream. This algorithm first scans the added user transactions to count support for each

item, and removes the items which do not satisfy the minimum support threshold. For the

items which meet the minimum support, this algorithm permutates these items in each

added sequence to generate all the candidate set and increment the count for each permu-

tation (i.e., candidate sequence). The algorithm DSSPM finally inserts the permutations

AN EFFICIENT APPROACH FOR MAINTAINING SEQUENTIAL PATTERNS 203

(i.e., frequent sequences) which achieve the minimum support into a sequence tree. Alt-

hough this algorithm does not need to re-scan the original database, the counts of some

items and sequences will be lost, since infrequent items were removed and there is no

information to obtain the support of the originally infrequent sequence, such that the final

set of frequent sequences may be incorrect. Moreover, this algorithm generates all the per-

mutations of frequent items in all the user sequences, which is very time consuming to

search and count all the candidate sequences.

The previous approaches [3, 5, 9-13] for maintaining sequential patterns also re-scan

the original transaction database and re-find the previous generated sequential patterns,

which are not efficient. Therefore, we propose an efficient approach for mining and main-

taining sequential patterns to address the disadvantages of the previous approaches.

2. THE MAINTENANCE OF SEQUENTIAL PATTERNS

Because user transactions will continue to increase over time, we converted the trans-

action database into a date-stamped user transaction database, which records the user ID

(UID), transaction date (time), and purchased items. The transaction date (time) is denoted

by DTi (i≧1) in order. As the date increases, the value of i also increases. Table 3 is an

example of date-stamped user transaction database, which records the items purchased by

each user on date DTi.

Table 3. A date-stamped user transaction database.

UID DT1 DT2 DT3

1 F G FGH

2 E FI F

3 G FGH G

In this section, we represent our approach for mining and maintaining sequential pat-

terns when a set of transactions on date DTi is added. There are two algorithms SPStream

and SPStream_Ins proposed for mining and maintaining the sequential patterns. After de-

scribing SPStream algorithm, we point out the problems of SPStream and explain how

SPStream_Ins can improve these problems.

2.1 SPStream Algorithm

SPStream considers the transactions day by day, and sequentially adds each item in

the transactions to the status table of this item, which we designed to record the information

for an item or a sequence according to the order of the transaction date. The status table

for a sequence s includes the sequence s, its support count (SupCount), and the UID of the

user who purchased the items in the sequence and the list of the dates the user purchased

these items. For example, in Table 3, the status table for sequence <G> is shown in Table

4, where the support count of sequence <G> is 2, since there are 2 users which purchased

item G. In Table 3, item G was purchased by user UID1 on dates DT2 and DT3, so the list

of dates is (2, 3), and item G was purchased by user UID3 on three dates DT1, DT2 and

DT3, so the list of dates is (1, 2, 3).

SHOW-JANE YEN AND YUE-SHI LEE

204

Table 4. The status table for sequence <G>.

<G>

SupCount: 2

UID 1: (2, 3)

UID 3: (1, 2, 3)

Table 5. The status tables for 1-sequences after adding the transactions on DT1.

<E> <F> <G>

SupCount: 1 SupCount: 1 SupCount: 1

UID 2: (1) UID 1: (1) UID 3: (1)

Our algorithm SPStream updates or creates the status tables for 1-sequences after add-

ing the transactions on DTi. For example, assume min-sup = 50% in Table 3, that is the

minimum support count is 350% = 1.5, because there are three users. Table 5 shows the

status tables for the sequences created after adding all the transactions on DT1.

If the supports of 1-sequences are no less than min-sup, then these 1-sequences can

be joined with each other to generate candidate 2-sequences, and their status tables would

be created. For instance, after adding the transactions on DT1, there is not any frequent

item generated. SPStream adds the dates DT2 to UID2 and UID3 in the status table for

sequence <F> after adding the transactions on DT2. At the same time, date DT2 is also

added into UID1 in the status table for sequence <G> and the list of the dates for UID3 is

updated as (1, 2), and the status tables for sequences <H> and <I> are created. Table 6

shows status tables for 1-sequences.

Table 6. The status tables for 1-sequences after adding the transactions on DT1 and DT2.

<E> <F> <G> <H> <I>

SupCount: 1 SupCount: 3 SupCount: 2 SupCount: 1 SupCount: 1

UID 2: (1) UID 1: (1) UID 1: (2) UID3: (2) UID2: (2)

 UID2: (2) UID3: (1, 2)

 UID3: (2)

From Table 6, the 1-sequences <F> and <G> are frequent, SPStream generates the

candidate 2-sequences <FG>, <GF>, <(FG)>, <FF> and <GG> and their status tables are

created. For two frequent k-sequences A = <a1, a2, ..., ak> and B = <b1, b2, ..., bk>, if ai = bi

(i, 1≦i≦k − 1) and ak  bk, then the candidate (k + 1)-sequences C1 = <a1, a2, ..., ak, bk>,

C2 = <a1, a2, ..., ak-1, bk, ak> and C3 = < a1, a2, ..., ak-1, (ak, bk)> can be generated. For ex-

ample, suppose there are two frequent 3-sequences A = <p, q, r> and B = <p, q, s>. The two

frequent 3-sequences can be joined to generate candidate 4-sequences C1 = <p, q, r, s>, C2

= <p, q, s, r> and C3 = <p, q, (r, s)>.

SPStream creates the status tables for candidate sequences C1, C2 and C3. If the status

tables for frequent k-sequences A and B have the same UID, and the lists of dates for the

UID are (d1, ..., dn) and (e1, ..., em), respectively, the two lists of dates are scanned from left

to right. If d1 < ej, and there is no eh (h < j) such that d1 < eh, then the list of dates of the

status table for sequence C1 in the UID is (ej, ej+1, ..., em); For example, if the lists of dates

AN EFFICIENT APPROACH FOR MAINTAINING SEQUENTIAL PATTERNS 205

for A and B in the same UID are (2, 4, 5) and (1, 2, 3, 5), respectively, then the list of dates

for C1 is (3, 5). If e1 < di, and there is no dh (h < i) such that e1 < dh, then the list of dates

of the status table for sequence C2 in the UID is (di, di+1, ..., dn); If di = ej, (1≦j≦n, 1≦i

≦m), then di is inserted into the list of dates in this UID for the status table of sequence

C3. For the above example, the list of dates for C3 is (2, 5).

Besides, SPStream generates the candidate sequences <a1, a2, ..., ak, ak> and <b1, b2, ...,

bk, bk> for sequences A and B themselves, and the lists of dates for the two candidate se-

quences on the UID are (d2, ..., dn) and (e2, ..., em), respectively. For the two frequent k-

sequences A = <a1, a2, ...ap-1, (ap, ..., ak)> and B = <a1, a2, ..., ap-1, (ap, ..., ak-1, bk)>, and ak 

bk, only one candidate sequence <a1, a2, ..., ap-1, (ap, ..., ak, bk)> is generated, and di is in-

serted into the list of dates in this UID for the candidate sequence if ej = di, (1≦j≦n, 1≦
i≦m). For the two frequent k-sequences A = <(a1, a2, ..., ak)> and B = <(a1, a2, ..., ak-1), bk)>,

only one candidate (k+1)-sequences <(a1, a2, ..., ak) , bk> can be generated. If d1 < ej, and

there is no eh (h < j) such that d1 < eh, then the list of dates for the status table of the candi-

date sequence in the UID is recorded as (ej, ej+1, ..., em).

For the example in Table 6, Table 7 shows the status tables for the candidate 2-se-

quences <FG>, <GF>, <(FG)>, <GG> and <FF>.

After adding the transactions on date DT3 in Table 3, for 1-sequence <F>, DT3 is

inserted into the lists of dates in UID1 and UID2, and inserted into the lists of dates in

UID1 and UID3 for 1-sequence <G>, and in UID1 for 1-sequence <H>. Table 8 shows the

status tables for 1-sequences in Table 3.

Table 7. The status tables for candidate 2-sequences on DT1 and DT2.

<FG> <GF> <(FG)> <GG> <FF>

SupCount: 1 SupCount: 1 SupCount: 1 SupCount: 1 SupCount: 0

UID 1: (2) UID 3: (2) UID 3: (2) UID 3: (2)

Table 8. The status tables for 1-sequences after adding all the transactions in Table 3.

<E> <F> <G> <H> <I>

SupCount: 1 SupCount: 3 SupCount: 2 SupCount: 2 SupCount: 1

UID 2: (1) UID 1: (1,3) UID 1: (2,3) UID 2: (3) UID 2: (2)

 UID 2: (2,3) UID3: (1,2,3) UID 3: (2)

 UID 3: (2)

From Table 8, we can see that the generated frequent 1-sequences are <F>, <G>, and

<H>. Therefore, the candidate 2-sequences <(FG)>, <FG>, <GF>, <(FH)>, <FH>, <HF>,

<(GH)>, <GH>, <HG>, <FF>, <GG> and <HH> can be generated. If the status tables for

the candidate sequences have been created, they only need to be updated. For example,

items F, G and H are purchased by user UID1 on DT3, the status tables for the candidate

sequences with last items F, G and H need to be updated. That is, UID1: (3) is added into

the status table for sequence <GG>, and DT3 is also added into the list of dates in UID3

for <GG>. Table 9 shows the updated status tables for candidate 2-sequences. For the can-

didate sequences which their status tables have not been created, SPStream constructs the

status tables for these candidate sequences as shown in Table 10.

SHOW-JANE YEN AND YUE-SHI LEE

206

From Tables 9 and 10, we can see that the generated candidate 2-sequences are fre-

quent sequences. Table 11 shows the generated candidate 3-sequences and their status ta-

bles. From Table 11, the frequent 2-sequences <GF> and <GH> are joined to generate

candidate sequence <G(FH)>; the frequent 2-sequences <GF> and <GG> are joined to

generate candidate sequence <G(FG)>; the frequent 2-sequences <(FG)> and <(FH)> are

joined to generate candidate sequence <(FGH)>; the frequent 2-sequences <(GG)> and

<GH> are joined to generate <G(GH)>. Finally, the frequent 3-sequences <G(FH)> and

<G(FG)> are joined to generate 4-sequence <G(FGH)>. Table 12 shows the status table

for sequence <G(FGH)>.

Table 9. Updated status tables for candidate 2-sequences after adding the transactions.

<FG> <GF> <(FG)> <GG> <FF>

SupCount: 2 SupCount: 2 SupCount: 2 SupCount: 2 SupCount: 2

UID 1: (2,3) UID 1: (3) UID 1: (3) UID 1: (3) UID 1: (3)

UID 3: (3) UID 3: (2) UID 3: (2) UID 3: (2,3) UID 2: (3)

Table 10. Created status tables for candidate 2-sequences after adding the transactions.

<(GH)> <GH> <(FH)>

SupCount: 2 SupCount: 2 SupCount: 2

UID 1: (3) UID 1: (3) UID 1: (3)

UID 3: (2) UID 3: (2) UID 3: (2)

Table 11. The status tables for the candidate 3-sequences.

<G(FH)> <G(GH)> <G(FG)> <FGH>

SupCount: 2 SupCount: 2 SupCount: 2 SupCount: 2

UID 1: (3) UID 1: (3) UID 1: (3) UID 1: (3)

UID 3: (2) UID 3: (2) UID 3: (2) UID 2: (2)

Table 12. The status table for the candidate 4-sequence.

<G(FGH)>

SupCount: 2

UID 1: (3)

UID 3: (2)

2.2 SPStream_Ins Algorithm

In this section, we present another algorithm SPStream_Ins to improve the efficiency

of SPStream algorithm to reduce the number of generated candidate sequences. For any

two frequent k-sequences (k≧2), only one candidate (k + 1)-sequence will be generated by

SPStream_Ins. Let V = <v1, v2, …, vk> and W=<w1, w2, …, wk> be the two frequent k-

sequences. If the two sequence <v1, v2, …, vk> and <w1, w2, …, wk-1, wk> are the same, in

which itemset v1 is formed by eliminating the first item from v1 and wk is formed by

eliminating the last item from wk, then a candidate (k + 1)-sequence can be generated by

joining the two frequent k-sequences V and W. There are two cases for candidate generation:

AN EFFICIENT APPROACH FOR MAINTAINING SEQUENTIAL PATTERNS 207

The first case is that if wk contains only one item x, then the candidate (k + 1)-sequence is

generated by concatenating x after vk in sequence V. For instance, V = <(A, B) (C) (D)> and

W = <(B) (C) (D) (E)> would be joined to generate candidate sequence <(A, B) (C) (D)

(E)>. The second case is that if wk contains more than one items and the last item is x, then

the candidate (k + 1)-sequence is generated by adding x into itemset vk in sequence V. For

instance, V = <(A, B) (C) (D, E)> and W = <(B) (C) (D, E, F)> would be joined to generate

the candidate sequence <(A, B) (C) (D, E, F)>. For any two frequent items x and y, all the

candidate 2-sequences <xy>, <yx>, <(xy)> <xx>and <yy> need to be generated.

If V and W are joined to generate a candidate sequence, and they have the same UID

c in their status tables, then the list of dates for the UID c in status table for the candidate

sequence can be generated as follows. Suppose the lists of dates for the UID c in the status

tables of V and W are (d1, …, dn) and (e1, …, em), respectively. If the last itemset in V

contains only one item, d1 < ej and d1>ek (ek, k < j), then the list of dates for UID c in the

status table for the generated candidate sequence is (ej, ej+1, …, em). If the last itemset in

W contains more than one item, and ej = di (j, i, 1≦j≦m,1≦i≦n), then di will be added

to the list of dates for UID c in the status table for the generated candidate sequence.

SPStream_Ins is more efficient than SPStream, since SPStream_Ins can generate less

candidate sequences than SPStream, and can shorten the time for calculating the lists of

dates. For example, for the two sequential patterns <AB> and <BC>, only one candidate

sequence <ABC> will be generated for SPStream_Ins algorithm. However, for the two se-

quential patterns <AB> and <AC>, SPStream generates three candidate sequences <ABC>,

<ACB> and <A(BC)>.

In the following, we describe how SPStream_Ins handles the newly added user se-

quences. When there are new users added into the user sequence database, the minimum

support count will increase, such that some frequent sequences may turn out to be infre-

quent. If they turn out to be not candidate sequences either, SPStream_Ins removes them

from the constructed status tables.

For the newly added transactions, SPStream_Ins updates the status tables and sup-

ports for the items in these transactions firstly. For a k-sequence, if it is not a frequent

sequence originally, but becomes frequent after the update, then the frequent k-sequence

can be joined with the other frequent k-sequences to generate candidate (k + 1)-sequences,

and the status tables also need to be constructed for these candidate sequences. If a k-

sequence X is frequent before the update, but turns out to be infrequent after the update,

then sequence X will be put in a Deletion Set DelSequence, and the status tables for the

(k+1)-sequences containing X will be removed, since these (k+1)-sequences are no longer

candidate sequences after the update.

For example, Table 13 is a date-stamped user transaction database after adding the

transactions on date DT4 to Table 3, in which there are two users UID 4 and UID 5 added.

Table 14 shows the 1-sequences and the status tables for these 1-sequences.

Table 13. The date-stamped user transaction database on date DT4.

UID DT1 DT2 DT3 DT4

1 F G FGH

2 E FI F G

3 G FGH G F

4 EFI

5 EG

SHOW-JANE YEN AND YUE-SHI LEE

208

Table 14. The status tables for 1-sequences in Table 13.

<E> <F> <G> <H> <I>

SupCount: 3 SupCount: 4 SupCount: 4 SupCount: 2 SupCount: 2

UID 2: (1) UID 1: (1,3) UID 1: (2,3) UID 1: (3) UID 2: (2)

UID 4: (4) UID 2: (2,3) UID 2: (4) UID 3: (2) UID 4: (4)

UID 5: (4) UID 3: (2,4) UID 3: (1,2,3)

 UID 4: (4) UID 5: (4)

When the transactions for the new users UID4 and UID5 are added, the minimum

support count is increased to 2.5 (550%). The frequent 1-sequence <H> becomes infre-

quent due to the increase of minimum support count, indicating that the original candidate

sequences which generated by joining 1-sequence <H> with the other sequences are no

more candidate sequences. Therefore, sequence <H> is put into the deletion set DelSe-

quence. And then, all the status tables for the 2-sequences containing the sequences in

DelSequence are removed. For this example, the status tables for the 2-sequences <(FH)>,

<FH>, <(GH)>, <GH>, <HF>, <HG> and <HH> are removed.

The status tables for the sequences containing <F> or <G> need to be updated, since

frequent 1-sequences <F> and <G> remain frequent. Table 15 shows the updated status

tables for the 2-sequences. The 1-sequence <E> was not frequent before adding the trans-

actions on date DT4, and becomes frequent after adding the transactions on date DT4.

Therefore, the candidate sequences will be generated by joining 1-sequence <E> with the

other frequent 1-sequences, and the status tables for these candidate 2-sequences are cre-

ated as above, which are shown in Table 16.

Table 15. Updated status tables for the 2-sequences after adding transactions on DT4.

<FG> <GF> <(FG)> <GG> <FF>

SupCount: 3 SupCount: 2 SupCount: 2 SupCount: 2 SupCount: 3

UID 1: (2,3) UID 1: (3) UID 1: (3) UID 1: (3) UID 1: (3)

UID 2: (4) UID 3: (2,4) UID 3: (2) UID 3: (2,3) UID 2: (3)

UID 3: (3) UID 3: (4)

Table 16. Created status tables for the 2-sequences after adding the transactions on DT4.

<EF> <FE> <(EF)> <EG> <GE> <(EG)>

SupCount:1 SupCount:0 SupCount:1 SupCount:1 SupCount:0 SupCount:1

UID 1: (2,3) UID 4: (4) UID 2: (4) UID 5: (4)

After the updating, the frequent 2-sequences <(GF)>, <(FG)> and <GG> turn out to

be infrequent, which are added into the deletion set DelSequence = {<H>, <(FG)>, <GF>,

<GG>}. SPStream_Ins removes the status tables of the 3-sequences containing the se-

quences in the set DelSequence. Therefore, only the status table for 3-sequence <FFG> is

remained after the deletion, which is generated by joining sequences <FF> and <FG>. So,

the status table for the 3-sequence <FFG> need to be updated according to the status tables

for sequences <FF> and <FG>. The 4-sequence <G(FGH)> will be removed since there is

AN EFFICIENT APPROACH FOR MAINTAINING SEQUENTIAL PATTERNS 209

no frequent 3-sequence generated. Finally, all the sequential patterns <F>, <G>, <FG> and

<FF> will be generated.

When the set T of all the transactions on date d (d≧1) is added, our proposed algo-

rithm SPStream_Ins is shown in Algorithm 1, in which STs is the set of status tables for

all the sequences generated from the original user sequence database; F is the set of all the

frequent sequences, Fk is the set of all the frequent k-sequences, Ck is the set of all the

candidate k-sequences, and I is the set of all items in the database. The proposed algorithm

SPStream_Ins for maintaining sequential patterns is presented as Algorithm 1.

Algorithm 1: SPStream_Ins algorithm

 SPStream_Ins (STs, T, I, F, min-sup)

1 DelItemset =ψ

2 for each transaction t in T {

3 for each item i in t {

4 update sequence structure for <i>

5 if i  I

6 create status table for sequence <i>

7 I = I  {<i>}}}

8 for each item i I {

9 if <i>  F1 and sup(<i>) < min-sup {

10 F1 = F1 − {<i>}

11 DelItemset = DelItemset  {<i>}}

12 if <i>  F1 and sup(<i>)≧min-sup

13 F1 = F1  {<i>}}

14 k = 1;

15 while STs is updated {

16 Ck+1 = the set of candidates generated from Fk

17 for each candidate cCk+1 {

18 if there is a subset of c in DelItemset {

19 remove the status table for sequence c

20 Ck+1 = Ck+1 − {c}

21 DelItemset = DelItemset  {c}}}

22 for each candidate cCk+1 {

23 if c exists in STs

24 update sequence structure for c

25 else

26 create status table for sequence c

27 if cFk+1 and sup (c) < min-sup {

28 Fk+1 = Fk+1 − {c}

29 DelItemset = DelItemset  {c}}

30 if cFk+1 and sup(c)≧min-sup

31 Fk+1 = Fk+1  {c}}

32 k = k+1}

SHOW-JANE YEN AND YUE-SHI LEE

210

3. EXPERIMENTAL RESULTS

We compare the efficiency of the most efficient algorithm FUSP-tree [10] with our

proposed algorithms SPStream and SPStream_Ins. The algorithm FUSP-tree is the exten-

sion of the two algorithms FUFP-tree and IncSpan [3] for discovering sequential patterns

from the whole FUSP tree after adding the transactions. For synthetic dataset generation,

we used IBM Generator in SPMF [4], where the number N of items is 10K, the number C

of the total users is 1000, the average number T of the transactions per user is 4, and the

average number I of the items contained in each transaction is 2. After generating the syn-

thetic dataset, we randomly distribute the transactions for 168 days to facilitate the pro-

cessing for daily transactions.

For the first experiment, the transactions are increased from the first date to the 168th

date. The execution time for FUSP-tree, SPStream and SPStream_Ins are shown in Fig. 1-

6, in which the minimum support (min-sup) is increased from 1.4% to 1.9%, respectively.

From which x axis is the date, 28 days is an interval, and the execution time for each 28

days is shown in y axis.

Fig. 1. The execution times with min-sup = 1.4%. Fig. 2. The execution times with min-sup = 1.5%.

Fig. 3. The execution times with min-sup = 1.6%. Fig. 4. The execution times with min-sup = 1.7%.

Fig. 5. The execution times with min-sup = 1.8%. Fig. 6. The execution times with min-sup = 1.9%.

AN EFFICIENT APPROACH FOR MAINTAINING SEQUENTIAL PATTERNS 211

 Because tree structure is relatively complex, FUSP-tree algorithm take much time

to adjust the existing tree structure. From the updated tree structure, all the frequent se-

quences need to be re-discovered. SPStream and SPStream_Ins update and create the status

tables from the shorter sequence to the longer sequence according to the newly added

transactions, which is not necessary to re-discover the existing sequential patterns. From

these experimental results, we can see that our algorithms initially need to take more time

to construct the status tables for all the candidate sequences, but the tree structure for

FUSP-tree algorithm only contains frequent items, which is small and easier to handle.

Therefore, FUSP-tree takes less time than our algorithms at the beginning.

However, the transactions continue to increase as the number of dates increases.

There are more and more frequent items generated, such that the tree structure for

FUSP_tree is getting larger and more complicated. Since FUSP_tree needs to rescan the

original large transaction database and more nodes in the tree structure need to be adjusted,

it takes a large amount of time to re-discover all the frequent sequences. When the size of

user transaction database is getting larger, the sequential patterns and candidate sequences

gradually become stable. Our approach just updates a small part of status tables, and it is

not necessary to re-processing the originally transaction database and re-find the previous

frequent sequences. Therefore, the execution time for our algorithm would be much less

than that of FUSP_tree. SPStream_Ins algorithm improves the candidate generation

method for SPStream, which generates less candidate sequences and reduces the execution

time for updating the status tables and calculating the list of dates, such that the storage

space also can be reduced. Therefore, SPStream_Ins is more efficient than SPStream algo-

rithm.

We generate another synthetic dataset I3T6 by setting the average number T of the

transactions per user to 6, the average number I of the items contained in each transaction

to 3, and the other parameters are the same as the previously generated dataset I2T4. The

execution time from the first date to the 168th date for the three algorithms on the two

datasets I2T4 and I3T6 under different minimum support threshold are shown in Fig. 7 and

Fig. 8, respectively, from which we can see that SPStream and SPStream_Ins significantly

outperform FUSP-tree as the support threshold decreases when the minimum support be-

low 1.6%, because the nodes in FUSP-tree, and the time to update FUSP-tree and to re-

discover the frequent sequences increase, as the minimum support decreases. Our approach

just updates and creates the status tables according to added transactions, which is unnec-

essary to re-discover the frequent sequences. Therefore, FUSP-tree needs to take more time

than our approach.

Fig. 7. The execution time for the three algorithms

on dataset I2T4.

Fig. 8. The execution time for the three algo-

rithms on dataset I3T6.

SHOW-JANE YEN AND YUE-SHI LEE

212

The memory space used by the algorithms FUSP-tree, SPStream and SPStream_Ins

on the two datasets I2T4 and I3T6 under different minimum supports are shown in Figs. 9

and 10, respectively, in which our approach uses less memory space than FUSP-tree, since

FUSP-tree needs large space to store the entire tree. Although our algorithms also need to

store the status tables, they are all in digital form. Because SPStreams generates more can-

didate sequences than SPStream_Ins, it uses more memory space than SPStream_Ins algo-

rithm. From these experiments, the execution time and memory usages for I3T6 are more

than I2T4, since the number of transactions and the number of items contained in a trans-

action for I3T6 are more than those of I2T4.

Fig. 9. The memory usages on dataset I2T4. Fig. 10 The memory usages on dataset I3T6.

4. CONCLUSIONS

This article presents an efficient approach for maintaining and updating sequential

patterns as the user transactions are added continuously, which can provide users under-

standing the users’ purchasing behaviours in real time. Our algorithms mainly use and

maintain the status tables for candidate sequences to update the sequential patterns during

the process of transaction addition. The advantage of our algorithms is that the frequent

sequences can be updated immediately, without re-discovering the existing sequential pat-

terns and re-scanning the whole transaction database. Our algorithms outperform FUSP-

tree algorithm and SPStream_Ins is better than SPStream algorithm according to the ex-

periments. In the future, we will study how to further improve SPStream_Ins algorithm in

terms of execution time and memory usages.

REFERENCES

1. R. Agrawal and R. Srikant, “Fast algorithms for mining association rules,” in Pro-

ceedings of the 20th Very Large Data Bases Conference, 1994, pp. 487-499.

2. R. Agrawal and R. Srikant, “Mining sequential patterns,” in Proceedings of the 8th

International Conference on Data Engineering, 1995, pp. 3-14.

3. H. Cheng, X. Yan, and J. Han, “IncSpan: incremental mining of sequential patterns in

large database,” in Proceedings of the 10th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, 2004, pp. 527-532.

4. P. Fournier-Viger, et al., “SPMF: Open-source data mining platform,” http://www.phi

lippe-fournier-viger.com/spmf/index.php? link=datasets.php, 2015.

AN EFFICIENT APPROACH FOR MAINTAINING SEQUENTIAL PATTERNS 213

5. C. C. Ho, H. F. Li, F. F. Kuo, and S. Y. Lee, “Incremental mining of sequential patterns

over a stream sliding window,” in Proceedings of the 16th IEEE International Con-

ference on Data Mining Workshops, 2006, pp. 677-681.

6. T. P. Hong, C. W. Lin, and Y. L. Wu, “Incrementally fast updated frequent pattern

trees,” Expert Systems with Applications, Vol. 24, 2008, pp. 2424-2435.

7. J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without candidate generation,”

ACM SIGMOD Record, Vol. 29, 2000, pp. 1-12.

8. H. M. Hijawi and M. H. Saheb, “Sequence pattern mining in data streams,” Computer

and Information Science, Vol. 8, 2015, pp. 64-70.

9. H. F. Li, C. C. Ho, H. S. Chen, and S. Y. Lee, “A single-scan algorithm for mining

sequential patterns from data streams,” International Journal of Innovative Computing,

Information and Control, Vol. 8, 2012, pp. 1799-1820.

10. C. W. Lin, T. P. Hong, W. Y. Lin, and G. C. Lan, “Efficient updating of sequential

patterns with transaction insertion,” Intelligent Data Analysis, Vol. 18, 2014, pp.

1013-1026.

11. M. Y. Lin and S. Y. Lee, “Incremental update on sequential patterns in large databases,”

in Proceedings of the 10th IEEE International Conference on Tools with Artificial

Intelligence, 1998, pp. 24-31.

12. F. Masseglia, P. Poncelet, and M. Teisseire, “Incremental mining of sequential pat-

terns in large databases,” Data and Knowledge Engineering, Vol. 46, 2003, pp. 97-121.

13. W. Ouyang, “Mining rare sequential patterns in data streams with a sliding window,”

in Proceedings of International Conference on Systems and Informatics, 2016, pp.

1023-1027.

14. J. Pei, “Mining sequential patterns by pattern-growth: the PrefixSpan approach,” IEEE

Transactions on Knowledge and Data Engineering, Vol. 16, 2004, pp. 1-17.

Show-Jane Yen (顏秀珍) received the MS degree and the Ph.D.

degree in Computer Science from National Tsing Hua University,

Hsinchu, Taiwan, in 1993 and 1997, respectively. She is currently a

Professor in the Department of Computer Science and Information

Engineering, Ming Chuan University, Taoyuan, Taiwan. Her re-

search interests include database management systems, data mining

and data warehousing.

Yue-Shi Lee (李御璽) received the MS degree and the Ph.D.

degree in Computer Science and Information Engineering from Na-

tional Taiwan University, Taipei, Taiwan, in 1993 and 1997, respec-

tively. He is currently a Professor in the Department of Computer

Science and Information Engineering, Ming Chuan University, Tao-

yuan, Taiwan. His research interests include data mining, informa-

tion retrieval and extraction.

http://www-sop.inria.fr/axis/personnel/Florent.Masseglia/International_Journal_DKE_2003.pdf
http://www-sop.inria.fr/axis/personnel/Florent.Masseglia/International_Journal_DKE_2003.pdf

