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This work intends to help students perceive music, study music, create music, and 

realize the “human-computer interaction” music teaching mode. A distributed design pat-

tern is adopted to design a gesture interactive robot suitable for music education. First, the 

client is designed. The client gesture acquisition module employs a dual-channel convolu-

tional neural network (DCCNN) for gesture recognition. The convolutional layer of the 

constructed DCCNN contains convolution kernels with two sizes, which operate on the 

image. Second, the server is designed, which recognizes the collected gesture instruction 

data through two-stream convolutional neural network (CNN). This network cuts the ges-

ture instruction data into K segments, and sparsely samples each segment into a short se-

quence. The optical flow algorithm is employed to extract the optical flow features of each 

short sequence. Finally, the performance of the robot is tested. The results show that the 

combination of convolution kernels with sizes of 5×5 and 7×7 has a recognition accuracy 

of 98%, suggesting that DCCNN can effectively collect gesture command data. After train-

ing, DCCNN’s gesture recognition accuracy rate reaches 90%, which is higher than main-

stream dynamic gesture recognition algorithms under the same conditions. In addition, the 

recognition accuracy of the gesture interactive robot is above 90%, suggesting that this 

robot can meet normal requirements and has good reliability and stability. It is also rec-

ommended to be utilized in music perception teaching to provide a basis for establishing a 

multi-sensory music teaching model.      

 

Keywords: robot, gesture recognition, DCCNN, two-stream convolutional neural networks, 

deep learning 

 

 

1. INTRODUCTION 
 

Wireless sensor networks have wide application in fields such as home, industry, 

envir Music is an art form that takes musical sound as the carrier to express people’s 

thoughts and feelings, and it is the expression of emotion. People’s perception of music 

needs to be felt through hearing, not through touch or vision, but the emotion contained in 

music is not limited to acoustics. In ancient China, when people drank and played a string-
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ed, they danced swords to help them enjoy themselves. They showed a visual and auditory 

musical feast through body movement, footwork and rhythm. Now, people combine sound, 

light and electricity to establish a wonderful audio-visual effect and achieve emotional 

interaction. Therefore, people have been exploring the interaction of multiple perception 

modes of music from vision, hearing and touch, to feel the pitch, loudness and timbre, 

experience the rhythm, melody and tonality of music, and realize the emotional interaction 

with music [1-3]. The traditional way of human-computer interaction has changed with the 

development of information technology and robot technology. Among them, gesture-based 

robot interaction can perform corresponding services according to people’s understanding 

of gestures, and the behavior of the robot can be controlled through several simple gestures. 

Thereby, the gesture interaction system is of great significance to improve human lifestyle 

and production mode. Applying gesture interaction to music perception teaching can im-

prove students’ learning interest and learning accuracy [4].    

This exploration aims to explore the application of gesture interactive robots in mu-

sic perception education, improve the teaching efficiency of music classroom teaching and 

help teachers manage students in the classroom. A distributed robot gesture interactive 

application system with a client-server structure is designed. The client collects gesture 

instructions and obtains real-time video stream through a dual-channel convolutional neu-

ral network (DCCNN), analyzes and processes the video stream, extracts gesture instruc-

tion data and synchronizes it to the server. The server recognizes the collected gesture 

instruction data through a two-stream convolution neural network and returns the recogni-

tion results to the client to display to the user. Finally, the interactive robot is tested. The 

research innovation is to apply deep learning technology to music teaching, establish a 

human-computer interactive music teaching robot, and improve the efficiency of music 

teaching. 

2. LITERATURE REVIEW 

Gao et al. (2020) designed a single shot multibox detector based on deep learning 

network function map fusion to solve the problem of hand detection and positioning in 

space human-computer interaction. First, the background of this method was introduced, 

including astronaut assisted robot platform, hand detection and positioning difficulties, and 

deep learning network for object detection and positioning. Then, a single shot multibox 

detector was designed to detect and locate the position of the hand. In the experimental 

part, the single shot multibox detector was trained and tested through a self-made database 

and two public databases. The results show that compared with the existing technology, 

the proposed method takes into account the accuracy, speed and balanced performance, 

and has good advantages [5]. Simão et al. (2019) designed a human-computer interaction 

framework to classify the actions of interleaved static and dynamic gestures captured by 

wearable sensors. Dynamic gesture features were obtained by applying data dimensional-

ity reduction (resampling through cubic interpolation and principal component analysis) 

to the original data from the sensor. Gesture datasets were used to conduct experimental 

tests on different samples. The results show that the accuracy of the classification model 

is 95%. For 24 static gesture libraries using random forest, it is 6%; for 10 dynamic gesture 

libraries using stochastic neural network, it is 99.3%. These results are different because 

different classifiers have different classification characteristics [6]. Neto et al. (2019) pro-

posed a gesture-based human-computer interaction framework, which makes robots assist 
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human colleagues in delivering tools and parts to jointly complete assembly operations. 

Wearable sensors were used to capture gestures on the upper body of the human body. The 

captured data were divided into static data and dynamic data, which classified gestures 

through artificial neural network recognition to understand the practical significance of 

gestures. A parameterized robot task manager could be implemented through the human-

computer interaction interface. According to the voice and visual feedback of the system, 

the functions of the robot could be selected by gesture to realize the human-computer in-

teraction process. The experiment of assembly operation proves that the solution proposed 

can improve the work efficiency [7]. Gladence et al. (2014) studied the application of se-

quential pattern mining in heart disease prediction. Naive Bayes classifier combined with 

short-term heart rate variability measurement was used to find the severity of congestive 

heart failure, so as to realize the prediction of heart disease [8]. 

Thereby, the current research direction shows that the use of deep learning technology 

combined with relevant data can predict the future development of a model, and then re-

spond effectively. At present, the research literature on the application of deep learning 

technology in music classroom teaching is less, and because of the particularity of the 

music curriculum, it needs a targeted design to meet the needs of music classroom teaching. 

Therefore, it is proposed to apply deep learning technology to music teaching to improve 

the teaching efficiency of music classrooms. 

3. RESEARCH MODEL AND THE METHODOLOGY 

3.1 Design of the Gesture Interactive Robot System 

Sight-singing is the skill of reading musical scores using visual, auditory, and other 

perceptual methods. Solfege helps students to quickly master the melody of music, streng-

thens their perception and understanding of music, and is beneficial to heightening their 

performance level. A quick response from sight to singing is required during the process, 

which needs intensive training. Chen et al. (2020) used a convolutional neural network 

(CNN) combined with video tracking technology to identify the target [9]. However, how 

to show the dynamic rhythm of singing to make the teaching process more direct and ef-

fective remained undetermined. Curwen gestures (Fig. 1) were created by Hungarian mu- 

   
Fig. 1. Curwen gestures. 
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sic educator John Curwen and used in music teaching. Curwen gestures express different 

roll names through the high and low positions of seven different gestures, and the high-

low relationship and the dynamic process are reflected through spatial relationships. There-

fore, applying Curwen gestures to music perception teaching can increase the interest in 

learning, which also improves intonation and enriches learning content. How to use com-

puters to recognize gestures in music teaching and establishing a human-computer inter-

active music perception teaching method are the major purposes of this exploration. 

The robot gesture interaction system includes two parts: the client and the server. The 

client obtains the gesture instructions from users, performs preliminary static recognition, 

and transfers the data to the server for static recognition and optical flow recognition of 

gesture instructions [10]. The recognition results are sent to the client. If the gesture 

matches an instruction in the database, the recognition result will be converted into a con-

trol instruction. Otherwise, the data are transferred to the server to be processed. Separating 

the acquisition module can increase the stability of the system and reduce the requirements 

for local hardware performance [11]. 

Fig. 2 displays the workflow of the gesture interactive robot system. The client col-

lects the gesture instruction data of user, and the video stream acquisition module is re-

sponsible for acquiring the video stream; the gesture instruction acquisition module per-

forms preliminary analysis and processing on the video stream to extract the gesture in-

struction data; the data transceiver module synchronizes the gesture instruction data to the 

server, receives the recognition result from the server, and converts the corresponding ges-

ture instruction; the client interface displays the recognition results corresponding to the 

gesture instruction from the user in real-time [12]. The server is mainly responsible for the 

recognition of user gesture instruction data. The data transceiver module is responsible for 

receiving the gesture instruction data transmitted by the client and returning the recognition 

result; the gesture instruction recognition module is responsible for recognizing the gesture 

instruction data; the server interface presentation module is responsible for the visualiza-

tion of the working status [13, 14].  
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Fig. 2. Gesture interactive robot system. 
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3.2 Gesture Instruction Data Collection 

CNN is a type of feedforward neural network that includes convolution calculations. 

It performs supervised learning and unsupervised learning by imitating the visual mecha-

nism of the human eye. The convolution kernel parameters in the hidden layer can perform 

weight sharing and inter-layer connection, which enables learning features of Grid-like 

topology using a reduced amount of calculation. Therefore, CNN is often used to process 

images and speech [15]. Its structure includes the input layer, hidden layer, and output 

layer. The input layer processes multi-dimensional data, and the input features must be 

standardized. The output layer adopts a logical function or a normalization function to 

output classification labels. The hidden layer usually contains a convolutional layer, a 

pooling layer, and a fully connected layer, of which the convolutional layer and the pooling 

layer are unique structures to CNN. The convolutional layer contains weight coefficients, 

while the pooling layer doesn’t [16]. 

The convolution operation refers to combining two functions and extracting features 

from the input image, including width, height, and multi-channel information. In image 

processing, the convolutional layer is superimposed on the image to multiply the convolu-

tion kernel by the image where it is located. By analogy, the features of the image are 

extracted through the convolution operation of the convolution kernel. In CNN, several 

convolutional units can be generated with a convolutional layer, and the parameters are 

learned through a direction propagation algorithm. After the network parameters are ad-

justed, the high-level features are obtained from the low-level features of the image 

through a multi-level convolution process [17]. 

The pooling operation reduces the number of learning parameters required by the net-

work using a nonlinear down-sampling algorithm, thus preventing the over-fitting phe-

nomenon of CNN [18]. The fully connected layer is generally set after the convolutional 

layer and the pooling layer. The previous layer is connected to the activation function to 

convert the extracted two-dimensional feature image into a one-dimensional feature vector, 

which has a feature classification function. The weighted sum of the output and the net-

work training weight is acquired, and the maximum value is the recognition result [19]. In 

the CNN, the convolutional layer, the pooling layer, and the fully connected layer intersect 

each other (Fig. 3). The neurons in the fully connected layer are fully connected between 

layers, and features after the convolution and pooling are integrated [20]. 
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Fig. 3. CNN structure. 

 

DCCNN is employed to recognize static gestures, extract high-level features, and re-

alize advanced recognition of multiple gestures, so as to avoid pre-processing of the tradi-

tional gesture recognition. It can acquire advanced features of different granularities and 

enhances the recognition ability for gestures [21]. 
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CNN can extract the required features after training. Generally, a CNN has multiple 

convolutional layers and pooling layers. There are many convolution kernels in a convo-

lutional layer to extract local features. Each convolution kernel can map a feature image 

[22]. A small convolution kernel can increase the amount of feature information and re-

duces the number of parameters under the same conditions, thereby improving recognition 

effects. Therefore, the recognition effects (the recognition accuracy of the neural network 

for gestures) of multiple small convolution kernels are higher than that of a large convolu-

tion kernel, whereas if the convolution kernel is too small, image feature extraction may 

be impossible. CNN outputs the feature map of an input image. The design of the first 

convolutional layer is particularly important. If the convolution kernel of the first convo-

lutional layer is too large, some detailed information of the image will be lost; if the con-

volution kernel is too small, it is unable to present the characteristics of the image [23]. 

Traditional CNN uses a fixed-size convolution kernel, and the image granularity is also 

fixed. As a result, some features are lost in the learning process, which reduces the accu-

racy of network recognition [24]. Consequently, the DCCNN with dual-size convolution 

kernels has two convolutional layers and two pooling layers, and a fully connected layer. 

The convolution kernel of the first convolutional layer of the two convolutional networks 

is different in size, which is 55 and 77, respectively, as shown in Fig. 4. The fully con-

nected layers of the two CNNs are combined through a fully connected map, which is input 

into the classifier for feature classification [25]. 
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Fig. 4. DCCNN structure. 

 

The robot gesture interaction system can recognize the gestures in the video stream. 

The user’s gestures are recorded by the camera, and the acquired data are undertaken as 

the input image for static gesture recognition The DCCNN is then applied to check whether 

there are gestures in the video, and COUNT and HAND are adopted to mark the video 

frame by frame [26]. HAND = 1 means that the current frame contains static gestures, and 

HAND = 0 means no static gestures; COUNT = 1 means that the previous frame contains 

static gestures, and COUNT = 0 means that the previous frame does not contain static ges-

tures. X indicates the Xth frame. The acquired images containing gestures are stored [27, 

28]. Fig. 5 presents the specific process. 
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Fig. 5. Acquisition of video stream gesture instructions. 

 

In this section, the three-layer CNN structure is introduced to recognize static gestures. 

The gestures in the video stream are analyzed by DCCNN, and the video frames containing 

the gestures are stored, providing a data basis for gesture recognition [29]. 

3.3 Gesture Instruction Recognition Network 

The dynamic gestures contain more motion information than static gestures. Hence, 

this section focuses on how to recognize motion gestures. The optical flow characteristics 

of video are analyzed, with the motion information recognized using DCCNN. Video in-

formation is classified into spatial information and temporal information [30]. Spatial in-

formation refers to the surface information of video frames; temporal information refers to 

the optical flow among frames. Therefore, DCCNN is applied to recognize the motion 

information by extracting spatial and temporal information from the RGB image and the 

optical flow image. These two images are input into the network respectively, and the pre-

diction results of each network are merged to form the final recognition results [31]. 

The DCCNN is composed of two dimensions of space and time, which process the 

temporal and spatial information respectively. One network is a single-frame CNN. The 

video is input through a single-frame RGB image to describe the spatial characteristics of 

the image. The other CNNs input the video through the multi-frame dense optical flow to 

express the temporal characteristics of the video. The two networks are combined to rec-

ognize the video [32]. DCCNN can effectively obtain the motion information of video data. 
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The spatial feature image and the temporal image are convolved, pooled, and fully con-

nected through a CNN, and the video is recognized by merging spatial and temporal fea-

tures [33]. 
 

I. The early DCCNN convolves the single-frame image and multi-frame optical flow im-

age through the convolution kernel in the convolutional layer. Fig. 6 presents its struc-

ture. The final results are acquired by the weighted sum of the output results [34]. 
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 Fig. 6. DCCNN with early merging strategy. 

 

Usually, the merging weights of the two are both 0.5. The image of a single frame of 

RGB image is Xr, the optical flow image is Xk, and then the jth Neuron in the merged 

layer is expressed as follows. 

( )( )1
0.5 0.5

nl l l l l

j F r ij k ija f W X k X k b= + +  (1) 

al
j is the output value of the jth neuron of the merged layer; Wl and bl are the weight and 

bias of CNN, respectively. fF( ) is the SoftMax activation function. The fusion weights 

of spatial and temporal feature fusion are both 0.5. However, the difference between the 

optical flow image and the single-frame image is ignored, so this method is suitable for 

the merging of the initial images only [35]. 

II. The later DCCNN inputs the single-frame image and the optical flow image into the 

same CNN, followed by feature extraction, respectively, which is divided into the spa-

tial neural CNN and the temporal CNN, as shown in Fig. 7. 
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Fig. 7. DCCNN with late merging strategy. 
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The neuron in spatial CNN is 
1l

rja −
, and the neuron in temporal CNN is 

1l

kja −
. The equa-

tion to fully connect the two fully connected layers is as follows. 

( ) ( )( )1 10.5 0.5l l
rj kj

l l l l l l l

j F r rj r k kj ki M i M
a f W a b W a b− −

 
= + + +   (2) 

aj
l is the output value of the neural network; Wr

l and br
l are the weight and biases of the 

spatial CNN; Wk
l
 and bk

l
 are the weights and biases of the temporal CNN; Mr

l
j is the 

feature map set of the spatial CNN, Mk
l
j is the feature map set of temporal CNN, and fF 

is the activation function. The correlation between RGB image and optical flow image 

is not considered in the following merging, which is suitable for merging at the deci-

sion-making level. 

III. The merging of the fully connected layer refers to realizing the weight sharing of the 

spatial CNN and the temporal CNN in the first fully connected layer, so as to reduce 

the independence in the later merging. The spatial CNN and temporal CNN have the 

same structure, as shown in Fig. 8. 
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Fig. 8. DCCNN of fully connected layer merging strategy. 

 

The neuron in the pooling layer of spatial CNN is  
1l

rja −
, and the neuron in the pooling 

layer of temporal CNN is 
1.l

kja −
 The output results of the two pooling layers are fully 

connected, and then the equation of the jth neuron of the merging layer is as follows 

[36]. 

1 1( ( ) )l l
rj kj

l l l l l

j F rj kji M i M
a f W a a b − −

 
= + +   (3) 

 and  are the merging coefficients of spatial CNN and temporal CNN, respectively. 

The weight value equalling to the bias value can improve the network recognition ef-

fects, which is suitable for the merging in the fully connected layer [37]. 

IV. The convolutional layer merging refers to inputting a single-frame image and a multi-

frame optical flow image into two CNNs, respectively. Fig. 9 displays the structure. 

Multiple convolutions and pooling are then performed, and the output results of the 

two networks are convolved with the same convolution kernel. The weighted values 

are merged after the convolution, and convolution, pooling, and full connection are 

repeated [38]. 
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Fig. 9. DCCNN of convolutional layer merging strategy.  
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Fig. 10. Gesture instruction recognition network. 

 

The jth neuron in the merging layer is expressed as follows, 

( ) ( ) 1 1
l l
rj kj

l l l l l l l

j c i ij i iji M i M
a f W a k a k b − −

 

 = + +
    . (4) 

The convolutional layer merging means that the two convolutional networks undergo 

multiple convolutions and poolings to extract the inherent features of the image. Then, 

features are merged using the same convolution kernel to ensure the relevance between the 

single-frame image features and optical flow image features. The advantage of this net-

work is that it ensures the independence of RGB features and optical flow features, thereby 

reducing the number of training parameters and improving training and recognition effi-

ciency [39]. 

The temporal information of the video is called the optical flow feature, representing 

the velocity vector of the object in the video, which illustrates the change of a single-frame 

image in the two-dimensional vector field. The velocity field of the three-dimensional 

movement of the object point is represented by the two-dimensional image. Optical flow 

reflects the changes in the image as a result of motion, and the direction and velocity of 

the image can be determined by optical flow [40]. Fig. 10 displays the structure of the 
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DCCNN designed. The complete information of the video is utilized to perform a two-

stream time network with time segmentation for the task of predicting video results. This 

network contains K spatial CNN and K temporal CNN compared to the traditional two-

stream CNN. The input value of the temporal CNN is the optical flow characteristic image 

of consecutive frames processed by a series of cut fragments of the entire video [41]. Each 

cut segment will produce its own cut video prediction result, and then the prediction result 

of each segment is exported as the prediction input of the entire video. In the learning 

process, the loss value of the entire video prediction is optimized by iteratively updating 

the model parameters.   

4. EXPERIMENTAL DESIGN AND PERFORMANCE EVALUATION 

4.1 Experimental Dataset, Hyperparameters, Test Environment Settings 

Different datasets are utilized to test and train static gesture recognition and dynamic 

gesture recognition modules, so as to test the performance of human-computer interaction. 

The static gesture dataset uses the CGD2013 dataset, which contains 11,000 color images 

of 20 gestures (550 for each gesture). 400 images of each gesture are randomly selected 

from the dataset, and a total of 8000 gesture images are taken as the training dataset of the 

DCCNN. In another 150 images, a total of 3000 gesture images are taken as the dataset for 

the network test. Fig. 11 presents the datasets. The constructed neural network adopts a 

small batch stochastic gradient descent method to learn the network parameters. The batch 

size is set to 256, and the momentum is set to 0.9. The initial weight of the spatial convo-

lutional network is set to 0.95, and that of the temporal convolutional network is set to 1.5. 

In the experiment, the learning rate is initialized to 0.01 for the spatial convolutional net-

work, which is reduced to 1/10 of it every 2000 iterations, and the training process is iter-

ated 4000 times in total. For the time convolutional network, the learning rate is initialized 

to 0.005 and is reduced to 1/10 of it after the 12,000 and 15,000 iterations. The training 

process is iterated 25,000 times in total. 

 

   

Fig. 11. CGD2013 data set. 

 

The interactive system is completed by a robot with a three-layer structure. The bot-

tom layer is the robot motion base, which walks by controlling the movement and speed. 

The middle layer is the hardware layer, which is mainly used to connect hardware devices 
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such as rangefinders, steering gears, and gyroscopes to realize management and control of 

various hardware. The top layer is the development layer based on the Raspberry Pi. Rasp-

berry Pi is a microcomputer motherboard with multiple USB ports and network ports, 

which has the basic functions of a microcomputer. Table 1 shows the robot configuration 

information and network hyperparameter settings. 

 

Table 1. Robot configuration information. 

Parameters Client Servers 

Display program 
Qt 5.7 

Linux-dash 
VS2015 

System Win7 CentOS 7.3.1611 

CPU i7-7700 Intel Xeon E5-2680 

GPU GeForce GTX 960 GeForce GTX Titan V 

Camera Kinect v1  

Hard disk capacity 32GB+512GB 512GB+4TB 

4.2 Recognition Results of Static Gesture Instruction  

To verify the impact of the size of the DCCNN kernel on the recognition effects, two 

parallel experiments are performed with different sizes of convolution kernels. Fig. 12 dis-

plays the results. 

Fig. 12 illustrates that the recognition accuracy of DCCNN reaches as high as 96%, 

and the recognition accuracy of different convolution kernels is different. The comparison 

reveals that the recognition effects of DCCNN are affected by the size of the convolution 

kernel. The combination of convolution kernels with the size of 5×5 and 7×7 improves the 

recognition accuracy rate to 98%. The experiment also suggests that the DCCNN can rec-

ognize static gesture images of different scales, and merging the information of these im-

ages can obtain richer feature information and better identification results. 

Fig. 12 suggests that the recognition rate of gestures by different DCCNNs is 98%. 

The experimental results reveal that the size of the convolution kernel has a certain impact 

on the recognition rate of the network. The network that combines two smaller convolution 

kernels has a lower recognition rate for gestures than the network generated by combining 

two larger convolution kernels. The network generated by the combination of convolution 

kernels with a larger gap has a lower recognition rate of gestures than the network gener-

ated by the combination of convolution kernels with a smaller gap. Combining 5×5 and 

7×7 convolution kernels can increase the recognition accuracy to 98%. Experiments also 

show that DCCNN can recognize static gesture images of different scales, and fusion of 

the information of these images can help obtain richer feature information and better recog-

nition results. 

The learning curve displays the performance of the network on the new data by cal-

culating the accuracy of the training set and cross-validation when the size of the training 

set is different. In this way, it can determine whether the variance of the network or the 

deviation is too high and whether increasing the training set can reduce the over-fitting 

phenomenon of CNN. Fig. 13 indicates that there is no over-fitting phenomenon in the 

algorithm. 
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Fig. 12. The recognition accuracy of CNNs of differ-

ent sizes of kernels. 

    Fig. 13. The learning curve. 

4.3 Recognition Results of Dynamic Gesture Instructions 

The three types of CNNs involved are tested using training from scratch, pre-training 

spatial networks, and cross-input pre-training strategies. Fig. 14 presents the results.  

Fig. 14 reveals that both spatial CNN and temporal CNN have general effects in dy-

namic gesture recognition, with an accuracy of less than 90%; while the DCCNN exhibits 

accuracy of about 90%, which is higher than the other two networks. Besides, the recog-

nition results are changeable if the same CNN is trained using different algorithms. Among 

them, the recognition effects of cross-input pre-training are the best among the three, with 

a recognition accuracy of 91%. The reason may be that cross-input pre-training can effec-

tively reduce the over-fitting phenomenon of CNN. 
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Fig. 14. CNN test results under three different 

training methods. 

Fig. 15. The dynamic gesture recognition 

results. 

 

The two-stream CNN, Convolutional 3D (C3D), and the time-segmented double-

channel algorithm are compared for recognition accuracy using two datasets of CGD2011 

and Jester for training, as shown in Fig. 15. 
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Fig. 15 reveals that the recognition accuracy of the double-channel is 91% and 88% 

in CGD2011 and Jester datasets respectively. They are higher than the recognition results 

of C3D and time division double-channel networks after training on the two datasets. 

Therefore, the algorithm designed demonstrates better video recognition effects and can 

avoid the loss of video information during the video recognition process. 

4.4 Two-Stream CNN Test With Different Layer Merging Strategies 

The different two-stream CNNs mentioned are compared, including early fusion strat-

egy, late fusion strategy, fully connected layer fusion strategy, and convolutional layer 

fusion strategy, using the CGD2013, CGD2011, and Jester datasets for training and testing. 

Fig. 16 presents the results. 

Fig. 16 suggests that the recognition accuracy of the unified dataset of the two-stream 

CNN using different layer merging strategies has obvious differences. Among them, the 

two-stream CNN using the convolutional layer fusion strategy has the best recognition 

accuracy, which is above 85%, followed by the fully connected layer fusion strategy, the 

late fusion strategy, and the early fusion strategy. Therefore, the accuracy of the algorithm 

for image recognition is continuously improved with the improvement of the two-stream 

CNN algorithm. 
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Fig. 16. Test results of two-stream CNN with differ-

ent layer merging strategies on different data sets. 

Fig. 17. Gesture instruction recognition results 

of gesture interactive robot. 

4.5 Recognition Results of Robot Gesture Interaction System  

Finally, the designed robot interactive system is tested to verify the usability and re-

liability of the gesture interactive robot in practice. The seven music gestures (Curwen 

gestures) are recognized and tested through two parallel tests, as shown in Fig. 17. 

Fig. 17 illustrates that the gesture interactive robot can recognize various gesture in-

structions, and the overall recognition accuracy is over 90%. It may be because that there 

is little content related to Curwen gestures in the training set used. As a result, the corre-

sponding gestures cannot be accurately recognized. However, the test shows that the ges-

ture interactive robot system can meet the normal interaction requirements, which have 

good reliability and stability. It can be used for music perception teaching. 
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To sum up, the combination of 5×5 and 7×7 kernels can improve the recognition ac-

curacy of DCCNN up to 98%, and can effectively collect gesture instruction data. The 

recognition accuracy of DCCNN can reach 90% after training, higher than the mainstream 

dynamic gesture recognition algorithm. The recognition accuracy rate of the gesture inter-

active robot is above 90%. Therefore, the gesture interactive robot system can meet normal 

requirements and is of good reliability and stability. 

4.6 Experimental Comparison 

Seven music gestures are input into the network designed and the original two-stream 

network for testing. Fig. 18 displays the test results. 
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Fig. 18. Comparison of test results of different algorithms. 

 

In Fig. 18, the gesture recognition interactive system containing the original two-

stream network can recognize various gesture commands, and the overall recognition ac-

curacy rate exceeds 93%. The overall recognition accuracy rate of gesture recognition in-

teractive system with improved dual-stream network exceeds 95%. The two algorithms 

have the highest recognition rate for Do and the lowest recognition rate for La. The reason 

may be that Do has a scale that is easier to identify, but La doesn’t. 

5. CONCLUSIONS  

This exploration is to explore the application of gesture interactive robots in music 

perception education. First, the DCCNN is designed to collect the user’s gesture instruc-

tions on the client, and upload the collected results to the server. Then, the two-stream 

CNN is designed to recognize the collected data and send the recognition results back to 

the client. Next, the client-server distributed human-computer interaction system is intro-

duced. Finally, the designed interactive robot is tested. The results show that the recogni-

tion accuracy of the designed gesture interactive robot is more than 90%, which can meet 

the requirements of normal human-computer interaction, and the interactive system has 

good reliability and stability. Therefore, the gesture interactive robot based on deep learn-

ing artificial intelligence technology can be applied to music perception teaching. However, 

the current research still has some defects. When dual-stream CNN performs video recog-
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nition, it is realized by the average sampling of the video. Therefore, the time information 

contained in the video will be lost in the process of feature learning, which will affect the 

recognition results of dual-stream CNN. Moreover, the average sampling of video will lead 

to the allocation of wrong tags, making the recognition result inconsistent with the actual 

situation. Therefore, in the experiment process, the model will be optimized combined with 

the updated algorithm to improve the recognition effect of the model, and applied to the 

actual music classroom teaching. 
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