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This article presents an approach that helps convert a given C program into a hard-

ware implementation for a digital circuit design. Based on and extended from the concept 
of hierarchical finite-state machines (HFSMs), four built-in HFSM templates, namely Seq, 
Par, Loop and Atomic, are proposed and used as the elementary components of a hard-
ware design. A guideline on the refinement of a C program is also proposed; the refined 
C functions are compiled into HFSMs that in turn generate synthesizable hardware de-
scription language (HDL) code as the final design. A set of HFSMs is viewed as an in-
termediate representation between C and HDL and can be functionally simulated. Two 
modeling levels, i.e. cycle-accurate and cycle-approximated, are supported. A compila-
tion technique based on syntax-directed translations is used to automate the proposed ap-
proach. Experimental results on several well-known algorithmic benchmarks show the 
effectiveness of the proposed approach.      
 
Keywords: finite state machine, intermediate representation, hardware synthesis, hard-
ware description language 
 
 

1. INTRODUCTION 
 

Recently, ever-growing complexity of hardware design poses great challenges. To-
day many embedded systems are initially described using an intuitive, high-level behav-
ioral language, such as C. Although the general-purpose processors and software com-
pilers can run C programs in an easiest and cheapest way, well-designed customized 
hardware can always do the job faster, using fewer transistors and less energy. Thus, 
generating efficient hardware from C becomes an ongoing topic that has attracted many 
researchers. However, there is a great gap between software and hardware designs. The 
infeasibility of describing concurrency model, communications, data types, and detailed 
timing are the fundamental problems when using C to specify hardware [1]. 

Since the late 1980s, there are many C-like hardware languages proposed. Related 
tools can be found in [2-9]; they in general perform the transformation from a behavioral 
level specification of hardware to an implementation in terms of circuits, and their users 
have to learn a new language with extended constructs/syntaxes that vaguely resemble C 
(e.g. BDL [3]; Handel-C [4]; SystemC [5]; SpecC [9]) to describe details of the circuits. 
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The idea presented in this paper is that, rather than having to learn a new language, the 
designers refine the given C program (according to the guideline proposed in this paper) 
such that each refined C function can be mapped to a separate hardware block in an ef-
fective way; more details are provided later in this paper. 

Considering the implementation of the hardware, finite state machines (FSMs) are 
probably the most widely used components included in almost all the available automatic 
design tools. Theoretically, most of the digital systems can be realized from a formal 
FSM specification (extended with storage elements if needed); but the growing complex-
ity of hardware design makes it nearly impossible to create the design from scratch and 
ensure its quality in a reasonable time. Moreover, the basic FSM, which is flat and se-
quential, has a major weakness; most practical systems have a very large number of 
states and transitions. Representation and analysis become difficult [15]. One of the solu-
tions to this problem is based on the concept of hierarchy [16, 17]. In a hierarchical FSM, 
a state may be further refined into another FSM; that state at one level of the hierarchy is 
interpreted as being in one of several states at the lower level of the hierarchy, repre-
senting a FSM is calling another FSM to execute. Our idea presented in this paper is to 
map each refined C function to a specific HFSM that in turn represents a specific hard-
ware block. 

In order to bridge the gap between the behavioral C and the HFSM specification, 
we propose four built-in HFSM templates: Seq, Par, Loop and Atomic. Each template 
has a number of pre-defined variables (wires or registers) and actions (state transitions) 
used to communicate with other HFSMs and/or represent its internal status, and can be 
further edited to perform the behavior specified in C. Once completed, a HFSM is used 
to produce the corresponding synthesizable HDL code as a hardware block; a set of 
connected HFSMs can be viewed as an intermediate representation between C and hard- 
ware and can be functionally simulated. All of the HFSMs are basically cycle-accurate; 
an extension to the template of Atomic is the mode of cycle-approximated, which brings 
the support of two-level modeling of the design. 

As discussed in [13], any digital system consists of two major parts – an operational 
unit and a control unit. The logic design of operational units such as counters, adders, 
memory elements, etc., is well developed and does not present special difficulties; in 
contrast, the control unit, which determines the information processing dynamics in a 
digital system, is the most complex part of the whole system. It can be said that the logic 
design of a digital system is reduced as a rule to the design of its control unit. Consider-
ing our approach, the first three types of the proposed templates represent the compo-
nents of the control units (or control paths, more generally); the last one, Atomic, is used 
for the design of the operational units (or datapaths). We focus on the designs of control 
paths and datapaths separately, as discussed later in this paper. 

2. THE BUILT-IN HFSM TEMPLATES 

We propose four HFSM templates that represent the starting points and are used as 
the elementary components of a hardware design. Since one HFSM will be mapped to a 
specific hardware block in the final stage of the design process (as discussed later in Sec-
tion 6), for convenience but without ambiguities we will use concrete hardware blocks 
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throughout this paper to demonstrate the proposed HFSM templates and their properties. 
As shown in Fig. 1, the proposed HFSMs have a common configuration; they are syn-
chronously clocked with the global initialization signal reset, communicating with others 
through the input signal req, the output busy, and/or some data pins. The register state is 
used to represent a block’s current state, and initialized as IDLE (a state parameter). The 
input req is used to activate a block; the output busy is set on when stateIDLE, indicat-
ing that this block has been activated; otherwise off indicating this block is available to 
be called. The notation ⊝(x) is used to group the signals of req and busy of a block x; if 
there exist some pins being data inputs or outputs, they are also grouped. This common 
configuration is fixed across all the different HFSMs such that they can pass messages to 
each other following a communication protocol, as illustrated later in this section. Note 
that in this common configuration the state transitions are not set yet and should depend 
on different templates or specific HFSMs implemented. 

 

 
Fig. 1. The common configuration of the proposed HFSM templates. 

 

Based on and extended from the configuration, four proposed HFSM templates, Seq, 
Par, Loop and Atomic, are specified as follows. For the demonstration purposes, when a 
set of HFSMs may be called by a parent HFSM, they are denoted as {A, B, …, F} or {A- 
F}; if only one HFSM can be invoked, it is denoted as Z. 
As shown in Fig. 2 (a), the templates of Seq and Par have the same configuration; they 
have a set of HFSMs {A-F} at the lower level of the design hierarchy that are to be 
called. The block connects {A-F} through ⊝(x); a set of registers, {req_x}, is used to 
call the lower-level block x, where x{A-F}. The difference between the templates of 
Seq and Par is the state transitions defined. As shown in Fig. 2 (b), Par concurrently 
calls all of its connected lower level blocks, waiting for their executions to be completed. 
Thus, the process-level parallelism can be specified in a Par HFSM with each connected 
block being the executor of an independent process. Different from Par HFSMs, a Seq 
HFSM can only sequentially call {A-F} one after another, as the state transitions speci-
fied in Fig. 2 (c). During the state transitions represented by filled arrows, some actions 
may need to be taken. For instance and see Fig. 2 (c), during the transition from IDLE to 
Cal- ling A, the action is one that sets high the request variable req_A. On the other hand, 
the status of staying at the same state waiting for some event is represented by a rounded 
arrow, say Awaiting that waits for the execution of a block to be completed. Note that 
once a Par HFSM is activated, all of its connected lower level blocks must be called; 
whereas in a Seq block several calls to the lower level can be skipped according to the 
state transitions specified in the corresponding C function. Also note that for a Seq or 
Par HFSM every call to a lower-level block can be made only once during the activation 
of the HFSM. Finally, different from Seq and Par, a Loop HFSM can call another several 
times, but only one lower-level HFSM can be connected with it and thus be called. 
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Fig. 2. (a) The configuration of the templates of Seq and Par; we have registers req_x connected to 

⊝(x) used to call block x, where x{A-F}; (b-c) Their state transitions with or without ac-
tions. 

 

 
Fig. 3. The waveform of the communication protocol between HFSM H and its child h. 
 

The template of an Atomic HFSM is simple; it is basically the common configura-
tion as shown in Fig. 1. It cannot call any other blocks; thus it lies at the lowest level of 
the design hierarchy, representing the design of pure datapaths. The state transitions, 
declarations of registers and wires are determined according to the algorithmic procedure 
that is to be performed; the only fixed property is that it has to follow the communication 
protocol for its callers. The protocol, also followed by other types of HFSM templates, is 
illustrated in Fig. 3 and as follows. Suppose HFSM H in state qi is calling the connected 
lower-level HFSM h by setting high the request register req_h at time A. One clock cy-
cle later, at time B, h is activated by changing its state from IDLE to qx. During the invo-
cation, req_h is set low; an output busy_h indicating h is running is set high; and H waits 
in state qi+i until h finishes its task by returning to state IDLE and setting busy_h low, 
which in turn notifies H that the function call is completed, at time C. H then leaves state 
qi+i. Notice we spend two fixed clock cycles on the call and the return of the lower-level 
HFSM, implying that the greater the number of cycles needed to execute a subroutine, 
the smaller the communication overhead. 

With a specified algorithmic procedure, an Atomic HFSM can be configured by us-
ing one of the many famous scheduling algorithms and heuristics (e.g. as-soon-as-possi- 
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ble (ASAP); force-directed [18]; list-scheduling [19]; exact scheduling [20, 21]) to deter- 
mine the sequences of the operations execution under various constraints (e.g. resource 
and/or timing constraints, pipelined and/or multicycle operations). In addition, an Atomic 
HFSM can be viewed as a functional black box. When the algorithmic procedure is not 
yet determined in the early stage of a design process, designers can just feed the desired 
outputs according to its inputs on the data pins, possibly after a delay of a number of 
clock cycles. This brings the support of the cycle-approximated simulation, as given later 
in Section 5. 

3. HFSM DESIGN HIERARCHY AND SHARED MEMORIES 

The design hierarchy of a set of connected HFSMs can be visualized as a tree 
structure as shown in Fig. 4. A Seq HFSM is represented by a thin-circle node; Par by a 
bold circle; Loop by double circles; and triangle nodes are leaves with no successors 
representing Atomic HFSMs. Two nodes are connected through ⊝ represented by an arc 
between them. Each node is labeled; nodes with the same label represent the same reusa-
ble HFSM, say the nodes labeled d, which will lead to resource savings since only one 
hardware block will be generated for them. Recall that the datapath design is within 
Atomic HFSMs; storage elements such as a shared memory may be needed, say RAM 
shared by e and h in the figure. In this section, we consider the hardware implementation 
of this design hierarchy including shared components, i.e. the reusable HFSMs and 
shared memories. 

 

 
Fig. 4. The design hierarchy of a set of connected HFSMs. 

 

In hardware design, data are usually shared using a shared memory accessible 
through different hardware blocks, or using message passing mechanisms. While the 
latter has been considered by our approach (through the data pins as shown in Fig. 1), we 
focus on the implementation of shared memories, or more generally shared hardware 
blocks. 

In our approach, a memory can be modeled by a simplified HFSM; it has no req or 
busy signals; only data pins such as addr, din, dout, we, etc. are grouped into ⊝. It is 
viewed as a reusable HFSM with a fixed number of states, i.e. one or several clock cy-
cle(s) to read or write a data. The blocks accessing the memory may use its data output 
after a delay of a fixed number of clock cycles, rather than setting and waiting for the 
handshaking signals, i.e. req and busy, in the communication protocol as specified in Fig. 3. 

As shown in Fig. 5 and following Fig. 4, the physical connections of the hardware  
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blocks mapped from the design hierarchy of a set of connected HFSMs can be deter-
mined as follows. First, a nearest common parent for each type of the shared components 
is found. For instance, the common parent of the RAMs (the dashed rectangles) is node a. 
Next, the shared component is moved to the next level of the common parent and con-
nects with it, say RAM is moved to level 1 and connects with a. Finally, the shared com-
ponent and its callers are connected across the layers between them. As an example, the 
connection between RAM and h is across blocks a, c, and g; similarly, the connection 
between d and c is across a that is also the nearest common parent of the shared nodes 
d’s (including the dashed triangle). Now we have a new design hierarchy where the 
nodes represent distinct HFSMs/blocks and the arcs are physical links between them. 

 

 
Fig. 5. The physical connections of the hardware blocks represented by distinct HFSMs. 
 

One problem to the shared components is the access collisions that can occur if 
several blocks attempt to access/activate the same component at the same instant. We 
resolve this by using a multiplexor at their common parent to select the access rights as-
signed to one of the blocks. In general, the block that is busy (when its output signal busy 
is on) gets the rights; that is, the link between the shared component and the calling 
block is held by the common parent through the multiplexor until the calling block’s 
busy signal is off. The design hierarchy shown in Fig. 5 and the mentioned links, multi-
plexors, and related signals will be automatically generated as RTL code during the final 
stage of the design process, as given later in Section 6. 

4. REFINEMENTS OF C FUNCTIONS 

For a given C program, our idea is to firstly refine it and then map each refined C 
function to a specific HFSM that in turn represents a hardware block. In this section we 
give the refinement guideline on a C program such that the structure of the refined C 
functions is similar to the design hierarchy of a set of connected HFSMs as shown before 
in Fig. 4. In other words, the behavior of one refined C function should be similar to one 
of the proposed HFSM templates. As listed in Table 1, we outline the types of the re-
finement problems and their solutions in terms of HFSM templates and properties. As 
can be seen, types (A)-(D) consider the mapping of a refined function and a HFSM tem-
plate. Specifically, only four function types, Seq, Loop, Par and Atomic, are allowed in a 
refined C program. A Seq function sequentially invokes other functions in a specific or-
der; between two consecutive subroutines are simple assignments and if-then-else state-
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ments rather than complex arithmetic and memory operations that should be refined into 
an Atomic function. A Loop function iteratively calls another function; similar to Seq, 
between two consecutive calls to the subroutine are simple statements. In a Par function, 
no statements between two consecutive subroutines are allowed, since the subroutines 
will be executed concurrently in the mapped Par HFSM. Thus, we can specify pro-
cess-level parallelism in a Par function with each subroutine being an independent pro-
cess. Finally, there are no special regards to an atomic function except that it cannot call 
and execute any other functions; it represents the design of pure data flow, usually com-
posed of a sequence of memory and arithmetic operations. 

Besides the four function types, problems (E)-(G) in Table 1 focus on the data 
shared by different functions. (E) and (F) represent the message passing mechanisms for 
a function call; the arguments and return value of a function are mapped to the data pins 
of the corresponding HFSM. In problem type (G), the allocated memory (array) in a C 
program is regarded as a shared component that can be accessed by different HFSMs 
through an address offset signal (and other signals, e.g. data, but not mentioned here) 
being a specific output on one HFSM’s data pins. 

 

Table 1. The refinement problems in C and their solutions. 
Type Characteristics of C functions Mapped HFSM template 
(A) Invokes others in a specific order Seq 
(B) Iteratively calls another function Loop 
(C) Performs a specific task itself Atomic 
(D) Same as (A) but the order is arbitrary Par 
(E) Arguments to the function Inputs or outputs on the data pins 
(F) Return value of the function An output on the data pins 
(G) Allocated memories (arrays) Shared components 

 

One can gradually refine a given C program according to the refinement problems 
and their solutions shown above. More formally, we have four main refinement steps 
stated as follows. The details of each step are given in the rest of this section. 

1. Rewrite each of the C functions to one of the types {A-D} listed in Table 1. We may 
need to create a new function or delete one in this step. 

2. Identify the pointers that represent pass-by-reference arguments to functions. They 
will be used as outputs on the data pins of the mapped HFSMs. 

3. Replace dynamic memory allocations to static memory allocations. Create the mem- 
ory reading and writing functions. The allocated memories will be mapped to the 
shared components in the HFSM design hierarchy. 

4. Add comments above the declaration of each refined function with information of the 
HFSM type and the widths of the declared variables in terms of a number of bits. 
These comments will be read to configure the mapped HFSM. 

We firstly focus on step 1 since the rewriting procedure plays a key role that deter-
mines the structure of the design hierarchy, and thus directly affects the performance of 
the hardware implemented. Based on the operation of Extract Method in the field of code 
refactoring [14] that is the process of changing a software system so that it does not alter 
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the external behavior of the code yet improves its internal structure, we change a given C 
program in the following ways. When a method is too long or a fragment of code needs a 
comment to understand its purpose, that fragment is extracted into its own method. The 
newly created methods are usually short (if still long, extract them again if possible) and 
well-named. This operation increases the chances that other components can use a 
method when the method is finely grained. Since the fragment of code extracted is re-
placed by a line of subroutine call, it allows the higher-level methods to read more like a 
series of comments. Regarding the hardware implementation, a reusable method synthe-
sized as a shared block can lead to resources savings; a shorter, clearer method can also 
potentially lead to improved readability and maintainability of the low-level descriptions. 

In addition to the typical Extract Method, we further consider simplifying the con-
trol flow of a method that has loops. The intuition is that a method with a complex con-
trol flow might result in a much more complicated controller design when realizing it in 
hardware. In order to exclude the statements of continue and break that eventually com-
plicate the control flow, we force a method to have only one subroutine that can itera-
tively be called; no statements are allowed outside the loop except return (see Fig. 6 (b) 
for a concrete example). In this method, the statement of break is replaced by return; 
continue is replaced by if-then-else. While this approach leads to simpler control path 
design that can be directly mapped to digital circuits, the overhead is the refactoring 
tasks that have to be regarded by designers. Fortunately, these tasks will be performed at 
the highest design level; it is much easier to verify the correctness of the refined func-
tions (e.g. using gcc) and to change the overall structure of the design (e.g. using another 
refinement paradigm). 

There are methods (functions) that cannot be extracted anymore. In this paper we 
call them atomic functions (similar to atomic HFSMs as having been discussed in Sec-
tion 2). An atomic function is usually composed of a sequence of memory and arithmetic 
operations. For example, a 256-point FFT program has atomic functions such as butterfly 
calculation and samples re-ordering; both of them read data from arrays, compute the 
desired values, and then write the data back. Considering the statements in an atomic 
function, it is usually plausible to exposing fine-grained parallelism using the two ap-
proaches discussed in [1]. 

The first one, instruction-level parallelism (ILP), dispatches groups of nearby in-
structions simultaneously. The second one, pipelining, dispatches instructions in sequ- 
ence but overlaps them  the second instruction starts before the first completes. Both of 
the approaches can be identified automatically by using various scheduling algorithms such 
as as-soon-as-possible (ASAP), force-directed [18], list-scheduling [19], and exact sched- 
uling [20, 21]. From this point of view, if a fragment of code is not long but looks like 
atomic or has potential to be scheduled effectively, it is worth creating a new method for it. 

When the refinement step 1 is done, we will roughly have the design hierarchy sim-
ilar to the tree structure as shown before in Fig. 4 that is originally used for HFSMs. 
Now each node represents a refined C function. We then perform the refinement step 2 
that considers the return values of a refined function. Due to the limits of the C language, 
only one return value is permitted for a declared function. If one needs another return 
value, it is usually put as a pass-by-reference argument to the function, and will be used 
as an output on the data pins of the mapped HFSM.  

In the refinement step 3, the dynamic memory allocations are replaced by static 
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ones. Two functions to read and write an allocated memory (array) are created. If a low-
est-level function needs an access to the memory, an address offset is given as an argu-
ment to the function and used to read a data from the memory.  

As shown in Fig. 6 and for each of the refined functions, the final step is to insert 
the information that is required by hardware designs such as HFSM types and variables 
widths in terms of a number of bits. We use Doclet annotations (supported in JAVA API) 
inserted above each function declaration such that they can be read to configure the 
mapped HFSM. As an example, on line 2 in Fig. 6 (c) we annotate this function is type 
Par, which infers a process-level parallelism for its subroutines; on line 3 we annotate 
the width of x and y is 8. For the demonstration purposes, we also insert one state after 
each of the subroutine calls in the function. The name of a state is the name of the corre-
sponding subroutine appended to a meaningful word, say the state await_b in Fig. 6 (a) 
on line 7 with respect to the function call b( ). A state inserted in this way is used to wait 
for the execution of the subroutine to be completed. A state IDLE is inserted after the 
variables declaration (on line 6), used to initialize the registers and indicate the mapped 
HFSM is available to be called. Whenever the statement of return is reached, the HFSM 
should change its state to IDLE. When the call to a subroutine is completed, some ac-
tions must be taken and the state may transit to another. Take the Loop function in Fig. 6 
(b) as an example, when the call to h( ) (on line 8) is completed, the assignments and 
conditions specified on lines 9-14 and 7 are the actions that must be done consecutively 
in one clock cycle during the state transition. Note that since most of the complex arith-
metic and memory operations are already refined into the lowest-level function as the 
design of pure datapaths, in such a control-intensive function the actions would be sim-
ple and not expose other critical issues. Besides, in a Par function as shown in Fig. 6 (c), 
we have only two fixed states inserted: IDLE and WAIT. In the mapped Par HFSM (refer 
to Fig. 2 (b)), the subroutines, say e( ) and f( ) in this figure, will be called concurrently, 
although in C they are still sequentially be called. In the mapped HFSM the state WAIT is 
used to wait for all of their executions to be completed. 
 

 
 
6 
7 

 

// … Doclet comments … 
void a ( ) { 

…(var. dclr.)    // IDLE 
x = b ( );       // await_b 
if (x) { 

    y = c (n, m);  // await_c 
  if (y) return; 

    else … 
} else { 

d ( );        // await_d 
} 
… 

} 

 
 
 
 

7
8

 9
  
 
 
 
14

// … Doclet comments … 
int g (int n, int m) { 

i = n; x = 0;   // IDLE 
while (i < m) { 

t = h (i);    // await_h 
if (t == -1) 

return x; 
else { 

x += t; 
i += 1; 

} 
  } 
  return x; 
} 

 
 2
 3

/** 
* @type Par 
* @width x y 8; 
**/ 

int b (int* x, int* y) { 
…(var. dclr.) // IDLE 
*x = e (…);  
*y = f ( );   // WAIT 
return *x + *y; 

} 

(a) Seq function (b) Loop function (c) Par function 
Fig. 6. Examples of Seq (a), Loop (b), and Par (c) functions illustrating the information of HFSM 

types, variables widths, and states that are inserted above the function declarations and after 
the subroutine calls. Note that in a Par function we have a fixed state WAIT that awaits the 
executions of all the subroutines to be completed. 
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5. CYCLE-APPROXIMATED SIMULATION 

With a set of refined C functions, we are ready to perform a cycle-approximated 
simulation by inserting some code as shown in Fig. 7 marked by brackets. In order to 
record the cycles spent by a subroutine, a pass-by-reference argument is added to it, say 
higher_level_cycles on line 2 and cycles on line 5 in (a). In the begin of each refined 
function, cycles is initialized as 1 since the activation of a block spends one cycle; after 
each function call, cycles is incremented by 1 since a state change also spends one cycle. 
Note that the actions with respect to the state change are taken during that cycle so that 
they do not pose other cycle wastes. Before the return of a function, the cycles recorded 
by the higher level function, higher_level_cycles, are accumulated to the total cycles 
spent by the function (see lines 11 and 5 in (a) and (b), respectively). As can be seen in 
(a), for a Seq or Loop function the cycles spent by its subroutines are accumulated and 
stored in cycles. The cycle-approximated ones are specified in an atomic function as 
shown in (b) on lines 3 and 5. The parameter K on line 3 represents the approximated 
cycles spent by this atomic function; it can be adjusted by designers or according to some 
estimating rules. If the design of an atomic function has not yet been determined, one can 
just feed the desired outputs (the return value, the pass-by-reference arguments, or the 
memory data that might need to be updated) according to its inputs and also estimate the 
number of cycles it might spend on the task that is going to be performed. Finally, we 
can record the total approximated cycles spent by the whole set of the refined functions 
through a main( ) that calls the root-node function in the design hierarchy and verifies 
the results at the same time. 
 

 
2 
 
 

5 
 
 

11 

/* Seq or Loop function */ 
int func (…, int* higher_level_cycles) { 

int cycles = 1;  
… 
first_func (…, &cycles);  
cycles += 1; 
… 

  *higher_level_cycles += cycles; 
  return …; 
} 

 
 

3
 

5

/* Atomic function */ 
int func (…, int* higher_level_cycles) { 
  int approximated_cycles = K;  

… 
  *higher_level_cycles +=  

approximated_cycles; 
  return …; 
} 

 (a) A Seq or Loop function.  (b) An Atomic function. 
Fig. 7. Cycle-approximated simulation is supported by inserting the C code marked by brackets 

into each refined function. 

6. VERILOG CODE GENERATION 

With a set of refined C functions mapped to a set of connected HFSMs shown in 
Fig. 4 and further in Fig. 5, we are ready to generate HDL code as the final design. As 
shown in Fig. 8, the code fragments written in Verilog describe the state transitions 
specified in the refined C functions given in Fig. 6. In Fig. 8 (a), HFSM a calls its chil-
dren HFSMs b, c, and d by setting high the request registers on lines 76, 86, and 89, re-
spectively. When b is running, the state is waiting at await_b due to the high of busy_b 
on line 83; while b is finished, the state transits to await_c or await_d depending on the 
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output value, x, of b on lines 84 and 85. Note that blocking assignments are used to en-
sure the correct behaviors specified in the C program. In Fig. 8 (b) HFSM g (iteratively) 
calls h through setting on the registered output req_h on line 64. The two return state-
ments in Fig. 6 (b) on lines 7 and 13 are accomplished here on lines 59 and 67, respec-
tively. When one call to h is completed, the actions between the state await_h that waits 
for the call and the next state, possibly await_h or IDLE, are taken on lines 58-69. The 
code shown can be automatically generated from a given set of proposed HFSMs with-
out ambiguities. 
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89 

always@ (posedge clk or  
posedge reset) begin 
  if (reset) begin 

… // registers initialization 
state <= IDLE; 

end else begin 
case (state) 

IDLE: begin 
if (req) begin 

req_b <= 1; 
state <= await_b; 

end 
end 
await_b: begin 

if (req_b) 
req_b <= 0; 

else if (!busy_b) begin 
x = x_b; 
if (x) begin 

req_c <= 1; 
state <= await_c; 

end else begin 
req_d <= 1; 
state <= await_d; 

end 
end 

end 
... // other cases 

endcase 
end 

end 
assign busy = state != IDLE; 
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56
 
58
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63
64
65
66
67
 
69

always@ (posedge clk or  
posedge reset) begin 
  if (reset) begin 

… // registers initialization 
state <= IDLE; 

end else begin 
case (state)  

IDLE: begin 
if (req) begin 

i = n; x = 0; 
if (i < m) begin 

req_h <= 1; 
state <= await_h; 

end 
end 

end 
await_h: begin 

if (req_h) 
req_h <= 0; 

else if (!busy_h) begin 
t = t_h; 
if (t == -1) begin 

state <= IDLE; 
end else begin 

x = x + t; 
i = i + 1; 
if (i < m) begin 

req_h <= 1; 
state <= await_h; 

end else begin 
  state <= IDLE; 
end 

end 
end 

end 
endcase 

  end 
end 
assign busy = state != IDLE;

 (a) Seq block (b) Loop block
Note: underlined words are inputs; shaded are outputs; bold are registers; italic are constants; otherwise wires. 
Fig. 8. Generated Verilog code fragments describing the state transitions for the refined functions 

in Fig. 6 (a) for Fig. 6 (a); (b) for Fig. 6 (b). 
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7. EXPERIMENTAL RESULTS 

In order to compare with existing C-to-hardware approaches, the proposed approach 
should be able to automatically generate Verilog code from a given refined C program. 
The automation can be realized by using a compilation technique based on syntax-di- 
rected translations [10] that is a method of translating a set of statements into a sequence 
of actions or instructions by attaching one such action to each rule of a grammar. The 
elementary instructions translated in the form of three-address code are then used to 
generate the corresponding Verilog code. 

We compare the performance of the proposed approach with Nios II C2H compiler 
[8] by implementing several well-known algorithmic benchmarks such as FDCT, 256- 
point FFT, bubble sorting, and finding primes using prime wheels, on the Altera DE2-70 
FPGA development board at a clock frequency of 50 MHz. The netlist compilation for 
the generated Verilog code is performed by Quartus II Software [11]. C2H compiler is a 
tool for generating a hardware accelerator module which is functionally identical to the 
original ANSI C function in a fully automatic way; the subroutine calls in the function 
are also accelerated. Since the input to the proposed approach is a C program with man-
ually refinements, we also test C2H’s performance with these refinements. The indices 
of the performance evaluation include the runtimes of the circuits, the maximum operat-
ing frequency (Fmax) achieved, the area of logic slices occupied, and the number of Veri-
log code lines generated. The results are shown in Table 2; we can see that our approach 
can generate faster circuits with lesser area. Our approach also produces comprehensive 
code with a reasonable, smaller number of code lines. One penalty of using our approach 
is the achieved Fmax that is slightly lower than C2H in benchmarks (a), (c) and (d). The 
reason is that our approach synthesizes the actions between two consecutive states to be 
executed in one clock cycle  that would lead to longer critical paths  while C2H gen-
erally infers one clock cycle for a C statement. We also observed that C2H has no obvi-
ous benefits from the refinements on the given C programs (although in (a) and (d) the 
area reduces from 13% to 9% and 7% to 6%, respectively, this trend does not appear in 
(b) and (c); the runtimes without refinements are also shorter than or equal to those with 
refinements, say 11s in (a), 9s vs. 13s in (b), and 32s vs. 41s in (d)). 

 
Table 2. Performance evaluation of the proposed approach against C2H. 

 
Index 

 
Benchmark 

Proposed approach 
(with refinements on C) 

C2H 
(without/with refinements on C) 

Run- 
times(s) 

Fmax

(MHz)
Area
(%)

Code
lines

Run- 
times(s)

Fmax 
(MHz)

Area 
(%)

Code 
lines 

(a) FDCT in JPEG en-  
coder 256256 pixels 

6 67 8 903 11 68/71 13/9 10,779/7,718 

(b) 256-point FFT 
10000 iterations 

3 85 4 1901 9/13 76/73 6/7 8,408/9,018 

(c) Bubble sort  
10,000 numbers 

13 87 3 268 21 94/96 4 2,736/3,364 

(d) Finding primes  
< 500,000 

10 80 5 893 32/41 95/96 7/6 7,427/6,249 

Notes: 1. Shaded cells are ones that indicate the performance of our approach is superior to C2H. 
      2. For each of the experimental cases, we spent no more than half an hour to refine the given C program. 



DESIGN OF SPECIFIC HARDWARE CIRCUITS FROM C PROGRAMS 349

A note on the computational and space complexities of the proposed approach is 
given as the conclusion of this section. Since the automation of the proposed approach is 
mainly based on syntax-directed translations that are popularly used in modern compilers 
such as gcc and javac, these complexities for code translations (C to three-address code 
and three-address code to Verilog) would not pose critical issues; any modern desktops 
that are able to run gcc and javac would also be able to run the proposed approach. In 
contrast, large runtimes and memory usage would be needed if we are searching for an 
optimized schedule that determines the order of operations execution within an Atomic 
function. For the experimental cases, a simple ASAP schedule is used in each Atomic 
function. Therefore, under these assumptions, the complexities of the proposed approach 
are low enough. 

8. SUMMARY 

We proposed an approach to specify hardware designs and expose parallel algo-
rithms starting from C language. We proposed four built-in HFSM templates that follow 
a communication protocol and can be further edited for the desired behavior. Each 
HFSM can be mapped to a specific hardware block with the signals and state transitions 
defined. We presented one possible way to automatically generate the Verilog code de-
scribing the set of derived HFSMs. With considerations of the message passing and 
shared memory mechanisms used in hardware, we proposed a guideline on the refine-
ment of a C program such that each refined C function can be mapped to a specific 
HFSM that in turn represents a hardware block. A set of refined C functions can be ex-
tended to support a cycle-approximated simulation by adding an argument to each func-
tion. Finally, compared with Nios II C2H compiler [8] that is an automatic behavioral 
synthesis tool, our approach can produce faster, smaller circuits with a smaller number of 
Verilog code lines. 
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