
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 34, 337-351 (2018)
DOI: 10.6688/JISE.201803_34(2).0002

337

Short Paper__

An Approach to the Design of Specific Hardware Circuits

From C Programs

CHENG-JUEI YU, YI-HSIN WU AND SHENG-DE WANG

Department of Electrical Engineering
National Taiwan University

Taipei, 116 Taiwan
E-mail: sdwang@ntu.edu.tw

This article presents an approach that helps convert a given C program into a hard-

ware implementation for a digital circuit design. Based on and extended from the concept
of hierarchical finite-state machines (HFSMs), four built-in HFSM templates, namely Seq,
Par, Loop and Atomic, are proposed and used as the elementary components of a hard-
ware design. A guideline on the refinement of a C program is also proposed; the refined
C functions are compiled into HFSMs that in turn generate synthesizable hardware de-
scription language (HDL) code as the final design. A set of HFSMs is viewed as an in-
termediate representation between C and HDL and can be functionally simulated. Two
modeling levels, i.e. cycle-accurate and cycle-approximated, are supported. A compila-
tion technique based on syntax-directed translations is used to automate the proposed ap-
proach. Experimental results on several well-known algorithmic benchmarks show the
effectiveness of the proposed approach.

Keywords: finite state machine, intermediate representation, hardware synthesis, hard-
ware description language

1. INTRODUCTION

Recently, ever-growing complexity of hardware design poses great challenges. To-
day many embedded systems are initially described using an intuitive, high-level behav-
ioral language, such as C. Although the general-purpose processors and software com-
pilers can run C programs in an easiest and cheapest way, well-designed customized
hardware can always do the job faster, using fewer transistors and less energy. Thus,
generating efficient hardware from C becomes an ongoing topic that has attracted many
researchers. However, there is a great gap between software and hardware designs. The
infeasibility of describing concurrency model, communications, data types, and detailed
timing are the fundamental problems when using C to specify hardware [1].

Since the late 1980s, there are many C-like hardware languages proposed. Related
tools can be found in [2-9]; they in general perform the transformation from a behavioral
level specification of hardware to an implementation in terms of circuits, and their users
have to learn a new language with extended constructs/syntaxes that vaguely resemble C
(e.g. BDL [3]; Handel-C [4]; SystemC [5]; SpecC [9]) to describe details of the circuits.

Received April 6, 2010; revised July 18 & September 7, 2010; accepted October 18, 2010.
Communicated by Chung-Ping Chung.

CHENG-JUEI YU, YI-HSIN WU AND SHENG-DE WANG

338

The idea presented in this paper is that, rather than having to learn a new language, the
designers refine the given C program (according to the guideline proposed in this paper)
such that each refined C function can be mapped to a separate hardware block in an ef-
fective way; more details are provided later in this paper.

Considering the implementation of the hardware, finite state machines (FSMs) are
probably the most widely used components included in almost all the available automatic
design tools. Theoretically, most of the digital systems can be realized from a formal
FSM specification (extended with storage elements if needed); but the growing complex-
ity of hardware design makes it nearly impossible to create the design from scratch and
ensure its quality in a reasonable time. Moreover, the basic FSM, which is flat and se-
quential, has a major weakness; most practical systems have a very large number of
states and transitions. Representation and analysis become difficult [15]. One of the solu-
tions to this problem is based on the concept of hierarchy [16, 17]. In a hierarchical FSM,
a state may be further refined into another FSM; that state at one level of the hierarchy is
interpreted as being in one of several states at the lower level of the hierarchy, repre-
senting a FSM is calling another FSM to execute. Our idea presented in this paper is to
map each refined C function to a specific HFSM that in turn represents a specific hard-
ware block.

In order to bridge the gap between the behavioral C and the HFSM specification,
we propose four built-in HFSM templates: Seq, Par, Loop and Atomic. Each template
has a number of pre-defined variables (wires or registers) and actions (state transitions)
used to communicate with other HFSMs and/or represent its internal status, and can be
further edited to perform the behavior specified in C. Once completed, a HFSM is used
to produce the corresponding synthesizable HDL code as a hardware block; a set of
connected HFSMs can be viewed as an intermediate representation between C and hard-
ware and can be functionally simulated. All of the HFSMs are basically cycle-accurate;
an extension to the template of Atomic is the mode of cycle-approximated, which brings
the support of two-level modeling of the design.

As discussed in [13], any digital system consists of two major parts – an operational
unit and a control unit. The logic design of operational units such as counters, adders,
memory elements, etc., is well developed and does not present special difficulties; in
contrast, the control unit, which determines the information processing dynamics in a
digital system, is the most complex part of the whole system. It can be said that the logic
design of a digital system is reduced as a rule to the design of its control unit. Consider-
ing our approach, the first three types of the proposed templates represent the compo-
nents of the control units (or control paths, more generally); the last one, Atomic, is used
for the design of the operational units (or datapaths). We focus on the designs of control
paths and datapaths separately, as discussed later in this paper.

2. THE BUILT-IN HFSM TEMPLATES

We propose four HFSM templates that represent the starting points and are used as
the elementary components of a hardware design. Since one HFSM will be mapped to a
specific hardware block in the final stage of the design process (as discussed later in Sec-
tion 6), for convenience but without ambiguities we will use concrete hardware blocks

DESIGN OF SPECIFIC HARDWARE CIRCUITS FROM C PROGRAMS 339

throughout this paper to demonstrate the proposed HFSM templates and their properties.
As shown in Fig. 1, the proposed HFSMs have a common configuration; they are syn-
chronously clocked with the global initialization signal reset, communicating with others
through the input signal req, the output busy, and/or some data pins. The register state is
used to represent a block’s current state, and initialized as IDLE (a state parameter). The
input req is used to activate a block; the output busy is set on when stateIDLE, indicat-
ing that this block has been activated; otherwise off indicating this block is available to
be called. The notation ⊝(x) is used to group the signals of req and busy of a block x; if
there exist some pins being data inputs or outputs, they are also grouped. This common
configuration is fixed across all the different HFSMs such that they can pass messages to
each other following a communication protocol, as illustrated later in this section. Note
that in this common configuration the state transitions are not set yet and should depend
on different templates or specific HFSMs implemented.

Fig. 1. The common configuration of the proposed HFSM templates.

Based on and extended from the configuration, four proposed HFSM templates, Seq,
Par, Loop and Atomic, are specified as follows. For the demonstration purposes, when a
set of HFSMs may be called by a parent HFSM, they are denoted as {A, B, …, F} or {A-
F}; if only one HFSM can be invoked, it is denoted as Z.
As shown in Fig. 2 (a), the templates of Seq and Par have the same configuration; they
have a set of HFSMs {A-F} at the lower level of the design hierarchy that are to be
called. The block connects {A-F} through ⊝(x); a set of registers, {req_x}, is used to
call the lower-level block x, where x{A-F}. The difference between the templates of
Seq and Par is the state transitions defined. As shown in Fig. 2 (b), Par concurrently
calls all of its connected lower level blocks, waiting for their executions to be completed.
Thus, the process-level parallelism can be specified in a Par HFSM with each connected
block being the executor of an independent process. Different from Par HFSMs, a Seq
HFSM can only sequentially call {A-F} one after another, as the state transitions speci-
fied in Fig. 2 (c). During the state transitions represented by filled arrows, some actions
may need to be taken. For instance and see Fig. 2 (c), during the transition from IDLE to
Cal- ling A, the action is one that sets high the request variable req_A. On the other hand,
the status of staying at the same state waiting for some event is represented by a rounded
arrow, say Awaiting that waits for the execution of a block to be completed. Note that
once a Par HFSM is activated, all of its connected lower level blocks must be called;
whereas in a Seq block several calls to the lower level can be skipped according to the
state transitions specified in the corresponding C function. Also note that for a Seq or
Par HFSM every call to a lower-level block can be made only once during the activation
of the HFSM. Finally, different from Seq and Par, a Loop HFSM can call another several
times, but only one lower-level HFSM can be connected with it and thus be called.

CHENG-JUEI YU, YI-HSIN WU AND SHENG-DE WANG

340

Fig. 2. (a) The configuration of the templates of Seq and Par; we have registers req_x connected to

⊝(x) used to call block x, where x{A-F}; (b-c) Their state transitions with or without ac-
tions.

Fig. 3. The waveform of the communication protocol between HFSM H and its child h.

The template of an Atomic HFSM is simple; it is basically the common configura-
tion as shown in Fig. 1. It cannot call any other blocks; thus it lies at the lowest level of
the design hierarchy, representing the design of pure datapaths. The state transitions,
declarations of registers and wires are determined according to the algorithmic procedure
that is to be performed; the only fixed property is that it has to follow the communication
protocol for its callers. The protocol, also followed by other types of HFSM templates, is
illustrated in Fig. 3 and as follows. Suppose HFSM H in state qi is calling the connected
lower-level HFSM h by setting high the request register req_h at time A. One clock cy-
cle later, at time B, h is activated by changing its state from IDLE to qx. During the invo-
cation, req_h is set low; an output busy_h indicating h is running is set high; and H waits
in state qi+i until h finishes its task by returning to state IDLE and setting busy_h low,
which in turn notifies H that the function call is completed, at time C. H then leaves state
qi+i. Notice we spend two fixed clock cycles on the call and the return of the lower-level
HFSM, implying that the greater the number of cycles needed to execute a subroutine,
the smaller the communication overhead.

With a specified algorithmic procedure, an Atomic HFSM can be configured by us-
ing one of the many famous scheduling algorithms and heuristics (e.g. as-soon-as-possi-

DESIGN OF SPECIFIC HARDWARE CIRCUITS FROM C PROGRAMS 341

ble (ASAP); force-directed [18]; list-scheduling [19]; exact scheduling [20, 21]) to deter-
mine the sequences of the operations execution under various constraints (e.g. resource
and/or timing constraints, pipelined and/or multicycle operations). In addition, an Atomic
HFSM can be viewed as a functional black box. When the algorithmic procedure is not
yet determined in the early stage of a design process, designers can just feed the desired
outputs according to its inputs on the data pins, possibly after a delay of a number of
clock cycles. This brings the support of the cycle-approximated simulation, as given later
in Section 5.

3. HFSM DESIGN HIERARCHY AND SHARED MEMORIES

The design hierarchy of a set of connected HFSMs can be visualized as a tree
structure as shown in Fig. 4. A Seq HFSM is represented by a thin-circle node; Par by a
bold circle; Loop by double circles; and triangle nodes are leaves with no successors
representing Atomic HFSMs. Two nodes are connected through ⊝ represented by an arc
between them. Each node is labeled; nodes with the same label represent the same reusa-
ble HFSM, say the nodes labeled d, which will lead to resource savings since only one
hardware block will be generated for them. Recall that the datapath design is within
Atomic HFSMs; storage elements such as a shared memory may be needed, say RAM
shared by e and h in the figure. In this section, we consider the hardware implementation
of this design hierarchy including shared components, i.e. the reusable HFSMs and
shared memories.

Fig. 4. The design hierarchy of a set of connected HFSMs.

In hardware design, data are usually shared using a shared memory accessible
through different hardware blocks, or using message passing mechanisms. While the
latter has been considered by our approach (through the data pins as shown in Fig. 1), we
focus on the implementation of shared memories, or more generally shared hardware
blocks.

In our approach, a memory can be modeled by a simplified HFSM; it has no req or
busy signals; only data pins such as addr, din, dout, we, etc. are grouped into ⊝. It is
viewed as a reusable HFSM with a fixed number of states, i.e. one or several clock cy-
cle(s) to read or write a data. The blocks accessing the memory may use its data output
after a delay of a fixed number of clock cycles, rather than setting and waiting for the
handshaking signals, i.e. req and busy, in the communication protocol as specified in Fig. 3.

As shown in Fig. 5 and following Fig. 4, the physical connections of the hardware

CHENG-JUEI YU, YI-HSIN WU AND SHENG-DE WANG

342

blocks mapped from the design hierarchy of a set of connected HFSMs can be deter-
mined as follows. First, a nearest common parent for each type of the shared components
is found. For instance, the common parent of the RAMs (the dashed rectangles) is node a.
Next, the shared component is moved to the next level of the common parent and con-
nects with it, say RAM is moved to level 1 and connects with a. Finally, the shared com-
ponent and its callers are connected across the layers between them. As an example, the
connection between RAM and h is across blocks a, c, and g; similarly, the connection
between d and c is across a that is also the nearest common parent of the shared nodes
d’s (including the dashed triangle). Now we have a new design hierarchy where the
nodes represent distinct HFSMs/blocks and the arcs are physical links between them.

Fig. 5. The physical connections of the hardware blocks represented by distinct HFSMs.

One problem to the shared components is the access collisions that can occur if
several blocks attempt to access/activate the same component at the same instant. We
resolve this by using a multiplexor at their common parent to select the access rights as-
signed to one of the blocks. In general, the block that is busy (when its output signal busy
is on) gets the rights; that is, the link between the shared component and the calling
block is held by the common parent through the multiplexor until the calling block’s
busy signal is off. The design hierarchy shown in Fig. 5 and the mentioned links, multi-
plexors, and related signals will be automatically generated as RTL code during the final
stage of the design process, as given later in Section 6.

4. REFINEMENTS OF C FUNCTIONS

For a given C program, our idea is to firstly refine it and then map each refined C
function to a specific HFSM that in turn represents a hardware block. In this section we
give the refinement guideline on a C program such that the structure of the refined C
functions is similar to the design hierarchy of a set of connected HFSMs as shown before
in Fig. 4. In other words, the behavior of one refined C function should be similar to one
of the proposed HFSM templates. As listed in Table 1, we outline the types of the re-
finement problems and their solutions in terms of HFSM templates and properties. As
can be seen, types (A)-(D) consider the mapping of a refined function and a HFSM tem-
plate. Specifically, only four function types, Seq, Loop, Par and Atomic, are allowed in a
refined C program. A Seq function sequentially invokes other functions in a specific or-
der; between two consecutive subroutines are simple assignments and if-then-else state-

DESIGN OF SPECIFIC HARDWARE CIRCUITS FROM C PROGRAMS 343

ments rather than complex arithmetic and memory operations that should be refined into
an Atomic function. A Loop function iteratively calls another function; similar to Seq,
between two consecutive calls to the subroutine are simple statements. In a Par function,
no statements between two consecutive subroutines are allowed, since the subroutines
will be executed concurrently in the mapped Par HFSM. Thus, we can specify pro-
cess-level parallelism in a Par function with each subroutine being an independent pro-
cess. Finally, there are no special regards to an atomic function except that it cannot call
and execute any other functions; it represents the design of pure data flow, usually com-
posed of a sequence of memory and arithmetic operations.

Besides the four function types, problems (E)-(G) in Table 1 focus on the data
shared by different functions. (E) and (F) represent the message passing mechanisms for
a function call; the arguments and return value of a function are mapped to the data pins
of the corresponding HFSM. In problem type (G), the allocated memory (array) in a C
program is regarded as a shared component that can be accessed by different HFSMs
through an address offset signal (and other signals, e.g. data, but not mentioned here)
being a specific output on one HFSM’s data pins.

Table 1. The refinement problems in C and their solutions.
Type Characteristics of C functions Mapped HFSM template
(A) Invokes others in a specific order Seq
(B) Iteratively calls another function Loop
(C) Performs a specific task itself Atomic
(D) Same as (A) but the order is arbitrary Par
(E) Arguments to the function Inputs or outputs on the data pins
(F) Return value of the function An output on the data pins
(G) Allocated memories (arrays) Shared components

One can gradually refine a given C program according to the refinement problems
and their solutions shown above. More formally, we have four main refinement steps
stated as follows. The details of each step are given in the rest of this section.

1. Rewrite each of the C functions to one of the types {A-D} listed in Table 1. We may
need to create a new function or delete one in this step.

2. Identify the pointers that represent pass-by-reference arguments to functions. They
will be used as outputs on the data pins of the mapped HFSMs.

3. Replace dynamic memory allocations to static memory allocations. Create the mem-
ory reading and writing functions. The allocated memories will be mapped to the
shared components in the HFSM design hierarchy.

4. Add comments above the declaration of each refined function with information of the
HFSM type and the widths of the declared variables in terms of a number of bits.
These comments will be read to configure the mapped HFSM.

We firstly focus on step 1 since the rewriting procedure plays a key role that deter-
mines the structure of the design hierarchy, and thus directly affects the performance of
the hardware implemented. Based on the operation of Extract Method in the field of code
refactoring [14] that is the process of changing a software system so that it does not alter

CHENG-JUEI YU, YI-HSIN WU AND SHENG-DE WANG

344

the external behavior of the code yet improves its internal structure, we change a given C
program in the following ways. When a method is too long or a fragment of code needs a
comment to understand its purpose, that fragment is extracted into its own method. The
newly created methods are usually short (if still long, extract them again if possible) and
well-named. This operation increases the chances that other components can use a
method when the method is finely grained. Since the fragment of code extracted is re-
placed by a line of subroutine call, it allows the higher-level methods to read more like a
series of comments. Regarding the hardware implementation, a reusable method synthe-
sized as a shared block can lead to resources savings; a shorter, clearer method can also
potentially lead to improved readability and maintainability of the low-level descriptions.

In addition to the typical Extract Method, we further consider simplifying the con-
trol flow of a method that has loops. The intuition is that a method with a complex con-
trol flow might result in a much more complicated controller design when realizing it in
hardware. In order to exclude the statements of continue and break that eventually com-
plicate the control flow, we force a method to have only one subroutine that can itera-
tively be called; no statements are allowed outside the loop except return (see Fig. 6 (b)
for a concrete example). In this method, the statement of break is replaced by return;
continue is replaced by if-then-else. While this approach leads to simpler control path
design that can be directly mapped to digital circuits, the overhead is the refactoring
tasks that have to be regarded by designers. Fortunately, these tasks will be performed at
the highest design level; it is much easier to verify the correctness of the refined func-
tions (e.g. using gcc) and to change the overall structure of the design (e.g. using another
refinement paradigm).

There are methods (functions) that cannot be extracted anymore. In this paper we
call them atomic functions (similar to atomic HFSMs as having been discussed in Sec-
tion 2). An atomic function is usually composed of a sequence of memory and arithmetic
operations. For example, a 256-point FFT program has atomic functions such as butterfly
calculation and samples re-ordering; both of them read data from arrays, compute the
desired values, and then write the data back. Considering the statements in an atomic
function, it is usually plausible to exposing fine-grained parallelism using the two ap-
proaches discussed in [1].

The first one, instruction-level parallelism (ILP), dispatches groups of nearby in-
structions simultaneously. The second one, pipelining, dispatches instructions in sequ-
ence but overlaps them the second instruction starts before the first completes. Both of
the approaches can be identified automatically by using various scheduling algorithms such
as as-soon-as-possible (ASAP), force-directed [18], list-scheduling [19], and exact sched-
uling [20, 21]. From this point of view, if a fragment of code is not long but looks like
atomic or has potential to be scheduled effectively, it is worth creating a new method for it.

When the refinement step 1 is done, we will roughly have the design hierarchy sim-
ilar to the tree structure as shown before in Fig. 4 that is originally used for HFSMs.
Now each node represents a refined C function. We then perform the refinement step 2
that considers the return values of a refined function. Due to the limits of the C language,
only one return value is permitted for a declared function. If one needs another return
value, it is usually put as a pass-by-reference argument to the function, and will be used
as an output on the data pins of the mapped HFSM.

In the refinement step 3, the dynamic memory allocations are replaced by static

DESIGN OF SPECIFIC HARDWARE CIRCUITS FROM C PROGRAMS 345

ones. Two functions to read and write an allocated memory (array) are created. If a low-
est-level function needs an access to the memory, an address offset is given as an argu-
ment to the function and used to read a data from the memory.

As shown in Fig. 6 and for each of the refined functions, the final step is to insert
the information that is required by hardware designs such as HFSM types and variables
widths in terms of a number of bits. We use Doclet annotations (supported in JAVA API)
inserted above each function declaration such that they can be read to configure the
mapped HFSM. As an example, on line 2 in Fig. 6 (c) we annotate this function is type
Par, which infers a process-level parallelism for its subroutines; on line 3 we annotate
the width of x and y is 8. For the demonstration purposes, we also insert one state after
each of the subroutine calls in the function. The name of a state is the name of the corre-
sponding subroutine appended to a meaningful word, say the state await_b in Fig. 6 (a)
on line 7 with respect to the function call b(). A state inserted in this way is used to wait
for the execution of the subroutine to be completed. A state IDLE is inserted after the
variables declaration (on line 6), used to initialize the registers and indicate the mapped
HFSM is available to be called. Whenever the statement of return is reached, the HFSM
should change its state to IDLE. When the call to a subroutine is completed, some ac-
tions must be taken and the state may transit to another. Take the Loop function in Fig. 6
(b) as an example, when the call to h() (on line 8) is completed, the assignments and
conditions specified on lines 9-14 and 7 are the actions that must be done consecutively
in one clock cycle during the state transition. Note that since most of the complex arith-
metic and memory operations are already refined into the lowest-level function as the
design of pure datapaths, in such a control-intensive function the actions would be sim-
ple and not expose other critical issues. Besides, in a Par function as shown in Fig. 6 (c),
we have only two fixed states inserted: IDLE and WAIT. In the mapped Par HFSM (refer
to Fig. 2 (b)), the subroutines, say e() and f() in this figure, will be called concurrently,
although in C they are still sequentially be called. In the mapped HFSM the state WAIT is
used to wait for all of their executions to be completed.

6
7

// … Doclet comments …
void a () {

…(var. dclr.) // IDLE
x = b (); // await_b
if (x) {

 y = c (n, m); // await_c
 if (y) return;

 else …
} else {

d (); // await_d
}
…

}

7
8

 9

14

// … Doclet comments …
int g (int n, int m) {

i = n; x = 0; // IDLE
while (i < m) {

t = h (i); // await_h
if (t == -1)

return x;
else {

x += t;
i += 1;

}
 }
 return x;
}

 2
 3

/**
* @type Par
* @width x y 8;
**/

int b (int* x, int* y) {
…(var. dclr.) // IDLE
*x = e (…);
*y = f (); // WAIT
return *x + *y;

}

(a) Seq function (b) Loop function (c) Par function
Fig. 6. Examples of Seq (a), Loop (b), and Par (c) functions illustrating the information of HFSM

types, variables widths, and states that are inserted above the function declarations and after
the subroutine calls. Note that in a Par function we have a fixed state WAIT that awaits the
executions of all the subroutines to be completed.

CHENG-JUEI YU, YI-HSIN WU AND SHENG-DE WANG

346

5. CYCLE-APPROXIMATED SIMULATION

With a set of refined C functions, we are ready to perform a cycle-approximated
simulation by inserting some code as shown in Fig. 7 marked by brackets. In order to
record the cycles spent by a subroutine, a pass-by-reference argument is added to it, say
higher_level_cycles on line 2 and cycles on line 5 in (a). In the begin of each refined
function, cycles is initialized as 1 since the activation of a block spends one cycle; after
each function call, cycles is incremented by 1 since a state change also spends one cycle.
Note that the actions with respect to the state change are taken during that cycle so that
they do not pose other cycle wastes. Before the return of a function, the cycles recorded
by the higher level function, higher_level_cycles, are accumulated to the total cycles
spent by the function (see lines 11 and 5 in (a) and (b), respectively). As can be seen in
(a), for a Seq or Loop function the cycles spent by its subroutines are accumulated and
stored in cycles. The cycle-approximated ones are specified in an atomic function as
shown in (b) on lines 3 and 5. The parameter K on line 3 represents the approximated
cycles spent by this atomic function; it can be adjusted by designers or according to some
estimating rules. If the design of an atomic function has not yet been determined, one can
just feed the desired outputs (the return value, the pass-by-reference arguments, or the
memory data that might need to be updated) according to its inputs and also estimate the
number of cycles it might spend on the task that is going to be performed. Finally, we
can record the total approximated cycles spent by the whole set of the refined functions
through a main() that calls the root-node function in the design hierarchy and verifies
the results at the same time.

2

5

11

/* Seq or Loop function */
int func (…, int* higher_level_cycles) {

int cycles = 1;
…
first_func (…, &cycles);
cycles += 1;
…

 *higher_level_cycles += cycles;
 return …;
}

3

5

/* Atomic function */
int func (…, int* higher_level_cycles) {
 int approximated_cycles = K;

…
 *higher_level_cycles +=

approximated_cycles;
 return …;
}

 (a) A Seq or Loop function. (b) An Atomic function.
Fig. 7. Cycle-approximated simulation is supported by inserting the C code marked by brackets

into each refined function.

6. VERILOG CODE GENERATION

With a set of refined C functions mapped to a set of connected HFSMs shown in
Fig. 4 and further in Fig. 5, we are ready to generate HDL code as the final design. As
shown in Fig. 8, the code fragments written in Verilog describe the state transitions
specified in the refined C functions given in Fig. 6. In Fig. 8 (a), HFSM a calls its chil-
dren HFSMs b, c, and d by setting high the request registers on lines 76, 86, and 89, re-
spectively. When b is running, the state is waiting at await_b due to the high of busy_b
on line 83; while b is finished, the state transits to await_c or await_d depending on the

DESIGN OF SPECIFIC HARDWARE CIRCUITS FROM C PROGRAMS 347

output value, x, of b on lines 84 and 85. Note that blocking assignments are used to en-
sure the correct behaviors specified in the C program. In Fig. 8 (b) HFSM g (iteratively)
calls h through setting on the registered output req_h on line 64. The two return state-
ments in Fig. 6 (b) on lines 7 and 13 are accomplished here on lines 59 and 67, respec-
tively. When one call to h is completed, the actions between the state await_h that waits
for the call and the next state, possibly await_h or IDLE, are taken on lines 58-69. The
code shown can be automatically generated from a given set of proposed HFSMs with-
out ambiguities.

76

80

83
84
85
86
87

89

always@ (posedge clk or
posedge reset) begin
 if (reset) begin

… // registers initialization
state <= IDLE;

end else begin
case (state)

IDLE: begin
if (req) begin

req_b <= 1;
state <= await_b;

end
end
await_b: begin

if (req_b)
req_b <= 0;

else if (!busy_b) begin
x = x_b;
if (x) begin

req_c <= 1;
state <= await_c;

end else begin
req_d <= 1;
state <= await_d;

end
end

end
... // other cases

endcase
end

end
assign busy = state != IDLE;

47
48

52
53
54

56

58
59
60

63
64
65
66
67

69

always@ (posedge clk or
posedge reset) begin
 if (reset) begin

… // registers initialization
state <= IDLE;

end else begin
case (state)

IDLE: begin
if (req) begin

i = n; x = 0;
if (i < m) begin

req_h <= 1;
state <= await_h;

end
end

end
await_h: begin

if (req_h)
req_h <= 0;

else if (!busy_h) begin
t = t_h;
if (t == -1) begin

state <= IDLE;
end else begin

x = x + t;
i = i + 1;
if (i < m) begin

req_h <= 1;
state <= await_h;

end else begin
 state <= IDLE;
end

end
end

end
endcase

 end
end
assign busy = state != IDLE;

 (a) Seq block (b) Loop block
Note: underlined words are inputs; shaded are outputs; bold are registers; italic are constants; otherwise wires.
Fig. 8. Generated Verilog code fragments describing the state transitions for the refined functions

in Fig. 6 (a) for Fig. 6 (a); (b) for Fig. 6 (b).

CHENG-JUEI YU, YI-HSIN WU AND SHENG-DE WANG

348

7. EXPERIMENTAL RESULTS

In order to compare with existing C-to-hardware approaches, the proposed approach
should be able to automatically generate Verilog code from a given refined C program.
The automation can be realized by using a compilation technique based on syntax-di-
rected translations [10] that is a method of translating a set of statements into a sequence
of actions or instructions by attaching one such action to each rule of a grammar. The
elementary instructions translated in the form of three-address code are then used to
generate the corresponding Verilog code.

We compare the performance of the proposed approach with Nios II C2H compiler
[8] by implementing several well-known algorithmic benchmarks such as FDCT, 256-
point FFT, bubble sorting, and finding primes using prime wheels, on the Altera DE2-70
FPGA development board at a clock frequency of 50 MHz. The netlist compilation for
the generated Verilog code is performed by Quartus II Software [11]. C2H compiler is a
tool for generating a hardware accelerator module which is functionally identical to the
original ANSI C function in a fully automatic way; the subroutine calls in the function
are also accelerated. Since the input to the proposed approach is a C program with man-
ually refinements, we also test C2H’s performance with these refinements. The indices
of the performance evaluation include the runtimes of the circuits, the maximum operat-
ing frequency (Fmax) achieved, the area of logic slices occupied, and the number of Veri-
log code lines generated. The results are shown in Table 2; we can see that our approach
can generate faster circuits with lesser area. Our approach also produces comprehensive
code with a reasonable, smaller number of code lines. One penalty of using our approach
is the achieved Fmax that is slightly lower than C2H in benchmarks (a), (c) and (d). The
reason is that our approach synthesizes the actions between two consecutive states to be
executed in one clock cycle that would lead to longer critical paths while C2H gen-
erally infers one clock cycle for a C statement. We also observed that C2H has no obvi-
ous benefits from the refinements on the given C programs (although in (a) and (d) the
area reduces from 13% to 9% and 7% to 6%, respectively, this trend does not appear in
(b) and (c); the runtimes without refinements are also shorter than or equal to those with
refinements, say 11s in (a), 9s vs. 13s in (b), and 32s vs. 41s in (d)).

Table 2. Performance evaluation of the proposed approach against C2H.

Index

Benchmark

Proposed approach
(with refinements on C)

C2H
(without/with refinements on C)

Run-
times(s)

Fmax

(MHz)
Area
(%)

Code
lines

Run-
times(s)

Fmax
(MHz)

Area
(%)

Code
lines

(a) FDCT in JPEG en-
coder 256256 pixels

6 67 8 903 11 68/71 13/9 10,779/7,718

(b) 256-point FFT
10000 iterations

3 85 4 1901 9/13 76/73 6/7 8,408/9,018

(c) Bubble sort
10,000 numbers

13 87 3 268 21 94/96 4 2,736/3,364

(d) Finding primes
< 500,000

10 80 5 893 32/41 95/96 7/6 7,427/6,249

Notes: 1. Shaded cells are ones that indicate the performance of our approach is superior to C2H.
 2. For each of the experimental cases, we spent no more than half an hour to refine the given C program.

DESIGN OF SPECIFIC HARDWARE CIRCUITS FROM C PROGRAMS 349

A note on the computational and space complexities of the proposed approach is
given as the conclusion of this section. Since the automation of the proposed approach is
mainly based on syntax-directed translations that are popularly used in modern compilers
such as gcc and javac, these complexities for code translations (C to three-address code
and three-address code to Verilog) would not pose critical issues; any modern desktops
that are able to run gcc and javac would also be able to run the proposed approach. In
contrast, large runtimes and memory usage would be needed if we are searching for an
optimized schedule that determines the order of operations execution within an Atomic
function. For the experimental cases, a simple ASAP schedule is used in each Atomic
function. Therefore, under these assumptions, the complexities of the proposed approach
are low enough.

8. SUMMARY

We proposed an approach to specify hardware designs and expose parallel algo-
rithms starting from C language. We proposed four built-in HFSM templates that follow
a communication protocol and can be further edited for the desired behavior. Each
HFSM can be mapped to a specific hardware block with the signals and state transitions
defined. We presented one possible way to automatically generate the Verilog code de-
scribing the set of derived HFSMs. With considerations of the message passing and
shared memory mechanisms used in hardware, we proposed a guideline on the refine-
ment of a C program such that each refined C function can be mapped to a specific
HFSM that in turn represents a hardware block. A set of refined C functions can be ex-
tended to support a cycle-approximated simulation by adding an argument to each func-
tion. Finally, compared with Nios II C2H compiler [8] that is an automatic behavioral
synthesis tool, our approach can produce faster, smaller circuits with a smaller number of
Verilog code lines.

REFERENCES

1. S. A. Edwards, “The challenges of synthesizing hardware from C-like languages,”
IEEE Design & Test of Computers, Vol. 23, 2006, pp. 375-386.

2. T. Grötker et al., System Design with SystemC, Kluwer Academic Publishers, 2002.
3. K. Wakabayashi and T. Okamoto, “C-based SoC design flow and EDA tools: An

ASIC and system vendor perspective,” IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, Vol. 19, 2000, pp. 1507-1522.

4. Handel-C Language Reference Manual, RM-1003-4.0, Celoxica, 2003.
5. T. Grötker et al., System Design with SystemC, Kluwer Academic Publishers, 2002.
6. D. D. Gajski et al., SpecC: Specification Language and Methodology, Kluwer Aca-

demic Publishers, 2000.
7. Catapult C, http://www.mentor.com/.
8. Nios II C-to-Hardware Acceleration Compiler, http://www.altera.com/.
9. D. Shin, A. Gerstlauer, R. Domer, and D. D. Gajski, “An interactive design envi-

ronment for C-based high-level synthesis of RTL processors,” IEEE Transactions
on Very Large Scale Integration Systems, Vol. 16, 2008, pp. 466-475.

CHENG-JUEI YU, YI-HSIN WU AND SHENG-DE WANG

350

10. A. Aho, M. Lam, R. Sethi, and J. Ullman, Compilers: Principles, Techniques, & Tools,
2nd ed., Addison-Wesley, Boston, 2007.

11. Quartus II Software, http://www.altera.com/.
12. “Accelerating Nios II systems with the C2H compiler tutorial,” http://www.altera.com

/literature/tt/tt_nios2_c2h_accelerating_tutorial.pdf.
13. S. Baranov, Logic Synthesis for Control Automata, Kluwer Academic Publishers,

1994.
14. M. Fowler et al., Refactoring: Improving the Design of Existing Code, Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, 1999.
15. A. Girault, B. Lee, and E. A. Lee, “Hierarchical finite state machines with multiple

concurrency models,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, Vol. 18, 1999, pp. 742-760.

16. D. Harel, “Statecharts: A visual formalism for complex systems,” Science of Com-
puter Programming, Vol. 8, 1987, pp. 231-274.

17. M. von der Beeck, “A comparison of statecharts variants,” in Proceedings of Formal
Techniques in Real Time and Fault Tolerant Systems, LNCS 863, 1994, pp. 128-148.

18. P. G. Paulin and J. P. Knight, “Force-directed scheduling in automatic data path
synthesis,” in Proceedings of the 24th ACM/IEEE Conference on Design Automa-
tion, 1987, pp. 195-202.

19. A. M. Sllame and V. Drabek, “An efficient list-based scheduling algorithm for high-
level synthesis,” in Proceedings of the Euromicro Symposium on Digital System De-
sign, 2002, pp. 316-323.

20. Y.-H. Wu, C.-J. Yu, and S.-D. Wang, “Heuristic algorithm for the resource-con-
strained scheduling problem during high-level synthesis,” IET Computers & Digital
Techniques, Vol. 3, 2009, pp. 43-51.

21. C.-J. Yu, Y.-H. Wu, and S.-D. Wang, “An in-place search algorithm for the resource
constrained scheduling problem during high level synthesis,” ACM Transactions on
Design Automation of Electronic Systems, Vol. 15, 2010, pp. 1-13.

Cheng-Juei Yu (余承叡) was born in Taiwan in 1983. He re-
ceived the B.S. degree in Electrical Engineering from National
Taiwan University, Taipei, Taiwan, in 2006. He is currently a Ph.D.
student in the Department of Electrical Engineering, National Tai-
wan University. His research interests include digital circuit de-
signs, high-level synthesis, and search algorithms.

DESIGN OF SPECIFIC HARDWARE CIRCUITS FROM C PROGRAMS 351

Yi-Hsin Wu (吳怡欣) was born in Taiwan in 1984. She re-
ceived the B.S. degree in Electrical Engineering from National
Taiwan University, Taipei, Taiwan, in 2007. She is currently a
Ph.D. student in the Department of Electrical Engineering, Nation-
al Taiwan University. Her research interests include digital circuit
designs, high-level synthesis, and search algorithms

Sheng-De Wang (王勝德) received the B.S. degree from Na-
tional Tsing Hua University, Hsinchu, Taiwan, in 1980, and the
M.S. and the Ph.D. degrees in Electrical Engineering from Nation-
al Taiwan University, Taipei, Taiwan, in 1982 and 1986, respec-
tively. From 2001 to 2003, He has been served as the Department
Chair of Department of Electrical Engineering, National Chi Nan
University, Puli, Taiwan for the 2-year appointment. His research
interests include parallel and distributed computing, embedded sys-
tems, hardware software co-design, and intelligent systems.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

