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Mobile station (MS) localization often suffers from hybrid line of sight (LOS), one- 

bound (OB) and multiple-bound (MB) non-line of sight (NLOS) propagation in multipath 
environments.  Due to the unknown propagation path, accurate position estimate of MS 
is challenging through using the measured angle of departure (AOD), angle of arrival 
(AOA), and time of arrival (TOA) of signal between MS and base station (BS). To ad-
dress this problem, a new weighting localization algorithm based on LOS and OB NLOS 
identification is proposed in this paper. For each propagation path, by utilizing the geo-
metric relation between AOD and AOA, a theoretic threshold is derived to decide wheth-
er it is LOS or NLOS propagation. Moreover, in order to further discriminate OB or MB 
NLOS propagation, an effective cost function is formulated and an iterative OB NLOS 
identification method is proposed to discard MB NLOS propagation paths. Finally, a 
weighting localization algorithm is applied for fusing the measured data of LOS and OB 
NLOS propagation paths. Simulation results demonstrate that simulation of LOS identi-
fication method is consistent with theoretic one, and the proposed algorithm can greatly 
improve the localization accuracy of MS in different multipath environments, especially 
when LOS path is available.      
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1. INTRODUCTION 
 

Location-based services and applications required an accurate position estimate of 
mobile station (MS) play a fundamental role in current and future wireless communica-
tions systems. Cell planning of wireless cellular networks, emergency road assistance, 
and location-based advertisement are some examples of location-based services and ap-
plications [1]. There are several fundamental approaches to implement the position esti-
mate of MS in a cellular network, including those based on received signal strength [2], 
angle of arrival (AOA) [3], time of arrival (TOA) [4], and time difference of arrival 
(TDOA) [5]. Recently, with the advent of 5G cellular network, Multiple Input Multiple 
Output (MIMO) technology is indispensable. Thus, if both MS and base station (BS) are 
equipped with antenna array, three important measured parameters, such as angle of de-
parture (AOD), angle of arrival (AOA), and time of arrival (TOA) of the propagation 
path, can be estimated with advanced array signal processing in multipath environments. 
Some researchers have done research on how to estimate the parameters of AOD, AOA 
and TOA, the interest reader can read the literature in [6-8]. To limit the scope of this 
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work, we do not consider it. 
Non-line of sight (NLOS) propagation of signal between MS and BS is a major 

problem to affect the localization accuracy of MS, where the absence of a direct line of 
sight (LOS) path between MS and BS results in biased measurements. Further, it can be 
divided into one bound (OB) or multiple bound (MB) NLOS propagation. By assuming 
prior knowledge about AOD, AOA and TOA measurements of each path, the work in [9] 
takes advantage of OB NLOS propagation path and proposes the least square (LS) local-
ization algorithm in multipath environments. Based on a ring of scatterers NLOS propa-
gation model, a single MIMO BS localization algorithm with the virtual BS is proposed 
in [10]. In [11], with the assumption of OB NLOS propagation paths, Doppler-shift (DS) 
measurement is introduced and an online Bayesian recursive localization algorithm with 
TOA/AOD/DS measurements is proposed. The work in [12] proposes an iterative 
TDOA/AOD/AOA-based OB NLOS localization algorithm with a first order Taylor se-
ries. In [13], it presents virtual reference device-based OB NLOS localization algorithm 
in multipath environments and only requires one signal path. By estimating the position 
of scatterer, the work in [14] proposes two-step elliptical Lagrange constrained optimiza-
tion method with the OB NLOS scattering paths. Based on the circular scattering NLOS 
propagation model, a nonlinear constrained optimization localization approach with the 
position of scatterer is formulated in [15]. However, all these works assume only OB 
NLOS propagation paths are available, and do not consider the presence of LOS and MB 
NLOS propagation paths. The theoretical bound for MIMO localization using TOA/ 
AOA/AOD measurements is derived in [16], and it is proved that multipath effect can be 
mitigated by the spatiotemporal separation. In order to jointly estimate position and rota-
tion angle of MS in MIMO system, a novel two-stage algorithm consisted of coarse es-
timation stage and refinement stage is proposed in [17]. By utilizing TOA/AOD/AOA 
measurements from multiple BSs, a gradient-assisted particle filter method is proposed in 
[18] to accurately estimate the position of MS as well as the position of scatterers. How-
ever, LOS and OB NLOS paths are assumed and MB NLOS paths are not considered.  
Comparing with LOS and OB NLOS paths, MB NLOS paths experience excess distance 
and lead to incorrect linear equation derived from TOA/AOD/AOA measurements due to 
the increased number of scatterers. As a result, MB NLOS paths can cause erroneous 
position estimate if they are mistakenly treated as LOS or OB NLOS paths. In [19], a 
multipath selection scheme called statistical proximity test (SPT) is proposed to discard 
MB NLOS paths before the least square (LS) algorithm in [9] is applied. In dense multi-
path environment, the work in [20] proposes a nonlinear programming (NLP) localiza-
tion algorithm with the presence of MB NLOS paths. However, it doesn’t consider the 
LOS propagation path. 

In this paper, a new weighting localization algorithm based on LOS and OB NLOS 
identification is proposed when LOS, OB and MB NLOS paths are present. The main 
contribution of this paper are threefold: (1) by analyzing the geometric relation of AOD 
and AOA in LOS propagation, the close form of the probability of detection and the 
corresponding threshold about LOS identification is derived; (2) In order to reduce the 
effect of MB NLOS propagation paths, an iterative OB NLOS identification method is 
presented through building the linear relation between the position of MS and position of 
scatterer; (3) By formulating two cost functions, a new weighting localization algorithm 
based on residual weighting is proposed. Comparing it with the existing localization al-
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gorithms, simulation results demonstrate that the proposed algorithm outperforms the 
existing algorithms, particularly when LOS path is available.  

2. SYSTEM MODEL 

As shown in Fig. 1, only one BS is deployed in multipath environments, the signal 
propagation between BS and MS is LOS or NLOS, and NLOS propagation can be fur-
ther divided into OB or MB scattering paths. Due to the development of MIMO system 
in 5G cellular network, we can obtain three parameters, such as AOD from the MS, 
AOA to the BS and the range of the propagation path from each propagation path, when 
both BS and MS are equipped with antenna array [17-20]. Thus, the mathematical ex-
pression of measured parameters with LOS path is 
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where (x1, y1) is the position of home BS, (x, y) is the position of MS, c is the speed of 
light, ti is the TOA of the ith propagation path, atan is the function of inverse tangent, i 
and i

0 are the measured and actual AOD of the ith propagation path, respectively. i and 
i

0 are the measured and actual AOA of the ith propagation path, respectively. Llos is the 
number of LOS propagation path, ni, mi and i are white Gaussian random variable with 
mean zero and the same standard deviation n, , and , respectively. 

If signal experiences OB scattering, the mathematical expression of it is described as 
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where (xi, yi) is the position of scatterer from MS to home BS in ith OB scattering path, 
Lob is the number of OB scattering paths. When signal experiences MB scattering path, 
as shown in Fig. 1, the number of scatterers is bigger than one, the measured parameters, 
such as AOD, AOA and TOA, will result in extra range and angle deviation. 

As shown in Eqs. (1) and (2), the simple and direct method is to construct the non-
linear objective function about residual error, and then uses the numerical search meth-
ods, such as the steepest descent or the Gauss-Newton techniques to obtain the position 
estimate of MS. However, the numerical search methods cost computationally and re-
quire good initialization in order to avoid converging to local minimization of the resid-
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ual error function. Moreover, the correct identification of LOS and OB NLOS paths is 
necessary, and it is difficult to identify LOS and OB NLOS paths when MB NLOS paths 
are present. Further, the positions of scatterer are unknown in Eq. (2), this will lead to 
higher computational complexity of numerical search methods. In order to deal with or 
avoid the above three problems, we can transform the nonlinear TOA/AOD/AOA meas-
urements into linear form through using the geometric relation among them when signal 
experiences OB scattering path. For one OB NLOS propagation path, if we ignore the 
measured noise in Eq. (2), the position of A and B shown in Fig. 2 can be calculated as 
[20] 
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Similarly, for another OB NLOS path, the position of C and D can be also obtained. 
As shown in Fig. 2, only two paths can decide the possible position of MS whose posi-
tion is the intersection point of line AB and line CD. Thus, the true nonlinear measured 
parameters in Eq. (2) can be transformed into linear form [9, 19, 20] 
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Putting the measured parameters in Eqs. (2) into (4) and ignoring the measured 
noise, we can obtain the following approximate matrix form 

Z = H  X      (5) 

where X = [x, y]T      
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Then, we can obtain the position estimate of MS with LS algorithm 

X̂ = (HTH)-1HTZ.      (6) 

Min-Max algorithm [21] is a simple and straightforward estimate, its main idea is to 
build a square region around BS and guarantee the position of MS is inside the square 
region. This square region can be drawn with the position of BS and the range measure-
ments. Thus, we can introduce the idea of this method into our localization model. If we 
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put the TOA/AOD/AOA measurements into Eq. (3), the position of A and B or C and D 
can be easily obtained. Then the square region AABB or CCDD can be drawn as 
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The intersections of L square regions as like as two square regions AABB and 
CCDD shown in Fig. 2 are determined 
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The position estimate of MS is the center of the intersections of these squares 
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Fig. 1. System model in multipath environ-

ments. 
Fig. 2. Possible position of MS with two OB 

scattering paths. 

3. PROPOSED LOCALIZATION ALGORITHMS 

In multipath environments, signal may experience LOS, OB or MB NLOS propaga-
tion path. However, most of the previous analysis is based on OB scattering paths and it 
has two drawbacks. One is nonexistence of the inverse matrix of H in Eq. (5) when two 
paths are detected and one of them experiences LOS propagation, the other is that large 
localization error happens when MB scattering paths are available. Therefore, it’s a 
meaningful work to distinguish the detected path whether it is LOS, OB, or MB NLOS 
propagation. The flowchart of our idea is illustrated in Fig. 3. When L paths are detected 
with three measured TOA/AOD/AOA parameters, we firstly identify LOS and OB 
NLOS paths, then use residual weighed algorithm (Rwgh) to fuse the measured data of 
LOS and OB NLOS paths. 
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Fig. 3. The flow chart of the proposed algo-
rithm. 

Fig. 4. Standard deviation of angle measurement 
VS the probability of detection. 

3.1 LOS and OB NLOS Identification 

(1) LOS Identification 
If one path experiences LOS propagation, the actual AOD and AOA have an equal 

relation as |0
i  0

i| = . Due to the measured noise of angle, we introduce a small posi-
tive number  as a threshold to evaluate the performance of LOS identification. Then, 
each path with measured AOD and AOA is decided as LOS propagation when it satisfies 
the following condition 

    |i  i|   + , i = 1, …, L.    (10) 

Putting Eq. (1) into Eq. (10), it is easy to know that Eq. (10) is always true when  
 mi  vi  . Because the random variable mi  vi is the Gaussian distribution with mean 
zero and variance 2

 + 2
 written as mi  vi ~ N(0, 2

 + 2
), we can obtain the probabil-

ity of detection pd as 
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(2) Iterative OB NLOS Identification 
If the position estimate of MS X̂ = [x̂, ŷ]T can be obtained, we can compute residual 

error of range measurementf(X̂) when signal experiences OB scattering paths 
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However, the position of scatterer in each path is unknown from Eq. (12). As shown 
in Fig. 2, the position of scatterer is the intersection position of two lines. Line equations 
of these two lines can be expressed as the actual AOD and the position of MS, actual 



A WEIGHTING LOCALIZATION ALGORITHM 1215

AOA and the position of BS, respectively. We can easily derive the linear relation be-
tween the position of scatterer and position of MS as follow 
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tan is the function of tangent.  
Comparing with OB scattering path, the residual error of range measurement in Eq. 

(12) will have large residual error if signal experiences MB scattering path. This moti-
vates us to iteratively reject the MB scattering path one by one and search the OB scat-
tering paths. We assume that the number of MB is Lmb, the total number of NLOS prop-
agation paths is Lnlos = Lob + Lmb. The iterative OB NLOS identification method is de-
scribed as the following steps: 
 
1. Initialization 

We denote Dmin = {1, …, Lnlos} as the set of NLOS propagation paths and G(Dmin) is 
the measured data of each path in set Dmin. 
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2. Computing Residual Error 
We can obtain the initial position estimate of MS X̂ with the measured data G(Dmin) 

from Eqs. (5) and (6). For each path, the position of scatterer [xi, yi] can be determined 
with X̂ and the corresponding AOD, AOA measurements [i, i] from Eq. (13). Then, we 
can compute the residual errorf(X̂) with the corresponding range measurement ri from 
Eq. (12). Defining the normalized residual error asfmin =f(X̂)/Lnlos. 
 
3. Iteration 

For set Dmin, we choose Lnlos  1 elements from it to form 
1

 
  

nlos
nlos

nlos

L
L

L
 subset de- 

noted as Dm, m = 1, …, Lnlos. For each subset Dm, we can compute temporary position 
estimate of MS X̂(m) and the residual errorf(X̂(m)) with measured data G(Dm) as the same 
method in step 2. The minimum normalized residual errorf and the set minD are decided 
as 

[f, k] = min(f(X̂(m)), m = 1, …, Lnlos),  
 f = f/(Lnlos 1), 

Dmin = Dk. 
 
Iff <fmin and Lnlos > 3, then Lnlos = Lnlos  1, Dmin = Dmin, fmin =f, repeat 3; else re-
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turn Dmin and G(Dmin). 
 
3.2 A Weighting Data Fusion with Rwgh 
 

Rwgh [22-23] is an effective method to fuse the different types of data and achieve 
high localization accuracy of MS. However, we cannot directly apply it because the re-
sidual error is almost zero if the combination with two paths are selected. In order to 
overcome this problem, we define another cost function, which is the sum of all residual 
error with OB scattering paths. Then, a weighting method of data fusion with Rwgh is 
described as following 
 
1. Without loss of generality, we assume Llos LOS paths are identified. For the ith LOS 

path, we can compute the temporary position estimate of MS ˆ ˆ ˆ[ , ]i i iX x y  and the cor-
responding residual error f(X̂i) as follow 
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2. After we do the iterative OB path identification method, we can get the set of OB paths.  

We assume that the size of set Dmin is Lob, then it can form 
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combinations. For each combination, we can compute the temporary position estimate 
of MS X̑k = [x̑k, y̑k] from Eq. (6) and the corresponding residual error f(X̂k) = fob(X̂k)/Lob 
from Eqs. (12) and (13). 

3. The final position estimate of MS is the weighted linear combination of the intermedi-
ate position estimates, and it can be expressed as 
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4. SIMULATION RESULTS 

This section presents simulation results to illustrate the performance of the proposed 
localization approach. In the simulation, the position of BS and MS are (0, 0) and (400, 
300), respectively. The OB and MB scattering paths shown in Fig. 1 are the circular 
scattering model [15, 24-25] which assumes that the scatterer is uniformly distributed 
within a radius circle R around the MS or scatterer. Moreover, we assume that the angle 
measurements about AOD and AOA associated with different propagation paths have 
the same standard deviation.  

4.1 Performance of LOS Identification 

For our proposed LOS identification method, simulation results about the probabil-
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ity of detection or miss detection are obtained by doing 10,000 independent trials. For 
different thresholds , Fig. 4 shows the probability of detection with different standard 
deviation of angle measurement. From it, we see that simulation results about the proba-
bility of detection pd are consistent with theoretic ones. Moreover, the probability of de-
tection increases as the increase of  and a big angle measurement deviation can greatly 
degrade the performance of LOS identification. When signal experiences OB scattering 
path, Fig. 5 demonstrates that the probability of miss detection increases as the increase 
of pd. In addition, as the scattering radius R gets larger, the probability of miss detection 
slightly decreases. 
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Fig. 5. Standard deviation of angle measure-
ment vs. the probability of miss detec-
tion. 

Fig. 6. ALE vs number of MB path when no 
LOS path is available, pd = 0.95, L = 4, 
d = 5m,  =  = 20. 

4.2 Comparison of Different Algorithms 

In order to illustrate the effectiveness of our proposed algorithm, four other algo-
rithms denoted as LS [9], NLP [20], Min-Max [21], and SPT-Rwgh [19] are chosen as 
performance comparison. Our proposed algorithm is denoted as DF-Rwgh. The perfor-
mance criterion of the different algorithms is chosen as the average location error (ALE), 
which is defined as 
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2 2
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i

ALE x x y y
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where (x̂i, ŷi) is the ith position estimate of MS. 
We first compare the performance of five algorithms with different combination of 

paths. Figs. 6-9 depict the ALEs of five algorithms given different combinations of the 
number of LOS, OB and MB NLOS paths. The results illustrate the effectiveness of our 
proposed DF-Rwgh algorithm on improving the localization accuracy of MS, especially 
when LOS path is available. From Figs. 6 and 7, we see that DF-Rwgh algorithm has the 
similar localization accuracy with LS and NLP algorithms when only OB NLOS paths 
are available. As the number of MB NLOS paths increases, the localization accuracy of 
all the algorithms decreases, but DF-Rwgh algorithm is still better than four other algo-
rithms. The performance improvement of DF-Rwgh algorithm is not obvious when all 
the paths are MB NLOS propagation. It is unexpected that SPT-Rwgh algorithm has the 
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worst localization accuracy. This demonstrates that SPT is not an appropriate method to 
perform MB NLOS path identification about our localization model. Moreover, compar-
ing Fig. 6 with Fig. 7, we clearly know that the increase of OB NLOS path can improve 
the performance of all the algorithms in different multipath environments. From Fig. 8 
and Fig. 9, we know that the localization accuracy of DF-Rwgh algorithm is slightly worse 
than Min-Max algorithm when only LOS and OB NLOS paths are available, and greatly 
better than three other algorithms when LOS path is detected. When more MB NLOS 
paths are available, the localization accuracy of four other algorithms degrades signifi-
cantly, while DF-Rwgh algorithm slightly decreases. In addition, comparing Fig. 8 with 
Fig. 9, we know that the increase of OB NLOS path can also improve the localization ac- 
curacy of LS, NLP and SPT-Rwgh algorithms when LOS path is available. However, it 
doesn’t have obvious performance improvement about Min-Max and DF-Rwgh algorithms. 

We then examine the effects of different parameters on the localization accuracy. 
Due to the bad localization accuracy about SPT-Rwgh algorithm, it is not compared in 
the following simulation. Fig. 10 depicts the effect of d on the localization accuracy  
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Fig. 7. ALE vs number of MB path when no 

LOS path is available, pd = 0.95, L = 
5, d = 5m,  =  = 20. 

Fig. 8. ALE vs number of MB path when one 
LOS path is available, pd = 0.95, L = 4, 
d = 5m,  =  = 20. 
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Fig. 9. ALE vs number of MB path when one 
LOS path is available, pd = 0.95, L = 4, 
d = 5m,  =  = 20. 

Fig. 10. ALE vs standard deviation of range 
measurement when five paths are de- 
tected.  
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when five paths are employed. ALEs of four algorithms increase as d gets larger. 
Moreover, the DF-Rwgh algorithm has the highest localization accuracy, followed by 
NLP and then LS. When LOS path is available, Min-Max is better than NLP and LS. But, 
if LOS path doesn’t exist, the performance of Min-Max algorithm is the worst. Thus, the 
localization accuracy of Min-Max algorithm is greatly dependent on LOS propagation 
path. Fig. 11 shows the effect of  and  when five paths are detected. As  and  
get larger, ALE gets higher. For different multipath environments, DF-Rwgh algorithm 
outperforms NLP, LS and Min-Max as expected. From Fig. 12, the localization accuracy 
of all algorithms gets worse as scattering radius R increases. But, DF-Rwgh algorithm 
performs the similar performance when LOS path is available. The reason is that the 
scattering radius can rarely affect the performance of LOS identification shown in Fig. 5. 
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Fig. 11. ALE vs standard deviation of angle 

measurement when five paths are de-
tected. 

Fig. 12. ALE vs scattering radius when five paths 
are detected. 

5. CONCLUSIONS 

In this paper, by performing LOS and OB NLOS propagation paths identification, a 
new weighting localization algorithm with two different cost functions is proposed in 
multipath environments. Simulation results demonstrate: (1) the proposed DF-Rwgh al-
gorithm has higher localization accuracy than LS, NLP, Min-Max and SPT-Rwgh with 
different LOS, OB and MB combinations; (2) Our proposed method can correctly iden-
tify the LOS path, and simulation results are consistent with theoretic ones. Moreover, 
LOS path can significantly improve the localization accuracy in multipath environments; 
(3) As the number of OB NLOS path increases, the localization accuracy of all the algori- 
thms is improved. Thus, the OB NLOS propagation is beneficial to our localization model. 
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