
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 38, 1171-1188 (2022)

DOI: 10.6688/JISE.202211_38(6).0005

1171

A Novel Detection Method for the Security Vulnerability

of Time-of-Check to Time-of-Use*

YUNGYU ZHUANG+ AND YAO-NANG TSENG

Department of Computer Science and Information Engineering

National Central University

Taoyuan, 32001 Taiwan

E-mail: yungyu@ncu.edu.tw; 106522031@cc.ncu.edu.tw

Since Artificial Intelligence (AI) is applied to various applications for intelligent and

automatic processing, ensuring systems security is even important. Many developers still

prefer C-like languages for flexibility, usability, and historical reasons to implement un-

derlay systems, though other languages support more modern features. As a result of lack-

ing higher-level abstraction and exception handling, languages like C are known to risk

several security vulnerabilities. Time-of-Check to Time-of-Use (TOCTOU) is one of the

security vulnerabilities in C codes, a kind of bug caused by race conditions. Unexpected

use of certain function calls might be executed and result in failure or abnormal behaviors

of systems if someone injects malicious operations between the time of check on system

status and the use of the check result. Several research activities on code analysis, including

static and dynamic approaches, were devoted to developing detection methods, but there

is room for improvement. We propose a novel method to statically detect the TOCTOU

vulnerability and implement a tool built atop of a solid static analyzer to show the feasi-

bility of our idea. Our tool was evaluated with the test cases for TOCTOU vulnerabilities

and compared with existing detection methods. The results show that our method can de-

tect TOCTOU vulnerabilities more accurately and cover all possible paths in the source

code.

Keywords: security vulnerability, source code analysis, static analysis, time-of-check to

time-of-use, TOCTOU

1. INTRODUCTION

Even today C language is still one of the most popular programming languages [1].

A lot of software projects rely on its flexibility and usability. Although nowadays there are

many new programming languages with modern features such as lambda functions, clas-

ses/objects, and generics, C language is still widely used in some domains, including op-

erating systems and embedded systems. The reason why many developers prefer the C

language might include the performance advantage over other modern languages and the

existence of legacy code. Since C language is relatively low-level, programs written in C

language are expected to be run faster. Furthermore, it is supported by a lot of compilers

with dedicated optimizations. For example, usually there are only a few languages sup-

ported on customized hardware to benefit from special instructions, and C language is al-

ways one of them. Consequently, being a relatively low-level language, programs written

in C language tend to have security vulnerabilities due to the lack of modern abstraction

and well-defined resulting behaviors [2]. Although experienced programmers can avoid

Received October 13, 2021; revised November 15, 2021; accepted November 23, 2021.

Communicated by Shin-Jie Lee.
* This work was supported in part by the Ministry of Science and Technology under Grand No. MOST 107-
2221-E-008-024-MY3.

YUNGYU ZHUANG AND YAO-NANG TSENG

1172

falling into such traps, getting this know-how for beginners is not easy. Moreover, there

are a lot of legacy programs written in the C language, and no one can assume that every

piece of code was written by experienced programmers.

Time-of-Check to Time-of-Use (TOCTOU) is a known security vulnerability that

might lead to serious system problems [3]. Dean and Hu [4] have shown that there is no

portable and deterministic solution without changes to the system call interface. The TOC-

TOU vulnerability is a kind of bug due to race conditions, which may occur unexpectedly

in certain cases. A race condition is the condition of a system where two or more threads

access the same variables or objects concurrently and at least one thread performs updates.

The system might behave differently every time since the execution order depends on how

these threads are scheduled. Thus, race conditions can be considered as a vulnerability

related to thread scheduling. For example, Fig. 1 shows two threads that access the same

variable x in a program. Thread A will set the value of x to 10 first, do some operations,

and then get the value of x for setting y. On the other hand, during the execution of Thread

A, Thread B will set the value of x to 20. In the case of Fig. 1 (a), Thread A gets 10 for the

variable x since it executes “y = x” before Thread B executes “x = 20”. Since these threads

are run based on thread scheduling and there is no constraint on accessing x, the thread

execution might look like Fig. 1 (b) next time. In this case, Thread A gets 20 for the vari-

able x, which might be undesirable. Without any variable access control, we cannot ensure

what Thread A will get, and thus the program’s behavior is uncontrollable. Race conditions

are also discussed in various domains such as electronics and networking, but here we

focus on systems data access.

 (a) (b)

Fig. 1. An example of race conditions, where Thread A might get different values for x every time.

The root cause of TOCTOU is the temporal difference between the check on a system

state and the use of the check result. In a system that has such a vulnerability, someone can

attack the system with another piece of code that performs something between the check

and the use of this check result. The problem is similar to the one shown in Fig. 1, but now

A and B are processes running on a system and x represents a system state as shown in Fig.

2. Process A will check the system state x and perform certain operations later based on

the check result. However, by executing a malicious code along with the code containing

the check and its use, there is a possibility that an unexpected modification will be per-

formed between the check and its use. For example, Process A might normally work as

shown in Fig. 2 (a) or behavior unexpectedly based on the changed x as shown in Fig. 2

(b). In other words, the users of a system can try to execute malicious code that changes

Thread A Thread B

x = 10

y = x

x = 20

Ti
m
e

Thread A Thread B

x = 10

y = x

x = 20

Ti
m
e

A NOVEL DETECTION METHOD FOR THE SECURITY VULNERABILITY OF TOCTOU 1173

something just after the check to make the use of this check result no longer safe. It means

the actions that rely on this check result might not work as expected since the system’s

state has been changed since the check. The TOCTOU vulnerability is a typical issue on

file access. For example, malicious users may replace the file to use with a symbolic link

to another vital file after the permission check of the file; the action expected to be per-

formed on the file will now be performed on that vital file. How to avoid the TOCTOU

attack can be considered at the system level. Several research activities worked on different

scenarios, such as improving system architecture design to prevent illegal usage or imple-

menting a mechanism to trap malicious operations [5-7].

 (a) (b)

Fig. 2. Process B is executing a malicious code that tries to change the system state x.

The TOCTOU vulnerability can also be considered and prevented at the language

level [8], but it is not the case with C language. Suppose that an exception handling mech-

anism is directly given as language constructs, for example the exceptions in Java and

Python. Then programmers can do certain actions without any check and leaving problems

to error handling − the failure of assumption will be detected at the time of use. Unfortu-

nately, not every language gives constructs for exception handling, for example C language.

Without the help of exception handling, programmers might write a code containing time-

of-check and time-of-use, which may result in the TOCTOU vulnerability. Note that the

TOCTOU vulnerability is not an issue that only happens in C language but is often dis-

cussed in C language due to its popularity in system implementation. In this case, an ef-

fective way to avoid TOCTOU vulnerabilities is analyzing programs by tools at the code

level in advance, i.e., using a code analysis tool to check the source code of programs and

trying to fix them before deploying these programs.

The ways to detect such a vulnerability can be briefly categorized into two kinds of

approaches: the dynamic analysis approach and the static analysis approach. Dynamic

analysis [9-13] is to analyze programs by executing them directly. The analyzers in this

category usually need to insert instructions into object programs before running them in

order to gather necessary information and know the states of programs at runtime. Since

this approach can explore only a single execution path every time, it has difficulty in en-

suring the coverage of analysis practically [14, 15]. On the other hand, the static analysis

approach [16-23] analyzes programs without really executing them. Static analyzers are a

tool that reads source code, analyzes the code, and generates a report on the analysis results.

The detection methods used in this approach include pattern matching, lexical analysis,

and parsing analysis. Pattern matching can quickly search and match a specific pattern in

Process A Process B

check x

use x

change x

Ti
m
e

Process A Process B

check x

use x

change x

Ti
m
e

YUNGYU ZHUANG AND YAO-NANG TSENG

1174

a given code, but it is unaware of language semantics. For example, comments and macros

cannot be recognized well as a result of handling source code as strings. On the other hand,

lexical analysis and parsing analysis are based on compiler architecture. Lexical analysis

further uses the lexical information inside compilers, making it aware of tokens without

syntactic meaning. Parsing analysis can understand syntactic meaning by constructing ab-

stract syntax trees. These methods are basically more expensive but more powerful since

they have the knowledge of language semantics. In general, the code coverage of static

analysis is better than dynamic analysis since all execution paths in the source code will

be considered. However, the source code of programs to detect must be provided.

In this paper, we propose a novel method to detect the TOCTOU vulnerability in C-

like language based on static analysis with parsing techniques. This proposal aims to find

out all possibilities of the TOCTOU vulnerability in programs while eliminating false-

positive results as many as possible − to avoid incorrectly recognizing vulnerabilities. Alt-

hough our method is not limited to C language and can be implemented for similar lan-

guages, we give a concrete implementation for C language to show the feasibility and us-

ability of our proposal. We evaluate the accuracy of our tool with Juliet Test Suite [24, 25]

and compare the ability of our tool with several related works. In addition to comparing

with six non-commercial tools for general vulnerabilities by running our test cases, we also

list features to compare with six existing research activities on TOCTOU detection.

2. RELATED WORK

Several research activities are devoted to the TOCTOU vulnerability, including those

working in file access [3, 26-30] and trusted computing [5-7, 31, 32]. They are targeted at

either finding the TOCTOU vulnerability in source code or monitoring the system to pre-

vent TOCTOU attacks. This section explains the techniques used in our proposal and sum-

marizes related works based on them.

2.1 System Call Pairing

The analysis tool proposed by Bishop and Dilger [3] uses pattern matching over the

given C code to generate a call dependency. Based on the pairing knowledge on system

calls, the tool can determine potential programming intervals, i.e., the interval between the

check and the use of check results. For example, by assuming the pairing relation between

the system calls open and access, it can detect the existence of TOCTOU vulnerability:

if (access("file", W_OK) != 0) {
 :
 fd = open("file", O_WRONLY);

where access and open are included in the set of check function and use function, respec-

tively. Note that the interval between system calls is temporal rather than spatial. As a

consequence of adopting pattern matching, the tool is lightweight and fast but does not

have the knowledge of language semantics. Since no data flow analysis is performed, the

tool has no idea about inter-procedural analysis and pointer aliasing. Viega et al. proposed

a static vulnerability scanner named ITS4 for C and C++ code based on lexical analysis

A NOVEL DETECTION METHOD FOR THE SECURITY VULNERABILITY OF TOCTOU 1175

[26]. Since ITS4 performs real parsing, it can avoid a false positive in the case of declaring

a variable with the name of system calls. For example, the following declaration will not

trigger the detection:

int access;

since the identifier access is a variable name rather than a function call. However, the

aliasing problem was not addressed by ITS4 and listed as a future direction.

2.2 Symbolic Execution

Symbolic execution [33-37] is a promising technique to improve static code analysis.

It converts variables and values with abstract symbols and emulates the execution of pro-

grams by handling these abstract symbols to represent the states of programs. During the

emulation, it needs to fork and maintain states for conditional branches. Fig. 3 shows an

example of conditional branches, where the function call trigger is the place that triggers a

bug, i.e., the bug occurs when 40 <= x < 100. In symbolic execution, the states of this piece

of code will be emulated, as shown in Fig. 4. For every if-else branch, it will fork two

states and fill in the conditions for x in the states. Eventually, the state we would like to

find is the one named AAA. In some sense, symbolic execution can take the states of pro-

grams at runtime into account and explore all execution paths in programs based on static

code analysis. The TOCTOU detection method proposed by Lai is based on symbolic ex-

ecution to significantly reduce false-positive results, i.e., reporting the code without the

vulnerability. However, although it can accurately determine the execution paths that

might have the TOCTOU vulnerability, system calls with different parameters will still be

paired and reported as positive.

Fig. 3. Suppose trigger() will cause a bug. Fig. 4. Using symbolic execution to analyze Fig. 3.

2.3 Parameter Tracking

Parameter tracking, i.e. inter-procedural value flow analysis, is a technique used in

if (access("file", W_OK) != 0) {

exit(1);

}

fd = open("file", O_WRONLY);

write(fd, buffer, sizeof(buffer));

// after access()

remove("file");

symlink("/etc/passwd", "file");

// before open()

x = getInput();

if (x >= 40) {

 if (x < 100)

 trigger();

 else

 printf("x is so big");

}

else {

 printf("x is so small");

}

x = getInput();

if (x >= 40) {

 access("file", W_OK);

 if (x < 100)

 open("file", O_WRONLY);

 else

 printf("x is so big");

}

else {

 printf("x is so small");

}

State A

State AA
x >= 40

State AB
x < 40

State AAB
x >= 40
x >= 100

State AAA
x >= 40
x < 100

x >= 40?

x < 100?

YUNGYU ZHUANG AND YAO-NANG TSENG

1176

several code analysis research activities, including the static ones [3, 26] and the dynamic

ones [27-29]. It means tracking the parameters given the function calls and using them to

determine the relation between the function calls. For example, the following code seems

to contain a TOCTOU vulnerability but actually not:

if (access(file1, W_OK) != 0) {
 :
fd = open(file2, O_WRONLY);

Here both file1 and file2 are character pointers. In this case, the system calls access and

open are possibly different, but tools without parameter tracking will leave it as a false

positive. The tools proposed by Bishop and Dilger [3] and Viega et al. [26] can find system

call pairs according to the parameters, but their recognition ability is limited to pattern

matching and lexical analysis, respectively. Without knowing language semantics, it is

impossible to understand the relations among variables in a static checker. On the other

hand, dynamic analysis tools can monitor system calls at the system level and obtain the

actual parameters given at runtime for pairing. Cowan et al. proposed a tool named Race-

Guard to detect attempts to exploit temporary file race vulnerabilities [27]. RaceGuard is

a kernel enhancement and can effectively detect the TOCTOU vulnerability. The kernel

monitoring tools built by Wei and Pu also benefit from parameter tracking by recording

the parameters given at runtime, particularly filenames [28]. It also clearly defines the sets

of check functions and use functions to enumerate TOCTOU pairs in Linux. As successive

research, Pu and Wei further developed a defense mechanism [29]. As a systematic design

and implementation in the kernel, it works without changing application code or API. On

the contrary, it introduces locks and thus has remaining issues, for example, the question

of dead-lock and live-lock.

3. MOTIVATION

Time-of-Check to Time-of-Use (TOCTOU) is a well-known vulnerability caused by

race conditions. For example, the code in Fig. 5 is a typical example that is executed with

setuid, which means raising the permission of execution to root temporarily. It is a general

way to temporarily elevate users’ privileges of running programs to perform a specific task

in the system. However, in some cases, we still need to check whether or not the user

executing the program has really been granted permission to a specific file before using

the file; otherwise, this program might perform illegal actions. This example looks safe

since the program will open and write the specified file only when the user executing the

program has the permission checked by the access function call. However, a malicious

user might let the code in Fig. 6 be executed on the same system, and the timing of the

execution may be just between the access function call and the open function call. For

example, suppose the remove and symlink function calls in Fig. 6 are executed between

the calls to access and open in Fig. 5. In that case, the malicious program will immediately

remove the file after the check (access function call) and replace it with a symbolic link to

the critical system file passwd. Thus, after the calls to open and write, the system file will

be modified unexpectedly. In other words, although the check ensures the state is correct

at that moment, the check result might be no longer reliable when we really want to use it.

A NOVEL DETECTION METHOD FOR THE SECURITY VULNERABILITY OF TOCTOU 1177

Fig. 5. A typical example executed with setuid. Fig. 6. A malicious code targeted at Fig. 5.

A general solution to avoid leaving the space of time is applying exception handling,

which tries to do actions directly and handles failure cases without knowing the state in

advance. Instead of checking the state before doing the action, we can have assumptions

on the program's state, do the action directly, and prepare the next steps for different results

of doing the action. Thus, exception handling eliminates the space of time between the

check and the use. However, in several cases, it is challenging to apply exception handling

to the code simply. First, in a language without the direct support for exception handling,

for example C language, it is very challenging to implement such an exception handling

mechanism by ourselves. Second, there might be a lot of legacy code pieces written in C-

like languages, and manually tracing and rewriting all the codes does not make sense.

Therefore, an accurate detection tool for the TOCTOU vulnerability is helpful. If we

can analyze the code and accurately detect TOCTOU vulnerabilities in legacy code, we

may focus on where the vulnerability exists and fix it effectively. The ways to analyze

code can be generally classified into two categories, as mentioned in Section 1: static anal-

ysis and dynamic analysis. Although static analysis lacks runtime information in program

execution, it can cover all execution paths in a program and emulate the execution with the

help of symbolic execution. On the other hand, parameter tracking is usually used in dy-

namic analysis, which can help to understand the relations of parameters to functions. So

far as we know, no existing tool is applying this technique with symbolic execution for

detecting the TOCTOU vulnerability.

The observation on the necessity of TOCTOU detection and the usability of symbolic

execution and parameter tracking led us to dive into the research of developing a TOCTOU

detection tool based on static code analysis. By studying related works [3, 26-30], we de-

veloped a detection method that can find out TOCTOU vulnerabilities more accurately

with fewer false-positive results − the ones that are not vulnerabilities but are being recog-

nized as vulnerabilities.

4. OUR DESIGN AND IMPLEMENTATION

We propose a detection method for the TOCTOU security vulnerability based on

static code analysis, which combines symbolic execution and parameter tracking. The

method proposed by Lai [30] adopts symbolic execution to cover all the execution paths

in a program. Although the introduction of symbolic execution is not cheap, it can signif-

icantly improve the correctness of detection. However, due to the lack of parameter track-

ing, it might report the code with no vulnerability, i.e., false-positive results. On the other

hand, parameter tracking is an approach to find out the relation between check functions

and use functions by matching their parameters, such as the filename given to these func-

tions. Several proposed methods [3, 26] use parameter tracking on static code analysis, but

if (access("file", W_OK) != 0) {

exit(1);

}

fd = open("file", O_WRONLY);

write(fd, buffer, sizeof(buffer));

// after access()

remove("file");

symlink("/etc/passwd", "file");

// before open()

x = getInput();

if (x >= 40) {

 if (x < 100)

 trigger();

 else

 printf("x is so big");

}

else {

 printf("x is so small");

}

x = getInput();

if (x >= 40) {

 access("file", W_OK);

 if (x < 100)

 open("file", O_WRONLY);

 else

 printf("x is so big");

}

else {

 printf("x is so small");

}

if (access("file", W_OK) != 0) {

exit(1);

}

fd = open("file", O_WRONLY);

write(fd, buffer, sizeof(buffer));

// after access()

remove("file");

symlink("/etc/passwd", "file");

// before open()

x = getInput();

if (x >= 40) {

 if (x < 100)

 trigger();

 else

 printf("x is so big");

}

else {

 printf("x is so small");

}

x = getInput();

if (x >= 40) {

 access("file", W_OK);

 if (x < 100)

 open("file", O_WRONLY);

 else

 printf("x is so big");

}

else {

 printf("x is so small");

}

YUNGYU ZHUANG AND YAO-NANG TSENG

1178

these methods do not benefit from the syntactic meaning of code. Other proposed methods

[27-29] use parameter tracking on dynamic code analysis, but they cannot find the vulner-

ability in all execution paths due to the nature of dynamic code analysis.

4.1 A Quick Overview

Our proposal is based on parsing analysis and follows the idea used by Wei and Pu

[28] to separate functions into two groups for pairing system calls. Furthermore, it inte-

grates symbolic execution with parameter tracking for reducing false positives as much as

possible. By enumerating functions in the check group and the use group, we can explicitly

manage and pair system calls. In our current design, the set structure is used for grouping,

and a system call can be listed in both groups. Since pairing the system calls appearing in

different execution paths is not reasonable, we apply symbolic execution to consider all

execution paths and exclude such unreasonable cases. For example, placing the calls to a

check function and a use function in different blocks of an if-else branch is actually a safe

case and should be ignored. For risky cases, we can report the existence of a TOCTOU

vulnerability along with the conditions resulting in the execution path. For example, if a

use function is placed inside a nested if-else block, the value range of variables used in the

if-clauses will be reported as a clue to examine the risk. In order to further reduce the

number of incorrect reports, the parameters are tracked during the pairing of check func-

tions and use functions. System calls on different targets will not be paired with the help

of reasoning about the semantics of code.

4.2 The Design of Our Detection Method

We prepare two sets, CheckSet and UseSet, for maintaining the two groups of func-

tions: check functions and use functions, respectively. Currently, we only added Linux

system calls in our tool implementation as follows, but it is possible to add library function

calls as much as we need:

CheckSet = {access, stat, open, creat, mknod, link, symlink, mkdir, unlink, rmdir, rename,
execve, chmod, chown, truncate, utime, chdir, chroot, pivot_root, mount}

UseSet = {creat, mknod, mkdir, rename, link, symlink, open, execve, chdir, chroot,
pivot_root, mount, chmod, chown, truncate, utime}

Note that functions might be included in both CheckSet and UseSet, depending on how

they are used in programs. In addition to the two sets, our tool uses a map to track the

parameters of functions:

Map<Var, VarState>

Here Var is a variable that might be used as parameters of functions, and VarState is a data

structure containing the following information:

(Status, CheckFunction, UseFunction)

where Status is the current status of this variable and can be set to Unchecked, Checked,

or Used. CheckFunction and UseFunction are used to store the names of the functions in

the CheckSet and UseSet that use the variable as a filename parameter, respectively. This

map records the variables that are used in parameters given to functions and maintains their

A NOVEL DETECTION METHOD FOR THE SECURITY VULNERABILITY OF TOCTOU 1179

status. The status of a variable will be updated when our tool finds the functions in

CheckSet and UseSet as shown in Fig. 7. It is updated as follows:

1. When Status is Unchecked and our tool finds a function in CheckSet, setting Check-

Function to the name of the function and changing Status to Checked. It marks the

occurrence of time of check. If later we find an occurrence of time of use on the same

variable, it will become a TOCTOU vulnerability.

2. When Status is Checked and the tool finds another function in CheckSet, updating

CheckFunction to the name of this function without changing Status. The transmission

is to remember the latest occurrence of time of check.

3. When Status is Checked and the tool finds a function in UseSet, setting UseFunction

to the name of the function and changing Status to Used. It notes that a TOCTOU

vulnerability arises.

4. When Status is Used, pushing the vulnerability information, i.e. the pair of CheckFunc-

tion and UseFunction, into the stack for reporting vulnerabilities, then clearing Check-

Function and UseFunction and setting Status to Unchecked for the next pairing.

The status transmission is updated per variable, and it ensures the latest check function call

can be paired with the first use function call. Staying at the status of Unchecked or Checked

represents a safe case while reaching the status of Used suggests a risky case, i.e., the

existence of a TOCTOU vulnerability.

Fig. 7. The status transmission of a variable in our detection method.

When forking the states for a conditional branch in symbolic execution, the status of

variables will also be forked − every forked state inherits the status from its parent. In other

words, we want to find TOCTOU vulnerabilities in all conditional branches by maintaining

the status transmission in them. Taking Fig. 8 as an example, which is modified from the

code in Fig. 3, the states of analyzing it with symbolic execution will look like Fig. 9. In

the beginning, x might be any value, and Status is Unchecked. After the first conditional

branch “x >= 40?”, the state will be forked: one for “x >= 40” and one for “x < 40”, and

their statuses are initialized as Unchecked by inheriting from their parent. At this moment,

both two cases are safe since no check function was detected. In the execution path of “x
>= 40”, Status is set to Checked since a CheckFunction named access is found. It marks

the beginning of pairing, but it is still safe since no use function has been found yet. After

the second conditional branch, “x < 100?”, the state will be further forked: one for “x < 100”

and one for “x >= 100”, and their statuses are initialized as Checked as their parent. In the

Unchecked Checked Used

Initial
1

2

3

4

YUNGYU ZHUANG AND YAO-NANG TSENG

1180

path of “x < 100”, Status will be set to Used to report the existence of a TOCTOU vulner-

ability since a UseFunction named open is called here. In the example, only the execution

paths represented by the state AAA is a risky case, i.e., there is a TOCTOU vulnerability,

and the remainders are safe cases.

Fig. 8. An example of TOCTOU vulnerability. Fig. 9. The states of analyzing Fig. 8.

The pairing of CheckFunction and UseFunction in our detection method is based on

the variables they use rather than simply pairing them. We track the variables used as pa-

rameters in functions like access and open to avoid trapping the cases that are not really a

TOCTOU vulnerability − the one to use is actually different from the one to check. For

example, in Fig. 8, if the parameter used in the open function call is “file2” rather than

“file”, the status of VarState for “file” will not be set to Used, and thus no vulnerability

will be reported. Note that we focused on file names in parameters in our current imple-

mentation since file access is the major issue in the TOCTOU vulnerability. By applying

parameter tracking with symbolic execution, our tool can detect the TOCTOU vulnerabil-

ity more accurately since the false-positive results can be significantly reduced.

4.3 The Implementation Details

We implemented our tool1 on the top of Clang Static Analyzer (CSA), a source code

analysis tool built on top of Clang and LLVM2. The LLVM project is a modular and reus-

able compiler infrastructure, which supports multiple languages on various platforms. The

frontends for different languages translate source code to LLVM IR, and the backends are

responsible for generating code for different platforms based on the LLVM IR. Developers

may extend the supported languages or platforms by implementing corresponding front-

1 The implementation of our proposal and the test cases we evaluated are available on the project page:

https://github.com/ncu-psl/TOCTOU-Detection.
2 The version of LLVM/Clang that our tool uses is 3.4.

if (access("file", W_OK) != 0) {

exit(1);

}

fd = open("file", O_WRONLY);

write(fd, buffer, sizeof(buffer));

// after access()

remove("file");

symlink("/etc/passwd", "file");

// before open()

x = getInput();

if (x >= 40) {

 if (x < 100)

 trigger();

 else

 printf("x is so big");

}

else {

 printf("x is so small");

}

x = getInput();

if (x >= 40) {

 access("file", W_OK);

 if (x < 100)

 open("file", O_WRONLY);

 else

 printf("x is so big");

}

else {

 printf("x is so small");

}

State AA
x >= 40

Status: Checked

State AB
x < 40

Status: Unchecked

State AAB
x >= 40
x >= 100

Status: Checked

State AAA
x >= 40
x < 100
Status: Used

State A

Status: Unchecked

x >= 40?

x < 100?

https://github.com/ncu-psl/TOCTOU-Detection

A NOVEL DETECTION METHOD FOR THE SECURITY VULNERABILITY OF TOCTOU 1181

ends/backends, respectively. CSA can build a memory model for static analysis of C pro-

grams and perform symbolic execution [38]. We based our implementation on CSA to

benefit from Clang and LLVM.

In our implementation, we maintain two kinds of map structures for the one explained

in the previous section:

map<std::string, VarState>
map<clang::ento::SymExpr*, VarState>

The former is to store the name of variables used in parameters with string literals, and the

latter is to store the ones with pointers to objects. For the VarState in the two maps, we

used the class shown in Fig. 10 to represent the data structure and wrap up related opera-

tions since CSA is implemented in C++. We need one more map in addition to the one for

string literals because CSA uses object pointers to analyze assignments. When CSA emu-

lates an assignment, the object pointed by the left-hand side will be set to the one pointed

by the right-hand side. It means that we can recognize aliases by holding and comparing

these object pointers in assignments. Recognizing aliases enables the ability to pair Check-

Function and UseFunction more correctly. If a variable alias to the string “file”, for exam-

ple “filestr”, is given to the open function call instead of “file” in Fig. 8, our detection

method can also correctly pair open and access. Similarly, if a function alias to open func-

tion named fp is used in the place of open, it can be recognized as a TOCTOU vulnerability

as well. This ability is quite crucial since aliases and function pointers are supported and

frequently used in C language.

Fig. 10. The class used to represent the status and pairing in our proposal.

Thanks to the modular design of LLVM and the power of CSA, we can implement

our proposal as a tool that is registered as a callback function. Whenever the analyzer finds

a function call, our tool will be invoked. CSA can build data structure from source code

and perform static code analysis with symbolic execution. Furthermore, our tool benefits

from the built-in tools, scan-build and scan-view, to analyze object programs during com-

pilation and to generate HTML files for reading analysis reports on Web browsers.

5. EVALUATION AND DISCUSSION

To evaluate our proposal, we conducted three kinds of experiments and comparisons.

We first run with the test cases inside Juliet Test Suite to show the essential ability to detect

TOCTOU vulnerabilities. Then we created additional test cases to compare with six non-

commercial tools developed for general vulnerabilities to highlight the features in our tool.

class VarState {

private:

enum Status {Unchecked, Checked, Used} S;

string CheckFunction, UseFunction;

 :

}

Total: 100
Actual

Positive Negative

Detect
Positive True Positive: 36 False Positive: 0

Negative False Negative: 0 True Negative: 64

YUNGYU ZHUANG AND YAO-NANG TSENG

1182

Finally, to compare with existing research activities on TOCTOU detection, we further

used several metrics to determine the abilities and limitations of these detection methods.

The results show that our tool can accurately detect these test cases and our proposal has

advantages over existing detection methods.

5.1 Running with Juliet Test Suite

We run the test cases for the TOCTOU vulnerability inside Juliet Test Suite v1.3 [24,

25] to see whether our tool can accurately detect these typical TOCTOU vulnerabilities or

not. Juliet Test Suite is a collection of test cases in the C/C++ language and contains ex-

amples organized under 118 common weakness enumerations (CWEs). It was created by

the NSA’s Center for Assured Software (CAS) for use in testing static analysis tools. For

the category of TOCTOU, it gives 100 test cases including 36 test cases that have TOC-

TOU vulnerabilities.

We evaluated our tool by analyzing these 100 test cases for the TOCTOU vulnerabil-

ity. The results of detecting the 100 test cases are shown in Table 1. The columns “Positive”

and “Negative” under “Actual” mean whether the test cases really have TOCTOU vulner-

abilities or not, respectively, and the rows for “Detect” mark the detection results of our

tool. The results show that our tool has neither false positive nor false negative. Our tool

can correctly distinguish between positive and negative; it reported positive for all positive

test cases and reported negative for all negative ones. However, it is hard to say the test

cases for the TOCTOU vulnerability in Juliet Test Suite are challenging. The results only

show that our tool fulfilled the minimal requirements of TOCTOU detection ability.

Table 1. The results of detecting TOCTOU vulnerabilities in Juliet Test Suite.

5.2 Comparing with Non-Commercial Tools

In order to further highlight the TOCTOU detection ability of our tool, we manually

created four types of test cases based on the following features of our tools along with a

trivial case: call order, parameter tracking, variable alias, and function alias. Call order

notes considering the order of function calls. Parameter tracking means the necessity of

tracking the parameters in functions. Variable alias and function alias are to recognize the

aliases to variables and functions, respectively. We prepared two test cases for each type

− one for positive and one for negative as shown in Fig. 11. We picked up the following

six non-commercial tools for general vulnerabilities from the list in the study conducted

by Fatima et al. [39]: FlawFinder (version 2.0.8), VCG (version 2.1.0), CppCheck (version

1.82), Splint (version 3.1.2), SPARSE (version 0.5.1), and RATS (version 2.4).

class VarState {

private:

enum Status {Unchecked, Checked, Used} S;

string CheckFunction, UseFunction;

 :

}

Total: 100
Actual

Positive Negative

Detect
Positive True Positive: 36 False Positive: 0

Negative False Negative: 0 True Negative: 64

A NOVEL DETECTION METHOD FOR THE SECURITY VULNERABILITY OF TOCTOU 1183

Fig. 11. The test cases we created for highlighting the four features of our tool.

YUNGYU ZHUANG AND YAO-NANG TSENG

1184

We compared our tool with the six tools by these test cases, and the results show that

our tool can correctly distinguish between positive and negative. The detecting results are

shown in Table 2. The columns “P” and “N” under every type of test case note how each

tool recognizes the given test case: “TP” means the tool successfully recognized the vul-

nerability in the test case, “FP” means the tool recognized a vulnerability that actually does

not exist, “TN” means the tool did not find any vulnerability and indeed there is no vul-

nerability, and “FN” means the tool did not find the vulnerability in the test case. The

results show that FlawFinder always reports positive, while VCG, CppCheck, Splint, and

SPARSE always ignore the possibility of the TOCTOU vulnerability. RATS worked well

for the trivial case and the parameter tracking case while failing to recognize in the cases

of call order and aliases. On the other hand, our tool passed all the test cases. We summa-

rized the ability of these tools in Table 3, which shows that most tools failed to pass these

test cases since they cannot correctly distinguish between positive and negative of the

TOCTOU vulnerability. It is not surprising that our tool can work better since these test

cases are created based on the issues we address and the other tools might focus on differ-

ent scenarios or different kinds of vulnerabilities. However, the comparison shows that the

detection of the TOCTOU vulnerability is not supported by some mature tools such VCG,

CppCheck, Splint, and SPARSE, and tools like FlawFinder and RATS cannot resolve the

problems in detecting the TOCTOU vulnerability we address.

Table 2. The detecting results of our tool and the six non-commercial tools.

Table 3. The summary of comparing with the six non-commercial tools.

 Test Case

Tool Name

Trivial

Case

Call

Order

Parameter

Tracking

Variable

Alias

Function

Alias

P N P N P N P N P N

Flawfinder TP FP TP FP TP FP TP FP TP FP

VCG FN TN FN TN FN TN FN TN FN TN

Cppcheck FN TN FN TN FN TN FN TN FN TN

Splint FN TN FN TN FN TN FN TN FN TN

Sparse FN TN FN TN FN TN FN TN FN TN

RATS TP TN TP FP TP TN FN TN FN TN

Our Tool TP TN TP TN TP TN TP TN TP TN
* P: has such a vulnerability, N: no such a vulnerability,

TP: True Positive, FP: False Positive, TN: True Negative, FN: False Negative

Tool Name
Trivial

Case

Call

Order

Parameter

Tracking

Variable

Alias

Function

Alias

Flawfinder No No No No No

VCG No No No No No

Cppcheck No No No No No

Splint No No No No No

Sparse No No No No No

RATS Yes No Yes No No

Our Tool Yes Yes Yes Yes Yes

Detection Method Approach Exploration
Call

Order

Parameter

Tracking

Variable

Alias

Function

Alias

Bishop and Dilger, 1996 Staitc from beginning to end No Yes No No

Viega et al., 2000 Static from beginning to end No Yes No No

Cowan et al., 2001 Dynamic single execution path Yes Yes Yes Yes

Wei and Pu, 2005 Dynamic single execution path Yes Yes Yes Yes

Pu and Wei, 2006 Dynamic single execution path Yes Yes Yes Yes

Lai, 2018 Static all possible paths Yes No No Yes

Our Proposal Static all possible paths Yes Yes Yes Yes

 Test Case

Tool Name

Trivial

Case

Call

Order

Parameter

Tracking

Variable

Alias

Function

Alias

P N P N P N P N P N

Flawfinder TP FP TP FP TP FP TP FP TP FP

VCG FN TN FN TN FN TN FN TN FN TN

Cppcheck FN TN FN TN FN TN FN TN FN TN

Splint FN TN FN TN FN TN FN TN FN TN

Sparse FN TN FN TN FN TN FN TN FN TN

RATS TP TN TP FP TP TN FN TN FN TN

Our Tool TP TN TP TN TP TN TP TN TP TN
* P: has such a vulnerability, N: no such a vulnerability,

TP: True Positive, FP: False Positive, TN: True Negative, FN: False Negative

Tool Name
Trivial

Case

Call

Order

Parameter

Tracking

Variable

Alias

Function

Alias

Flawfinder No No No No No

VCG No No No No No

Cppcheck No No No No No

Splint No No No No No

Sparse No No No No No

RATS Yes No Yes No No

Our Tool Yes Yes Yes Yes Yes

Detection Method Approach Exploration
Call

Order

Parameter

Tracking

Variable

Alias

Function

Alias

Bishop and Dilger, 1996 Staitc from beginning to end No Yes No No

Viega et al., 2000 Static from beginning to end No Yes No No

Cowan et al., 2001 Dynamic single execution path Yes Yes Yes Yes

Wei and Pu, 2005 Dynamic single execution path Yes Yes Yes Yes

Pu and Wei, 2006 Dynamic single execution path Yes Yes Yes Yes

Lai, 2018 Static all possible paths Yes No No Yes

Our Proposal Static all possible paths Yes Yes Yes Yes

A NOVEL DETECTION METHOD FOR THE SECURITY VULNERABILITY OF TOCTOU 1185

5.3 Comparing with Existing Detection Methods

We also compared our proposal with six detection methods proposed by existing re-

search activities on TOCTOU detection, including those that benefit from parameter track-

ing [3, 26-29] or symbolic execution [30]. The results highlight the advantages over others.

Table 4 lists the approach these methods adopt, how they explore, and the four features

our proposal addresses. The column approach indicates that the method belongs to static

code analysis or dynamic code analysis. The column exploration explains how the method

checks the code: checking all the code from the beginning to the end without taking

branches into account, checking only the current execution path, or finding all possible

execution paths. The column call order notes whether the method considers the order of

function calls or not. The column parameter tracking shows whether the method tracks the

parameters in functions or not. The columns variable alias and function alias are the ability

to recognize the aliases to variables and functions.

Table 4. The summary of comparing with existing research activities.

The results show the advantages of our proposal over other detection methods. The

first two methods (Bishop and Dilger, 1996; Viega et al., 2000) are based on pattern match-

ing, so that they are unaware of language semantics. It implies that they are faster but do

not consider call order, variable alias, and function alias. The three methods in the middle

(Cowan et al., 2001; Wei and Pu, 2005; Pu and Wei, 2006) adopt the approach of dynamic

code analysis. It means they can get runtime information, but they cannot cover all possible

execution paths. These five methods mentioned above all take parameter tracking into ac-

count, but they do not benefit from symbolic execution. On the other hand, the method

proposed by Lai (2018) uses symbolic execution, but it does not apply parameter tracking.

Our proposal can be regarded as an improvement on Lai’s detection method and further

consider parameter tracking. Note that here we only compare them by discussing these

features since the implementations of most related work are no longer available so far as

we know.

6. CONCLUSIONS

In order to detect the Time-of-Check to Time-of-Use (TOCTOU) security vulnerabil-

ity in C-like languages, we proposed a novel detection method that combines symbolic

execution and parameter tracking based on static code analysis. We concretely imple-

 Test Case

Tool Name

Trivial

Case

Call

Order

Parameter

Tracking

Variable

Alias

Function

Alias

P N P N P N P N P N

Flawfinder TP FP TP FP TP FP TP FP TP FP

VCG FN TN FN TN FN TN FN TN FN TN

Cppcheck FN TN FN TN FN TN FN TN FN TN

Splint FN TN FN TN FN TN FN TN FN TN

Sparse FN TN FN TN FN TN FN TN FN TN

RATS TP TN TP FP TP TN FN TN FN TN

Our Tool TP TN TP TN TP TN TP TN TP TN
* P: has such a vulnerability, N: no such a vulnerability,

TP: True Positive, FP: False Positive, TN: True Negative, FN: False Negative

Tool Name
Trivial

Case

Call

Order

Parameter

Tracking

Variable

Alias

Function

Alias

Flawfinder No No No No No

VCG No No No No No

Cppcheck No No No No No

Splint No No No No No

Sparse No No No No No

RATS Yes No Yes No No

Our Tool Yes Yes Yes Yes Yes

Detection Method Approach Exploration
Call

Order

Parameter

Tracking

Variable

Alias

Function

Alias

Bishop and Dilger, 1996 Staitc from beginning to end No Yes No No

Viega et al., 2000 Static from beginning to end No Yes No No

Cowan et al., 2001 Dynamic single execution path Yes Yes Yes Yes

Wei and Pu, 2005 Dynamic single execution path Yes Yes Yes Yes

Pu and Wei, 2006 Dynamic single execution path Yes Yes Yes Yes

Lai, 2018 Static all possible paths Yes No No Yes

Our Proposal Static all possible paths Yes Yes Yes Yes

YUNGYU ZHUANG AND YAO-NANG TSENG

1186

mented a tool for detecting TOCTOU vulnerabilities in C language to show the feasibility

and explained the design and implementation. To evaluate our proposal, we first ran our

tool with the TOCTOU vulnerability test cases in Juliet Test Suite to verify the essential

detection ability. We then evaluated our proposal by comparing it with several non-com-

mercial tools and existing research activities through a set of test cases for highlighting our

features. The results show that our proposal has advantages over others in TOCTOU de-

tection, especially in tracking the call order and parameters of functions and recognizing

the aliases of variables and functions.

REFERENCES

1. The Software Quality Company, “TIOBE index for July 2021,” https://www.tiobe.

com/tiobe-index/, 2021.

2. R. C. Seacord, Secure Coding in C and C++, Pearson Education, US, 2005.

3. M. Bishop and M. Dilger, “Checking for race conditions in file accesses,” Computing

Systems, Vol. 2, 1996, pp. 131-152.

4. D. Dean and A. J. Hu, “Fixing races for fun and profit: How to use access (2),” in

Proceedings of USENIX Security Symposium, 2004, pp. 195-206.

5. S. Bratus, N. D’Cunha, E. Sparks, and S. W. Smith, “TOCTOU, traps, and trusted

computing,” in Proceedings of International Conference on Trusted Computing, 2008,

pp. 14-32.

6. X. Chang, B. Xing, J. Liu, and J. K. Muppala, “LWRM: A lightweight response me-

chanism for TCG TOCTOU attack,” in Proceedings of IEEE 28th International Per-

formance Computing and Communications Conference, 2009, pp. 200-207.

7. I. D. O. Nunes, S. Jakkamsetti, N. Rattanavipanon, and G. Tsudik, “On the TOCTOU

problem in remote attestation,” arXiv Preprint, 2020, arXiv:2005.03873.

8. E. Kiciman, B. Livshits, and M. Musuvathi, “CatchAndRetry: Extending exceptions

to handle distributed system failures and recovery,” in Proceedings of the 5th Work-

shop on Programming Languages and Operating Systems, 2009, pp. 1-5.

9. A. Gosain and G. Sharma, “A survey of dynamic program analysis techniques and

tools,” in Proceedings of the 3rd International Conference on Frontiers of Intelligent

Computing: Theory and Applications, 2015, pp. 113-122.

10. B. Cornelissen, A. Zaidman, A. Van Deursen, L. Moonen, and R. Koschke, “A sys-

tematic survey of program comprehension through dynamic analysis,” IEEE Transac-

tions on Software Engineering, Vol. 35, 2009, pp. 684-702.

11. N. Nethercote, “Dynamic binary analysis and instrumentation,” Computer Laboratory,

University of Cambridge, 2004.

12. S. Hangal and M. S. Lam, “Tracking down software bugs using automatic anomaly

detection,” in Proceedings of IEEE 24th International Conference on Software En-

gineer, 2002, pp. 291-301.

13. T. Ball, “The concept of dynamic analysis,” in Proceedings of the 7th European Soft-

ware Engineering Conference Held Jointly with the 7th ACM SIGSOFT Symposium

on the Foundation, 1999, pp. 216-234.

14. R. D. Venkatasubramanyam and S. GR, “Why is dynamic analysis not used as exten-

sively as static analysis: an industrial study,” in Proceedings of the 1st International

A NOVEL DETECTION METHOD FOR THE SECURITY VULNERABILITY OF TOCTOU 1187

Workshop on Software Engineering Research and Industrial Practices, 2014, pp. 24-

33.

15. M. D. Ernst, “Static and dynamic analysis: Synergy and duality,” in Proceedings of

Workshop on Dynamic Analysis, 2003, pp. 24-27.

16. I. Gomes, P. Morgado, T. Gomes, and R. Moreira, “An overview on the static code

analysis approach in software development,” Faculdade de Engenharia da Univer-

sidade do Porto, Portugal, 2009.

17. N. Ayewah, W. Pugh, D. Hovemeyer, J. D. Morgenthaler, and J. Penix, “Using static

analysis to find bugs,” IEEE Software, Vol. 25, 2008, pp. 22-29.

18. B. Chess and J. West, Secure Programming with Static Analysis, Pearson Education,

US, 2007.

19. B. Chess and G. McGraw, “Static analysis for security,” IEEE Security & Privacy,

Vol. 2, 2004, pp. 76-79.

20. T. Ball and S. K. Rajamani, “The SLAM project: Debugging system software via static

analysis,” in Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on Prin-

ciples of Programming Languages, 2002, pp. 1-3.

21. D. Wagner and R. Dean, “Intrusion detection via static analysis,” in Proceedings of

IEEE Symposium on Security and Privacy, 2001, pp. 156-168.

22. W. Landi, “Undecidability of static analysis,” ACM Letters on Programming Lan-

guages and System, Vol. 1, 1992, pp. 323-337.

23. P. Cousot and R. Cousot, “Abstract interpretation: a unified lattice model for static

analysis of programs by construction or approximation of fixpoints,” in Proceedings

of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Lan-

guages, 1977, pp. 238-252.

24. T. Boland and P. E. Black, “Juliet 1.1 C/C++ and Java test suite,” IEEE Computer

Architecture Letters, Vol. 45, 2012, pp. 88-90.

25. P. E. Black and P. E. Black, “Juliet 1.3 test suite: changes from 1.2,” US Department

of Commerce, National Institute of Standards and Technology, 2018.

26. J. Viega, J.-T. Bloch, Y. Kohno, and G. McGraw, “ITS4: A static vulnerability scanner

for C and C++ code,” in Proceedings of IEEE 16th Annual Computer Security Appli-

cations Conference, 2000, pp. 257-267.

27. C. Cowan, S. Beattie, C. Wright, and G. Kroah-Hartman, “RaceGuard: Kernel protec-

tion from temporary file race vulnerabilities,” in Proceedings of USENIX Security

Symposium, 2001, pp. 165-176.

28. J. Wei and C. Pu, “TOCTTOU vulnerabilities in UNIX-style file systems: An

anatomical study,” in Proceedings of the 4th USENIX Conference on File and Storage

Technologies, 2005, Vol. 5, p. 12.

29. C. Pu and J. Wei, “A methodical defense against tocttou attacks: The edgi approach,”

in Proceedings of International Symposium on Secure Software Engineering, 2006.

30. T.-C. Lai, “The TOCTOU detection using LLVM static analyzer,” Master Thesis,

National Chung Cheng University, 2018.

31. G. Tsudik, “Proofs or remote execution and mitigation of TOCTOU attacks,” in Pro-

ceedings of the 15th ACM Asia Conference on Computer and Communications, 2020,

pp. 2-3.

YUNGYU ZHUANG AND YAO-NANG TSENG

1188

32. S. Zeitouni et al., “ATRIUM: Runtime attestation resilient under memory attacks,” in

Proceedings of IEEE/ACM International Conference on Computer-Aided Design,

2017, pp. 384-391.

33. R. Baldoni, E. Coppa, D. C. D’elia, C. Demetrescu, and I. Finocchi, “A survey of

symbolic execution techniques,” ACM Computing Surveys, Vol. 51, 2018, pp. 1-39.

34. C. Cadar and K. Sen, “Symbolic execution for software testing: three decades later,”

Communications of the ACM, Vol. 56, 2013, pp. 82-90.

35. E. J. Schwartz, T. Avgerinos, and D. Brumley, “All you ever wanted to know about

dynamic taint analysis and forward symbolic execution (but might have been afraid to

ask), ” in Proceedings of IEEE Symposium on Security and Privacy, 2010, pp. 317-

331.

36. L. A. Clarke, “A system to generate test data and symbolically execute programs,”

IEEE Transactions on Software Engineering, Vol. SE-2, 1976, pp. 215-222.

37. J. C. King, “Symbolic execution and program testing,” Communications of the ACM,

Vol. 19, 1976, pp. 385-394.

38. Z. Xu, T. Kremenek, and J. Zhang, “A memory model for static analysis of C pro-

grams,” in Proceedings of International Symposium on Leveraging Applications of

Formal Methods, Verification and Validation, 2010, pp. 535-548.

39. A. Fatima, S. Bibi, and R. Hanif, “Comparative study on static code analysis tools for

c/c++,” in Proceedings of IEEE 15th International Bhurban Conference on Applied

Sciences and Technology, 2018, pp. 465-469.

YungYu Zhuang (莊永裕) received the B.S. and M.S. degrees in

Mechanical Engineering and Computer Science from National Taiwan

University in 2002 and 2004, respectively, and the Ph.D. degree in In-

formation Science and Technology from the University of Tokyo, Ja-

pan, in 2014. From 2014 to 2016, he was a Project Assistant Professor

with the University of Tokyo. He is currently an Assistant Professor

with the Department of Computer Science and Information Engineer-

ing, National Central University, Taiwan. He was a Research Assistant

with the Central Weather Bureau, Taiwan, from 2004 to 2006, and worked as a Software

Engineer in the industry from 2006 to 2011. His research interests include programming

language design, software engineering, high-performance computing, machine learning,

and programming education.

Yao-Nang Tseng (曾耀儂) completed his master degree in Com-

puter Science and Information Engineering from National Central Uni-

versity. He is interested in writing secure codes and software engineer-

ing.

