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3D modeling is increasingly pervasive in many industries to produce a 3D digital rep-
resentation of any object. Nonetheless, traditional 3D modeling remains a laborious and
expensive undertaking, requiring a high degree of expertise and patience to create realistic
models. GANs have shown great promise in the application of 3D object reconstruction
and there has been a vast amount of research being conducted on this topic in recent years.
However, given the many potential fields of application for GANs, little work has been pro-
duced on the study of current state-of-the-art methods and what kind of future uses they may
have. In this paper, we present a systematic literature review of the current unsupervised and
weakly-supervised methods on volumetric 3D object reconstruction utilizing GANs with a
voxel representation. The review aims at offering insights into future works based on the
constraints and potentials of the studied works.

Keywords: generative adversarial networks, literature review, object reconstruction, survey,
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1. INTRODUCTION

In the field of 3D computer graphics, 3D modeling is the process of developing a
digital representation of some object. This is carried out by creating and manipulating
points within a simulated 3D coordinate space. This process is used by many industries
for various purposes including anything from computer-aided design for the purpose of
manufacturing items at an incredible level of precision to the development of art assets
for special effects in movies and video games.

Despite their widespread use and continued growth in popularity, high quality 3D
models remain expensive and difficult to produce. Experts are always in high demand
and the process of creating 3D models continues to remain time consuming despite recent
advances in tools and technology. Even the most popular contemporary programs like
CATIA, SolidWorks, and Inventor, fail to meaningfully reduce the time and effort require-
ments industry professionals face [1]. With Generative Adversarial Networks (GANs) [2],
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however, new possibilities have been presented in creating high quality 3D models in
record time with minimal or even no human supervision.

GANs have been able to reconstruct convincingly real and natural-looking synthetic
data by learning about the features of the given data. This is performed by exploring what
is called the latent space which is the area where vector arithmetic is done on said data
of an image or object being constructed [3]. Using 2D image data, GANs can learn how
to generate 3D models. However, there is a problem when these 3D shapes are rendered
only using 2D images. In order to create an exact replica from input data, a topology
representing the replica should be constructed. A practical way of constructing a topology
with ease of use is using voxels. A voxel is an abstract 3D unit value with pre-defined
characteristics which can be used to represent a topology in a filled space [4]. By using
voxel-based representations in conjunction with GANs, a topological representation of a
reconstructed model can be created [5].

Although GANs are a relatively new class of machine learning frameworks, being
introduced only recently in 2014 [2], their growth in terms of related work produced
in academia has been nothing short of explosive. While this growth has opened up a
vast number of potential application fields, a field of popular interest has been found in
applying GANs to the generation and reconstruction of 3D models.

While there is much existing work on the topic of GANs and their use in 3D model
reconstruction, given the extensive array of applications for GANs, there exists little work
on the topic of comparative analysis of GANs being applied for volumetric 3D reconstruc-
tion with the use of voxel representation within the latent space. In this paper, we present
a systematic literature review of the current state-of-the-art methods on this topic in what
is, according to our findings, the first of its kind.

The review follows the guidelines provided by Kitchenham et al. [6] by first estab-
lishing a selection procedure and then developing the research questions to be answered
within this work. Following that, primary works that fit the selection criteria are identified
and reviewed. These works are analyzed with respect to the parameters we established,
so that we may attempt to answer the presented research questions.

The structure of the remainder of the paper is as follows. Section 2 gives an overview
on the basic architecture of GANs, their framework methodology, and the distinction of
how GANs have been applied to produce both 2D and 3D outputs. Section 3 summarizes
and discusses literature reviews relevant to the topic. Section 4 details the exact approach
to this survey along with findings. Section 5 presents the answers to the research questions
posed with regard to the data collected. Finally, Section 6 gives a conclusion to this work.

2. BACKGROUND

In this section, we give an overview of GANs and its use in the construction of
2D and 3D objects. A GAN is a type of machine learning frameworks for learning to
generate new data with the same data distribution as the training set. Figure 1 shows the
general architecture of GANs. A GAN is generally composed of two primary components
– the generator and the discriminator, both of which are separate neural networks and
exist as the competitors of the adversarial process. The generator synthesizes new data
and introduces the generative element to the GAN. The data is generated based on the
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learning from the feedback of the discriminator as well as from the real samples provided
in the training data. The objective of the generator is to deceive the discriminator. This is
achieved by synthesizing an object that is indistinguishable from the real samples given
during training. Likewise, the discriminator’s objective is to judge the given data from the
generator to determine if it is real or synthesized [2, 7]. These two components compete
in a zero-sum game in which they each take turns performing their tasks and are then
evaluated with a winner chosen. This learning is facilitated by an architecture where
the generator outputs synthesized data and real examples are fed into the discriminator
as input. Ideally, this process will begin with the discriminator having a high success
rate and deteriorating as the generator becomes increasingly accurate. The end result
is an exceptional generator model which can be used for some assigned purpose. The
discriminator is also trained to the same capacity. Specifically, it utilizes back-propagation
from its loss function, updating itself when a misclassification occurs. While both can be
used for great effect elsewhere, the generator is what is commonly sought after [2, 7].

Fig. 1. General GAN architecture.

In recent years, GANs have undergone extensive research, especially in the field of
image generation. The application of GANs has been extended to 3D modeling, natu-
rally benefiting from the extensive 2D research that has been established. Zhu et al. [8]
designed the operation to produce realistic results for the image editing. First, they used
GANs to approximate the manifold and applied a hybrid method of feed-forward and op-
timization to project the input image to find the closest latent vector. Then, they used
constraints to manipulate the latent vector to match the user’s intent and applied gradient
descent to stay close to the input in the manifold. Finally, the version is converted back
to the original picture by applying the traditional optical flow method. Inspired by Zhu
et al.’s work, Liu et al. [9] proposed a revised architecture of 3D-GAN [10] to maintain
stability during training. The architecture projects original or modified 3D objects into
the learned manifold by training three neural networks – a generator, a discriminator, and
a projection operator. The generator accepts as input a latent vector representing the user
model and the discriminator learns the latent space of manifolds. The generator inputs the
3D model to the projection operator which maps the input 3D model to its latent vector
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so that it can be used in the generator. The 3D model is directly input instead of training
additional networks. The projection operator adjusts the importance of the rationality of
the generative model and its similarity with the original input. In their implementation,
they used a feed-forward network to optimize the similarity (which is used as an initial
guess) using gradient descent to find a local minimum on the entire target loss. In this
case, calculation time is important due to its interactivity.

3. RELATED WORK

While there exist many literature reviews regarding GANs, they mostly focus on
quantitative analysis of GAN applications as a whole. Aggarwal et al. [11] surveyed
recent works on GAN models for the purpose of identifying what practical, real-world,
application fields currently exist for GANs under present academia. Identified fields in-
clude medicine, image processing, face detection, physics, and astronomy. Of all the
application fields, medicine contained the largest amount of studies that defined distinct
applications within the respective field. Majority of these key studies are related to the
identification and classification of medical images and their contents. Examples include
sharpening and de-noising magnetic resonance images and classifying cytological im-
ages. They also discuss some work on 3D image generation. The key studies [12–16]
identified covered a variety of approaches to the topic. One study [12] proposed a GAN
that encodes unclear, unlabelled data to be processed and decodes the encoded data into a
more precise representation of the object as a point cloud. Another study [15] focused on
training a GAN to learn how clothing deforms in accordance to human motion. The work
concludes with a brief section on the limitations of GANs. However, the presented limita-
tions are more correctly described as moral and ethical concerns regarding the technology
rather than practical limitations such as computational requirements.

Another survey by Shamsolmoali et al. [17] performs a comprehensive review of
adversarial models that are used for image synthesis as well as the various categories
of methods that accompany the models. A subset of the methods discusses applications
to 3D shape reconstruction, specifically the generation of data to fill in where there are
missing components. Multiple architectures that contain varying implementations to the
presented problem are reviewed. One model [10] utilizes volumetric convolutional net-
works in conjunction with GANs to generate a 3D object from a probabilistic space. The
model is relatively simple in that it maps the lower-dimensional probabilistic space from
the 2D image input and transforms it into a 3D probabilistic space which results in the
generated model. The survey notes that while the model is indeed architecturally simplis-
tic and therefore likely to perform well, the evaluation parameters and data are limited,
requiring additional work to confirm the claim. Another model [18] adopts a Wasserstein
normalization that incorporates gradient penalization during training. While this model
provides generation of realistic images, the architecture itself can be used for 3D shape
reconstruction from a 2D image with subsequent shape completion functions. The sur-
vey concludes with discussions on the difficulties of image synthesis tasks as well as the
need for further studies to be made to better understand the practical limitations of these
models in terms of accuracy, training time, and testing time with regards to the field of
computer vision.
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The most similar work to ours is by Han et al. [19] where a comprehensive review
is conducted on image-based 3D object reconstruction using deep learning techniques.
Unlike our work, however, voxel representation is covered in addition to surface and
point-based representations. The work further distinguishes itself from ours by including
architectures that do not utilize adversarial learning methods, and therefore, are not lim-
ited to GANs. While some analysis parameters are shared with our work, such as training
strategies and evaluation methods, emphasis is placed on the analysis of the different out-
put representations. Performance of selected algorithms is also a point of focus, both in
terms of computational efficiency and in output accuracy. The work concludes with sug-
gestions on future research paths to take in order to refine existing capabilities as well as
to alleviate potential issues such as the limited quantity and quality of publicly available
training datasets. Han et al.’s individual suggestions contribute toward their final sugges-
tion which posits that semantic parsing of a complete 3D scene from one or more images
is the ultimate goal of the technology.

The existing literature reviews are plentiful and offer excellent insight into the current
state of GANs in academic literature. Our work differs from the existing reviews in that
our work focuses the application of GANs to 3D object generation and reconstruction
in voxel representation. Other representations, such as meshes, are not considered in
order to provide a more concise analysis. Different representations may require different
implementations which could interfere with our findings.

4. SYSTEMATIC LITERATURE REVIEW

In this section, we present a systematic literature review of the current state of vol-
umetric 3D object reconstruction in voxel representation by using GANs. The review
is structured in a four step process according to the guidelines provided by Kitchenham
et al. [6]. First, the review method to apply is formulated. Second, a review is conducted
based on the review method. Third, the results of the review are reported in a quantita-
tive manner. Finally, the findings from those results are discussed. The review method
consists of a set of research questions, academic database searching, identification and
evaluation of primary works found, and parameterized data extraction from the primary
works. By conducting our systematic literature review, we hope to answer the following
research questions.

1. What commonalities can be extracted from analyzing the current methods of 3D
object generation using GANs?

2. With these commonalities in mind, what inferences can be made about the state of
the application of GANs?

3. What are limitations on a general scale?
4. What recommendations can be made towards future work?

4.1 Selection Process

Primary works included within this review were obtained by searching Google
Scholar which indexes many major computer science-related publications. Preliminary
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filtering of search results was achieved by utilizing Google’s advanced search operators.
By identifying key terms related to our topic and including similar terms to increase the
accuracy of the search results, we arrived at our final search string: “(“3d object” OR “3d
shape”) AND (“reconstruction”) AND (“voxel”) AND (“latent space”) AND (“GANs”
OR “generative adversarial network”) AND (“unsupervised” OR “weakly supervised”) -
face -hands -“literature review” -survey -“point cloud””. Quotations denote exact phrases
that must appear at least once, while hyphens denote excluded terms. The AND and
OR operators function as they do in logic operations, requiring precise combinations and
allowing set alternative combinations, respectfully.

As discussed in Section 3, there is a wealth of existing work regarding GANs. How-
ever, many works focus on using GANs for purposes outside of the scope of our system-
atic literature review. Therefore, we put forward a set of criteria that must be met by any
work to be included within this review. This criteria is as follows.

• The work must be written in English.
• The work must be available in full, either freely or within the resources accessible

to our institution.
• The work must be published between 2018 and 2021 to consider up-to-date works.
• The work must have a primary focus on the application of GANs for use in 3D

object reconstruction.
• The work must use voxel representation.

Table 1 shows the list of identified works. While we made sure to include all relevant
works given our constraints, we acknowledge that some may have been missed. However,
no works were intentionally left out and we believe our current pool of selected works still
offers valid and valuable insight into our topic.

Table 1. Selected works.
Year Study Venue

2020 Inverse Graphics (IG) GAN [5] arXiv
2020 3DMaterialGAN [20] arXiv
2020 Deep Convolutional Refined Auto-Encoding Alpha GAN [21] IEEE TMRB
2019 MP-GAN [22] arXiv
2019 3D-VAE-Stack-SNGAN [23] CCP&E
2019 3DMaskGAN [24] ICBESCC
2019 Chen et al. [25] ICIP
2019 Chen et al. [26] MMM
2018 Yang et al. [27] ECCV
2018 ORGAN [28] CGI

4.2 Structural Analysis

We analyze the identified works in terms of generator, discriminator, GAN type,
training strategy, loss function, other noteworthy components, evaluation method, and
limitations. Table 2 shows the summary of the analysis.
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Table 2. Analysis parameters.
Ref. Generator Discriminator GAN Type Training

Strategy
Loss Function Other Com-

ponents
Evaluation
Methods

Limitations

[5] 3D CNN Novel IG-GAN ShapeNet Discriminator
network

Arbitrary ren-
derer, novel
proxy neural
renderer,
classifier

Inception net-
work

Potential inconsis-
tency of alterations

[20] Novel Novel 3DMaterialGAN ShapeNet &
Titanium

Unspecified N/A Comparing
against existing
models

Difficult to evaluate
the system

[21] 3D CNN Novel Deep Con-
volutional
Refined
Auto-
Encoding
Alpha GAN

Alzheimer’s
Disease Neu-
roimaging
Initiative

Unspecified Code discrim-
inator, refiner,
VAE

Jaccard Index Impractically low
resolution and diffi-
cult to handle blood
vessels

[22] 3D CNN Multiple* MP-GAN ShapeNet Discriminator
network

Projector,
classifier

FID score Cannot model con-
cavities

[23] 3D CNN Multiple* 3D-Stack-
SNGAN
& 3D-
VAE-Stack-
SNGAN

ModelNet10 Discriminator
network

VAE Inception net-
work

Unspecified

[24] 3D CNN Novel 3DMaskGAN ShapeNet 2D masking Projector Unspecified Unspecified
[25] SSCNet Novel Unnamed Depth images Discriminator

network
N/A Jaccard Index Inferior performance

to state-of-the-art
[26] 3D CNN Novel Unnamed ModelNet10 Wasserstein loss Classifier,

VAE
Jaccard Index Unspecified

[27] 3D CNN 3D CNN Unnamed ShapeNetCore Unspecified Encoder, pro-
jector

Jaccard Index Working with arbi-
trary camera loca-
tions

[28] 3D CNN 3D CNN ORGAN ModelNet10
& novel ob-
ject class

Novel Encoder Comparing
object fragment
sizes

Instability in training

CNN: Convolutional Neural Network; FID: Fréchet Inception Distance; SSCNet: Semantic Scene Completion Network; VAE: Variational Auto-Encoder
*: Stack structure

4.2.1 Generator

The architecture of the generators in the studied works is found consistent across
the studied works. 50% (i.e., [23, 24, 26–28])of the generators output their objects at a
resolution of 32×32×32 voxels, followed by 40% (i.e., [5, 20–22]) at 64×64×64. This
is unsurprising, as memory requirements are cited as the limiting factor to outputting at a
higher resolution [21]. The remaining generator from Chen et al.’s work [25] outputs data
at an unusual resolution of 60×36×60 voxels. This is because the generator is simply
SSCNet, an end-to-end 3D convolutional network by Song et al. [29] that requires a
240×140×240 depth image as its input, rather than the usual normalized latent vector.

While 80% (i.e., [5, 21–24, 26–28]) of the generators (including those outputting a
lower resolution) followed the standard neural network architecture as proposed by Wu
et al. [10], there is one notable exception. 3DMaterialGAN [20] describes a novel gen-
erator that begins with an eight-layer mapping network that transforms the latent vector
into an intermediate latent space. This intermediate form is then transformed again and
passed through a five-block synthesis network where each block is similar to StyleGAN
by Kerras et al. [30].

4.2.2 Discriminator

The discriminator in a GAN is simply a classifier. It tries to distinguish real data
from the data created by the generator. It can use any network architecture appropri-
ate to the type of data it is classifying. The discriminators that were used in the review
vary. 20% (i.e., [27,28]) of the studied works used a unified model architecture which in-
cludes an encoder, generator and discriminator. Another 20% (i.e., [22,23]) used multiple
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discriminators in a stacked structure which can be considered as a coarse-to-fine or low-
to-high–resolution mechanism. The remaining 60% [5, 20, 21, 24–26] of the works used
novel discriminator models which were designed with respect to the project requirements.

Lunz et al. [5] proposed a novel loss function named discriminator output matching
to train the proxy neural renderer. This novel loss function is required in order to account
for the fact that the off-the-shelf renderer is non-differentiable, where as the generator is
not. Employing the loss function forces the proxy neural renderer to generate images that
smoothly interpolate the discrete and continuous forms of rasterization and voxel grids,
respectively for the discriminators use. Without this novel loss function, the proxy neural
renderer would be producing arbitrary outputs for the generated voxel grids.

In Chen et al.’s work [25], the discriminator network takes, at random, either the
generated 3D volume or the ground truth volume as input and classifies the data as real
or fake. The parameters of each layer are shown as the number of filters, kernel size,
stride in the case of convolutions and as the number of output channels in the case of fully
connected layers. The aim of the discriminator network is to distinguish a generated 3D
volume from a ground truth volume. To this end, they transform a ground truth sample of
the training data to a volume of the same size using one-hot encoding.

A Code Discriminator (CD) and refiner were used for the network structure by
Segato et al. [21]. The CD network consists of three fully-connected layers. LeakyReLU
and BatchNorm layers are placed between each pair of the three layers. The CD is trained
to distinguish between latent vectors coming from the variational autoencoder and the
random ones given as input to the generator. This adversarial process makes the proba-
bility distributions of the two latent vectors match, reducing the image blurriness that is
characteristic to variational autoencoder outputs. The architecture of the refiner consists
of four ResNet blocks. In traditional neural networks, each layer feeds into the next. In
a network with residual blocks, each layer feeds into the next and also directly into the
layers roughly 2–3 hops away. The presence of skip connections reduces the vanishing
gradient problem. It smooths the shapes of the image and allows the generation of more
realistic outputs.

Li et al. [22] trained the generator network with cues from multiple discriminators in
parallel. Each discriminator operates on the subset of the training data corresponding to
a particular viewpoint and is trained from independently drawn samples from a silhouette
image. 3D-VAE-Stack-SNGAN [23] uses multiple generators and discriminators to en-
hance the ability of the model for learning complex distributions. This stacked structure
can be considered as a coarse-to-fine or low-to-high–resolution mechanism. The spectral
normalization technology is employed to control the Lipschitz constant of the discrimina-
tors by literally constraining the spectral norm of each layer to get a more stable training
process, allowing the proposed model to generate realistic and high-quality 3D objects.
The discriminator model weights are updated five times in each training iteration, while
the generator model weights are updated only once in order to minimize their respective
losses.

Wan et al.’s work [24] used a 2D convolution operation in lieu of the 3D convolu-
tional neural networks in the discriminator. This reduces the number of iterations, while
increasing the speed of training. An unified model architecture was proposed by Yang
et al. [27] with three main components – encoder, generator, and discriminator. The en-
coder takes an image, a silhouette mask, as its input and produces a latent representation
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of shape. The generator takes the latent representation as input and produces a voxel grid.
The discriminator tries to distinguish between rendered views of the voxel output by the
generator and views of the real objects. In Chen et al.’s study [26], the discriminator is
a binary classifier that tries to differentiate real images from generated images. Different
from the traditional GAN formulation, the discriminator accepts input-label pairs pro-
duced by the classifier and the generator. They sample ground truth input-label pairs (x,
y) from the data and label them as real pairs. For fake pairs, they pair real images x with
predicted labels coming from the classifier forming an input-label pair (x, C(x)) where C
is the classifier. 3DMaterialGAN [20] is a simple GAN that consists of a generator and
a discriminator. The generator tries to synthesize the samples that look like the training
data, while the discriminator tries to determine whether a given sample is a real sample
originated from the ground truth data or from the generator. The discriminator D outputs
a confidence value D(x) of whether input x is real or synthetic.

4.2.3 GAN types

Among the studied work, only 30% (i.e., [25–27]) of the works used existing GAN
types to achieve their goals, while the other 70% (i.e., [5, 20–24, 28]) proposed novel
methods by using the existing GAN types.

The work by Lunz et al. [5] aimed at training a generative model for 3D shapes
such that rendering these shapes with an off-the-shelf renderer generates the images that
match the distribution of a 2D training image dataset. Through trying a number of dif-
ferent methods and addressing the issues during the generation process, a novel method
named Inverse Graphics GAN was proposed as the neural renderer during backpropaga-
tion“inverts” the off-the-shelf renderer providing useful gradients for the 3D generative
model training.

The work by Chen et al. [25] addresses 3D semantic scene completion by predict-
ing the semantic labels and occupancy of voxels in the 3D geometry of the objects in
the scene of a given single depth image. Their results show that using conditional GANs
outperforms the vanilla GAN setup when evaluating their architecture designs on several
datasets. Based on the experiments, GANs are demonstrated to be able to outperform the
performance of a baseline 3D convolutional neural network in the case of clean annota-
tions, but perform poorly on improperly-aligned annotations.

Segato et al.’s work [21] proposed Deep Convolutional Refined Auto-Encoding Al-
pha GAN, an innovative type of GAN that is able to successfully generate 3D brain mag-
netic resonance imaging data from random vectors by learning the data distribution. This
is done by combining a variational autoencoder GAN with a code discriminator to solve
the common mode collapse problem and reduce the image blurriness. A refiner is in-
serted in series with the generator network in order to smooth the shapes of the images
and generate more realistic samples.

Li et al. [22] presented a novel GAN type called Multi-Projection GAN (MP-GAN)
that can generate 3D shapes with only unoccluded silhouette annotations from a catego-
rized object. MP-GAN is unique in that the output generator is trained without ever having
direct access to the objects data. Instead, it is given a set of 2D projections from multi-
ple discriminators and must assess if each projection belongs to a certain object category.
Each discriminator is able to be trained independently and can therefore have samples
with differing objects or projection parameters from the other discriminators. This allows
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the output generator to be trained on different objects and projection parameters without
needing to have explicitly defined correspondences.

3D-Stack-SNGAN [23] generates high-quality 3D objects and outperforms the com-
pared state-of-the-art method. Multiple generators and discriminators are used to build a
stacked structure to make the model learn complex distribution more effectively, and use
spectral normalization on the discriminators to increase the stability of the training pro-
cess. 3D-Stack-SNGAN is combined with variational autoencoders as 3D-VAE-Stack-
SNGAN which is used for 3D object recovery tasks. The experiments demonstrated that
the system can generate and recover realistic and high-quality 3D objects.

Hermoza and Sipiran [28] presented ORGAN, a GAN focused on the reconstruction
and completion of damaged archaeological objects. ORGAN is trained by taking com-
plete objects, randomly sampling occupied voxels in the grid space to simulate fractures,
and then training the shape completion network on the samples. Citing instability during
training as a common issue for GANs as a whole, a novel loss function is also presented
that combines the stability and quality improvements of Improved Wasserstein GAN (IW-
GAN) [31] with the class label-based training of a Conditional GAN (CGAN) [32]. The
result is a model that can recreate the majority of an objects structure with minimal errors,
even with the fragments that account for less than half of the total objects volume.

Inspired by IWGAN [31], 3DMaskGAN proposed by Wan et al. [24] reconstructs
the full 3D shapes of objects from an arbitrary image. By exploiting the generalization ca-
pabilities of the generation network and masked discriminator, 3DMaskGAN can predict
decent 3D shapes with less iteratively trained models and still outperform other networks
under the same conditions. The training results show that the training process achieves
minimal loss with only 100 iterations and significantly shortens the overall training time.
3DMaskGAN only trained 100 epochs to lower the discriminator loss to 0.01, while IW-
GAN was required to train 1000 epochs.

Yang et al. [27] proposed a unified and end-to-end model that uses both images la-
beled with a camera pose and unlabeled images as supervision for a single view 3D recon-
struction, and evaluated different training strategies with limited annotations. PrGAN [33]
and DRAGAN [34] are used in training and implementation to achieve adversarial loss
and improve training stability. The experiment results showed that one can train a single-
view reconstruction model with minimal pose annotations when leveraging unlabeled
data.

The semi-supervised method proposed in Chen et al.’s work [26] can recover the
complete shape of a broken or otherwise an incomplete 3D object model, and built a hy-
brid of a 3D variational autoencoder and a GAN to recover the complete voxelized 3D
object. A separate classifier was incorporated in the GAN framework which helps stabi-
lize the training of the GAN as well as guide the shape completion process to follow the
object class labels. VAEGAN [35], CVAEGAN [36], and 3DIWGAN [18] are used in
the experiment as contrasts to their method. The experiments showed that the model pro-
duces 3D object reconstructions with high-similarity to the ground truths and outperforms
several baselines in both quantitative and qualitative evaluations.

With a focus on applying GANs to materials science problems, Jangid et al. [20] pre-
sented 3DMaterialGAN. Built off of StyleGAN by Karras et al. [30], 3DMaterialGAN
specializes in identifying and generating 3D objects of crystalline material microstruc-
tures. The formation of these microstructures are influenced by a variety of factors and
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therefore cannot be evaluated reliably by more simple means such as direct object com-
parison. The architecture begins with a mapping network that takes in a latent vector. An
intermediate latent space is outputted and passed to a five-block synthesis network before
being outputted.

4.2.4 Training strategy

Training strategy is a noteworthy element of any artificial intelligence based solution
as it can often be leveraged as a tool to squeeze maximum efficiency, precision, and
accuracy out of an application. Datasets are a critical element to any training strategy.
Table 3 shows the datasets used in the studied works. In the table, it is observed that 50%
(i.e., [5, 20, 22, 24, 27]) of the studied works used ShapeNet [37] or a variation of it and
30% (i.e., [23,26,28]) used ModelNet [38]. However, with this similarity, there is variance
in the number of object categories selected ranging from three up to ten categories. This
may highlight the fact that despite strong datasets and volume of data often being a rare
and limiting factor in GAN research, there can be high variance in how the datasets are
utilized to create unique results and environments from these datasets.

Table 3. Training datasets.
Study Datasets

IG-GAN [5] ShapeNet with categories of chairs, couches, bathtubs
3DMaterialGAN [20] ShapeNet with categories of car, chair, plane, guitar, sofa, rifle plus Titanium
Deep Convolutional Re-
fined Auto-Encoding Al-
pha GAN [21]

Alzheimer’s Disease Neuroimaging Initiative dataset (ADNI)

MP-GAN [22] ShapeNet with category of chairs
3D-VAE-Stack-
SNGAN [23]

ModelNet10

3DMaskGAN [24] ShapeNet with chair, sofa, table, car and boat categories
Chen et al. [25] Depth Images
Chen et al. [26] ModelNet10
Yang et al. [27] ShapeNetCore with categories of airplanes, cars, chairs, displays, phones,

speakers, tables, benches, vessels, and cabinets.
ORGAN [28] ModelNet10 with additional “archaeological looking” object class

Another critical element of a training strategy is supervision level. GAN networks
are often unsupervised or in some cases semi-supervised. 70% (i.e., [1,5,20,21,23,25,28])
of the studied works are unsupervised and 30% (i.e., [22, 26, 27]) are semi-supervised.
While unsupervised learning is dominant, semi-supervision is becoming prevalent. In un-
supervised learning, a large amount of unlabelled datasets are critical to training GAN
networks. The unsupervised works studied in this survey make use of ModelNet as their
training dataset for its effectiveness in pairing with unsupervised learning. ModelNet also
provides a large amount of data points to create the diversity and quantity needed for
unsupervised learning. Some works [22, 26, 27] demonstrate the use of unconventional
semi-supervised learning models to address the challenge of object completion and re-
construction. In Chen et al.’s work [26], semi supervision exists in that a third neural
network is included in the game to act as the object classifier giving the other networks
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a general classification of training data, which improves the learning rate of the network
and increasing the network’s stability. In MP-GAN [22], 2D silhouette annotations on
3D training objects are provided, allowing for a partial labeling of training data. This
application of partial labeling considerably reduced the cost of learning for the 3D shape
generator for new categories. From these works, it is observed that the application of
weak supervision provides favorable improvements in the system performance, while in-
creasing complexity.

4.2.5 Loss function

The loss function measures how close an estimated or random value is from a true
or real value. The measured difference can be referred to as a “cost” associated with what
is being tested. Three different types of methods are used for the loss function in the
studied works – discriminator networks, 2D masking, and Wasserstein loss. 40% (i.e.,
[5, 22, 23, 25]) of the studied works used discriminator networks, 10% (i.e., [24]) used
2D masking, 20% (i.e., [22,26]) used Wasserstein loss, while the remaining 30% did not
mention loss functions used.

The usage of a discriminator network The most popular method is using a discrimina-
tor network which is used by 40% (i.e., [5,22,23,25]) of the surveyed papers. Each work
employs their discriminator network differently, according to the needs of the model. For
3D-Stack-SNGAN [23], the stacked structure is taken advantage of by employing multi-
ple discriminators to evaluate the generators output at the three largest resolutions in the
stack: 32×32×32, 16×16×16, and 8×8×8. By evaluating that the generator systems
work at multiple levels in tandem, both the quality and diversity of generated objects are
increased, according to evaluations conducted against similar contemporary methods.

The work by Lunz et al. [5] also discusses the backpropagating of the gradient from
the GAN discriminator through the neural renderer to the 3D generative model, allowing
training using gradient descent. This is to match the rendering output given a 3D input
from the off-the-shelf renderer. To address the non-differentiability issues, they introduce
a proxy neural renderer for the rendering of continuous voxel representation. This al-
lows for backpropagation in the generator during training, minimizing the loss error of
rendering on discrete voxels.

Chen et al. [25] used two types of parameters for the hybrid loss function. One is
the discriminator network as mentioned previously. Another is a multi-class cross-entropy
loss which is used for the generator to predict class label at each voxel location indepen-
dently. They denote the class probability map over the classes C for the volume H×W×D
where H, W, and D are the height, width and depth of the 3D volume, respectively. This
probability is produced by the generator network. Then, the loss is minimized according
to the parameters of the generator network (i.e., multi-class cross-entropy), while maxi-
mizing it with respect to the parameters of the discriminator network.

MP-GAN [22] uses a similar approach of minimizing or optimizing the parameters
of the generator network. They take an approximation of 3D object distribution at an i-th
scale and test it on three different generators to produce three different scales. This assists
in returning to a small-to-large-scale structure to help the model learn simple to complex
distribution. They also use the discriminator to minimize the loss function. By normaliz-
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ing weight matrices, they can normalize each weight matrix of their discriminators, which
minimizes the loss function.

2D masking from different viewpoints 10% (i.e., [24]) of the methods found in the
survey was masking of a 2D output from different mask viewpoints using binary cross-
entropy. 3DMaskGAN [24] describes how the generation of 3D volume shapes and 2D
masks can be completed at the same time. As this happens, the encoder and generator
are penalized on the reconstruction error of samples. They select the reconstruction error
on masks as the generators loss to improve unsupervised conditions. The generator loss
takes into account the index of output 2D masks where different viewpoints of a target
mask sample and a generated mask sample are considered. They also use the means
and variances produced by the encoder and the discriminator and a confidence value of
whether the mask is real or synthetic to compute the loss of the encoder and generator.
As a classification of loss, they train the mask to discriminate real from generated masks
using binary cross-entropy.

Wasserstein loss with a gradient coefficient 20% (i.e., [26, 28]) of the studied works
use Wasserstein loss with a gradient as their loss function. This involves the use of a linear
activation function in the output layer of the discriminator. The Wasserstein loss function
then trains the generator and discriminator to differentiate scores for real and generated
images. They make use of ReLU for their activation function with no batch normalization
except for the last fully connected layer which outputs a single value with no activation
function. This then aids the output of the network to be part of the training data manifold.

4.2.6 Other components

This section discusses other noteworthy modules than the generator or discriminator
within the network architecture of the studied works. The most common components
are encoders, being present in 50% (i.e., [21, 23, 26–28]) of the studied works. Of this
percentage, 60% (i.e., [21, 23, 26]) of the encoders are variational autoencoders, while
the remaining 40% (i.e., [27, 28]) are standard encoders. The prevalence of encoders
is expected as they are used to transform data into a latent vector which is the input
format for standard generator models. The next most commonly appearing components
are projectors, occurring in 30% (i.e., [22, 24, 27]) of works reviewed. In all the three
works, the projector was positioned between the generator and the discriminator. This
is because the projector is used to create silhouette masks which are 2D images of the
generated object at a certain viewpoint from within a 3D space. Silhouette masks are
one of multiple data formats used to train the discriminator. 30% (i.e., [5, 22, 26]) of
the studied works include classifiers positioned between the generator and discriminator
in order to feed the discriminator additional information. IG-GAN [5] and the work by
Chen et al. [26] use a classifier to predict object class labels to be used as conditional
information by the discriminator. MP-GAN [22] uses a classifier to predict the viewpoint
of a given silhouette mask. A work-specific component is also used in 10% (i.e., [21]) of
the studied works. Segato et al. [21] used a refiner network as an additional component
to synthesize the images that have been smoothed to be closer to real data. The refiner is
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trained separately, loading the weights of previously trained components. The remaining
30% did not contain any components classifiable to this subsection.

4.3 Evaluation Methods

Different methods are used in the studied works to evaluate their test results and
overall approach performance . The methods can be categorized into Jaccard Index [21,
25–27] (40%), Inception network [5] (10%), FID score [22] (10%), fragment sizes [28]
(10%), and checking against existing models [20, 23] (20%). The remaining 10% do not
mention an evaluation method.

Jaccard Index The majority of the studied works (i.e., [21,25–27]) use Jaccard Index,
also known as Intersection-over-Union (IoU), as their evaluation method. The IoU is
measured between the ground truth voxel grid and the predicted one averaged over all the
objects. Computing the IoU requires a threshold of the probability output of the voxels
from the generator. Chen et al.’s work [25] uses the evaluation method by Liu et al. [39]
on the tested dataset for comparison and to compute an average precision. The work
of Yang et al. [27] uses previous methods suggested by Tulsiani et al. [40] to sweep
thresholds and report the maximum average IoU. The number of samples for test per
category varies among the studied works.

The work of Chen et al. [26] showcases their approach of improving an already
existing training model by implementing the Tensorflow deep learning library and Ten-
sorlayer. They have experimented with parameters of their model such as batch size,
epochs, and the beta value. They also use an Adam optimizer to further improve their
model. The evaluation is done using the Hausdorff Distance(HD) where the lower HD
value the better the result. From the observations of training their model using IOU and
HD, the model outperformed all baseline models.

Segato et al. [21] uses Jaccard Index (i.e., IoU) to evaluate the similarity of two sets
as a ratio of the number of common elements of the sets to the total number of elements
of the sets. Then, the real and generated samples are compared with IoU scores at a voxel
level where the higher IoU score the closer the distributions of the real and generated
samples. Their results are shown quantitatively, but are evaluated by comparing an image
from the training set and a generated image.

Inception Network Lunz et al. [5] use an Inception network [41] which renders a 3D
model to a 2D image and computes an Inception using an Inception network trained to
classify ShapeNet images made by their renderer. Lunz et al. [5] trained their Inception
network rendered images in ShapNet and compared them against three other models –
Visual Hull [42], Absorbtion Only [43], and 2D-DCGAN [44], each trained on a dataset
of synthesized images in ShapeNet by the renderer of the respective model using 3D
objects.

FID Score Li et al. [22] evaluate the quality of generated results quantitatively using
an FID score [45] with an existing voxel classification network trained on the ShapeNet
dataset. They measure FID scores of MP-GAN on synthetic training data for a varying
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number of projections and FID scores of VP-MP-GAN (i.e., with view prediction) on the
same data for a varying number of view clusters. The FID scores have an upper-bound
set by an MP-GAN trained with an exact viewpoint. A lower FID score indicates a higher
quality image.

Using Different Fragment Sizes Hermoza and Sipiran [28] evaluates the performance
of ORGAN on different sizes of fractures of complete objects. They look at how much
information the model can recover from fractures even in the case where more than half
of the voxels are not present. The recovery might produce some misplaced voxels. Ad-
ditional tests were run on the model when the number of missing voxels was greater than
2000. They also performed tests on real objects, which resulted in the reconstruction of
some unexpected fragments. This was due to the significantly different structure of the
real objects from the structure of training objects.

Comparing Performance Against Existing Models Jangid et al. [20] compares the
performance of 3DMaterialGAN with 10 existing models of which 6 are supervised and
the remaining 4 are unsupervised. For comparable evaluation of unsupervised learned
features, they adopted the method by Wu et al. [10] and the ModelNet dataset from Chang
et al’s work [37]. The results show that their model outperforms the existing models on
both ModelNet10 and ModelNet40 dataset even with fewer training samples than those
used in the existing models. They claim that with a comparable training dataset, the
performance if their model improves slightly more. They also used statistical distribution
comparison of 3D moment invariants to assess the quality of generated results. Zhang
et al. [23] takes a different approach by comparing inception scores against itself and a
variety of other methods such as 3D-GAN and 3D-IWGAN, among others. Evaluation
determined that Zhang’s 3D-Stack-SNGAN outperformed all methods tested against.

4.4 Limitations

A common limitation and challenge found in the studied works is the lack of ap-
plication to practical settings such as high resolution RGB images and arbitrary camera
locations [27]. Another common issue is the inability to model concavities and other fea-
tures as they often need a complete unoccluded view of the objects in images [22]. Also,
as GAN systems can archive very high performance scores, sometimes research that is ef-
fective may fail to surpass other state-of-the-art systems (e.g., [25]). Applications can also
suffer from poor FID scores [22] as there is an apparent lack of utilization of FID scores
as a metric. A potential cause of this is the limited size of datasets as FID operates off of
comparison for output with ground truth training data. In Chen et al.’s work [25], a strong
performance against a baseline was shown. However, a lack of comparable performance
with the state-of-the-art was also seen.

5. ANSWERING RESEARCH QUESTIONS

In this section, we answer the research questions posed in Section 4 with respect to
the findings presented in the previous section.
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What commonalities can be extracted from analyzing current methods of 3D object
generation using GANs? Architecturally, we found that the structure of the generator
is surprisingly consistent across the studied works, although there exist some differing
(e.g., [25]) and novel (e.g., [20]) implementations which are in the minority. We also
identified the use of encoders and specific training datasets to be fairly common. 80% of
the studied works used either ShapeNet or ModelNet (see Table 3). With respect to the
optimization of testing, the use of discriminator networks is found to be the most common
accounting for 40% of the studied works (see Section 4.2.5). There were also other proven
ways of test optimizing shown by others using a 2D mask or Wasserstein loss with a
gradient coefficient. Regarding evaluation methods, Jaccard Index (IoU), which accounts
for 40%, is found to be the most commonly used (see Section 4.3).

With these commonalities in mind, what inferences can be made about the state of
this specific application of GANs? The consistent structure of the generator used in the
studied works suggests that the structure may be optimal. This would allow researchers
to focus on improving other areas of the subject. The common use of encoders is an ex-
pected addition to a network due to the increases to ease of use and robustness afforded
by integrating data preprocessing functionality. The frequent reuse of datasets implies the
lack of build-up in quality datasets that are applicable to the problem and the immaturity
of the research in GANs [2]. For data optimization, discriminator networks are used most.
This may be due to the fact that GAN already has its own discriminator and there is less
need for more work such as masking 2D images which needs an encoder and generator.
Evaluation testing was most commonly conducted using the Jaccard Index, which is un-
surprising due to its suitability as a metric for volumetric representation types, such as
voxels. Its ability to provide an intersection ratio between the reconstructed object and
its ground truth makes the Jaccard Index an excellent choice for quantifiably evaluating
reconstruction accuracy with minimal additional information.

What limitations can be identified on a general scale? It was identified that the reso-
lution of generated 3D objects was heavily constrained (e.g., being infeasible for practi-
cal use [21]) (see Section 4.2.1). While the generated results show promise, performance
appears to be the primary limiting factor with memory requirements growing cubically
relative to output resolution [19]. Segato et al. [21] suggest future work be put towards
integrating a super-resolution network to enhance the output resolution despite the fact
that the training images were significantly down-scaled during preprocessing. Addition-
ally, the ability to have depth and breadth of training data can limit general scale as it
impedes the development of improvements to correct performance limitations in the sys-
tems such as the need for unoccluded images [22].

What recommendations can be made towards future works? Based on the findings
of this study, a multitude of recommendations can be made. First, future research should
explore avenues of possible performance improvements. The quality of generated 3D
objects at current resolutions show promise, but the increase in computational require-
ments due to higher resolutions prevent adoption into practical use. The integration of
super-resolution networks to enhance generated outputs may be worth consideration. Han
et al. [19] lends credence to this by discussing and classifying works employing various
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techniques to reconstruct 3D objects at higher resolutions, while maintaining reasonable
memory requirements. Second, future works should consider exploring possible new
methods for the development of stronger training datasets. We see improvements to the
training of GAN systems to be a potential catalyst for future growth. This growth could
improve the quantitative performance of networks, specifically in Jaccard Index and FID
score. Additionally, stronger datasets could expand on the applicability of FID scoring
to more novel GAN solutions in the future. Additionally, GANs have a unique ability to
generate training data for themselves in that indistinguishable generated data can be used
as supplement training sets. So, continuing research in automatic generation of training
data can also act as an accelerator to GAN development (e.g., [46]).

6. CONCLUSION

We have presented a systematic literature review of multiple approaches using GANs
for the purpose of volumetric 3D reconstruction using voxel representation in order to
identify and discuss the commonalities that exist between them. Identifying these com-
monalities allows us to better understand the current state of the technology when applied
this way as well as perhaps gives a hint towards what problems there are to solve and ad-
vancements to still make. In our review, we performed a deep dive study on 10 research
papers published between 2018 and 2021. Our results highlighted the extreme effec-
tiveness of pairing adversarial methods with the known power of neural networks [20].
Additionally, it showcased the strengths of particular datasets and the versatility in train-
ing they can provide when they present a strong breadth of training categories in their
sets [23].
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