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In this paper, the problem of existing cache replacement and invalidation policies are 

examined from different dimensions namely valid scope space optimization, prediction 

functions, access methods, and uncertainty. The proposed Predicted Region Enrooted 

Method for Invalidation Efficient cache Replacement (PREMIER) policy first achieves 

time-series data by preprocessing the user’s movement non-stationary trajectory data and 

then it applies Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM) 

Network to find out the pattern that appears frequently. Using predicted next probable lo-

cation, the PREMIER approach uses a revised data item cost function for cache replace-

ment and the CELP function for cache invalidation. The predicted region computation-

based location-dependent data cache invalidation and replacement approach PREMIER 

achieve significant improvement in the cache hit rate efficacy as compared to that of past 

cache invalidation-replacement policies such as CEMP-IR, SPMC-CRP+CEB, PPRRP+ 

CEB, and Manhattan+CEB for LBS.  
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1. INTRODUCTION 

Location-based service (LBS) is a noteworthy class of context-aware services [1], 

which plays a major role in spatially-confined, local, and continuous information systems. 

Because of the mobility function of objects in LBS, it has numerous challenges like limited 

resources, low-quality connectivity, frequent disconnections, insufficient bandwidth to the 

network [2, 3]. A large number of essential contributions in the field of LBS were found 

recently. However, there are still several problems remaining. Due to the small storage size 

in the mobile clients, a significant problem of LBS is the practical usage of finite band-

width with reducing the volume of data items to the server. Caching [4] is used to cope 

with such weaknesses. The software should have the caching capability for clients to im-

prove information accuracy and reduce access costs. Cache replacement functions are used 

to efficiently utilize the cache data items that are placed under system constraints. Various 

cache replacement methods [5] have been introduced in the past to fix inadequate cache 

space accessible in the mobile database system (MDS). Primitive cache replacement 

scheme such as Least Recently Used, Least Recently Used-K, and Least Commonly Used 

are inefficient for LBS because they follow only temporal locality [6] in access sequence. 

Manhattan [7], Furthest Away Replacement (FAR) [8], prioritize predicted region-based 

cache replacement scheme (PPRRP) [9], SPMC-PRRP [10], and CEMP-IR [11] are few 

well known existing spatial cache replacement methods.  
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Another critical problem in mobile device cache management [12] is the efficient re-

presentation of the valid scope of the queried data items. In [13], a 2D geometric location 

model is used to reflect mobile device coordinates (location). Data object consistency is 

maintained by a valid scope. Valid scope determines the region wherein the value of a 

given data item is valid. In an invalidation scheme for location-dependent cache, the sys-

tem handles the cache data integrity between the client application and the server. The 

mobile app queried data items value reveals the difference in it when querying the data 

object from various places, e.g., consider the “List of medical shops within 5 km” data 

item for the query. The same query can result in varying responses in various locations. 

Simple caching strategies are not holding a precise feature in mind. Therefore, they are not 

appropriate for the spatiotemporal database.  

In this article, cache hit rate enhancement of nearest neighbor query on client-side is 

accomplished by suggested caching scheme. A modified cost function is being used in the 

replacement procedure, and the best candidate discovery with the least storage requirement 

is being used in the cache invalidation policy to achieve this goal. A candidate here implies 

a reflection of a valid scope for a particular data object in the cache. The architecture of 

the system presumed no direct communication between users. If a cache miss occurs on 

the customer side then the application forwards the request to the server and the server 

provides the requested data object in response. The use of the suggested invalidation 

method leads the data item output validation from server to client. When it is not valid, 

then the message must be sent back to the server.  

1.1 Summary of Contributions  

The existing spatial cache replacement method such as Manhattan [7], FAR [8], 

PPRRP [9], SPMC-PRRP [10], CEMP-IR [11] are inefficient in case of the high rate of 

user mobility. Moreover, the existing policies for valid scope representation such as CEB, 

CEB_G [14], CEFAB, CELPB [15] are not robust for accurate valid scope representation 

for cache invalidation. The most effective approach for designing the efficient caching 

method is to integrate a next location prediction procedure with better precision and reduce 

the memory overhead so that it can be used in replacement cost function and invalidation 

scheme for an improved cache hit ratio. Therefore, a mobility prediction function should 

be integrated into caching to support the spatial property of the user and improve the cache 

hit ratio. Mobility prediction detects the identity of the future cell for the mobile user before 

the actual movement and proactively helps resources reservation, and it has attracted sev-

eral research interests [16, 17]. The current mobility prediction researches [18, 19] are 

unsatisfactory due to the lack of combined investigation of temporal and spatial data at-

tributes. Further, they do not deal with non-stationary data. Therefore, it is also required to 

resolve the presence of non-stationary data in preprocessing. The deep learning procedures 

have shown functions of feature extraction, suppress noise, process enormous data vol-

umes, and even recognize the pattern of the sequence once the system is properly trained. 

Therefore, we proposed an improved invalidation replacement procedure with an exten-

sion in most prevalent deep learning algorithms. The significant contributions of the pro-

posed PREMIER policy are illustrated in the following points. 

1. Application of spatial version of the autoregressive integrated moving average (ARI-

MA) to achieve time-series data by preprocessing the user’s movement non-stationary 
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trajectory data and then it applies CNN-LSTM to find out the pattern that appears fre-

quently on input data combined with LSTMs to support sequence prediction. Based on 

these frequent patterns, prediction of the next probable location has been done. 

2. Application of revised cost function for data items to improve the cache hit ratio of 

replacement procedure by the integration of aforementioned next location prediction 

algorithm. In this revised cost function, the distance between the reference point of 

valid scope and the client’s estimated next locations is used. 

3. Use a revised function (i.e. CELP) using predicted future traversing edges for cache 

invalidation. The function facilitates optimal sub-polygon selection for lower memory 

overhead and better precision in the representation of data item valid scope. 

4. Analyzes efficiency and memory overhead of the proposed replacement and invalid-

dation policy compared to the previously used schemes. 

The structure of the paper is as follows. Section 2 details the literature review of var-

ious existing caching and employed data mining techniques for the mobile environment. 

Section 3 describes the proposed methods. Subsequently, Section 4 shows the simulation 

setup and analysis. At last, Section 5 concludes the paper and lists scopes for future work 

in LBS. 

2. LITERATURE REVIEW 

In LBS, serving a query within a specified timeline is possible with the help of cach-

ing the data at the client and/or server; therefore, caching results in performance enhance-

ment of LBS. It helps in decreasing network traffic, reduction in access latency, improve-

ment in the speed of data look-ups, and reduction in the server load. The mobile client’s 

value of queried data objects in a location-dependent information system reflects the dif-

ference in it while querying the data object from various places. The method for checking 

the authenticity of the received data object from the LBS server is known as the location-

dependent data item cache invalidation scheme. The invalidation strategies in location-

dependent data may be categorized into two types based on the used environment model, 

i.e., semantic positioning model-based invalidation and geometric positioning-based inval-

idation scheme. Some of the semantic positioning models based on the identification (ID) 

number of the wireless cell are Implied scope invalidation (ISI), Bit Vector Compression 

(BVC), and Grouped Bit Vector Compression (GBVC). In BVC, data objects are attached 

with the bit vector to represent complete validity information. Although, a validation pro-

cess is very simple and needs lesser processing time, the downside of this approach is that 

significant cache storage and bandwidth are required due to higher validity details size 

particularly where there is a significant cell count within the system. GBVC tries reducing 

the valid scope size by considering only a few neighbor cells and avoiding others. The ISI 

approach goes the other way by an attempt for reducing the size of information concerning 

validity with a trade-off between processing time of validation. In this method, sequential 

number enumeration and scope distribution are achieved by the server for all objects. In 

the second category, Zheng et al. [13] described various geometric positioning-based in-

validation schemes. Caching Efficiency based Invalidation (CEB), Generalized Caching 

Efficiency Based (CEB_G), Caching Efficiency with Future Access Based (CEFAB), Ap-

proximate Circle (AC) schemes, and Polygonal Endpoints (PE) are some of the previous 
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valid scope representation policies. Approximate circle and Polygonal endpoints strategies 

illustrate a trade-off between overhead and inaccuracy. CEB finds a greedy mode for each 

sub-polygon vi alone to deal with this trade-off between these two policies in a sequenced 

manner to identify the subsequent valid scope candidate polygon vi+1 that covers the max-

imum area of the original polygon. A. Kumar et al. [14] proposed Generalized Caching 

Efficiency Based (CEB_G) policy which demonstrates improved caching performance rel-

ative to previous CEB policy by changing the precision of the valid scope and overhead 

metrics. Approximation Based Caching Efficiency Based (CEFAB) further increases the 

caching performance relative to CEB_G by combining the activity habits of the consumer 

and speculating about their future access.  

The cache replacement procedure [13] is required when space is not available to store 

new data objects. For reserving adequate storage space for arrived data objects on request, 

the system has a cache replacement module. The access pattern of previous cache replace-

ment schemes (e.g. Most Recently Used, Least Recently Used-K, Least Recently Used, 

and Least Frequently used) shows the temporal locality only [6], which is undesirable for 

LBS. Manhattan Replacement strategy is the first spatial replacement strategy, which is 

based on a measurement of the distance from Manhattan, i.e., the difference between trav-

eling user current location and stored data items root location for eviction. The drawback 

of the Manhattan strategy is that it involves complicated cost estimation. Another cache 

replacement policy termed FAR [8] also exists that evicts particular data objects where the 

client travels away from their valid scope area of operation. This strategy allows for a 

sequence of evictions based on their distance from the user. However, Manhattan and FAR 

methods have a drawback in that they do not consider the temporal locality of moving 

clients. Further, in FAR policy, frequent direction changes result in poor performance. 

Probability Area (PA) [13] evicts data items having the smallest valid scope area and small 

access probability. PA supports only temporal property and client objects closed to valid 

scope are often replaced as it has a smaller valid scope area. PAID [13] is an extension of 

PA [13] which supports temporal as well as spatial features. However, the drawback of 

this policy is that it does not consider the update history of data objects in cache replace-

ment; moreover, the client’s current movement direction is not taken into account in the 

cache replacement procedure. Another replacement policy, which supports temporal and 

spatial properties and also updates frequency was given by the MARS [20] policy. It con-

siders data object updates while applying replacement steps. MARS used access probabil-

ity, user’s current location & direction of movement, query rate, and update rate in cache 

replacement. The drawback of this policy is that the movement patterns of users are not 

real-time. To deal with this issue, the predicted region is used in PPRRP proposed by Ku-

mar et al. [9]. The policy involves estimating the client’s best suitable near future predicted 

region. The cache hit ratio improved due to considering both the spatial and temporal fac-

tors in cache replacement. However, this approach necessitates the computation of a new 

moving interval, on each update of direction or velocity.  

The mobility prediction would help in the gain of the cache hit ratio as it can be used 

in data item cost estimation through distance computation between data item reference 

point and user predicted subsequent position. Data mining had been a viable technique for 

predicting mobility based on the history of mobility. In the literature review [3], there has 

been a large range of techniques used in database sequence pattern mining. But all of the 

above have major shortcomings of failure in large amounts of data associated with it. 
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Similarly, the case of noisy and unnecessary data often influences the mining operation. 

Due to unpredictable pattern behavior in areas, such as banking, e-commerce, etc., there is 

a need for a robust approach that can support processing and feature extraction of enor-

mous quantities of data. The past algorithms did not deal with non-stationary data. There-

fore, it is also required to resolve the presence of non-stationary data in preprocessing. The 

deep learning procedures have shown functions of feature extraction, suppressing noise, 

processing enormous data volumes, and even recognizing the pattern of the sequence once 

the system is properly trained. 

3.  PREMIER: PREDICTED REGION ENROOTED METHOD FOR  

INVALIDATION EFFICIENT CACHE REPLACEMENT POLICY 

The PREMIER policy consists of a revised cost function to be used in replacement 

function and selection of best candidate strategy with the lowest storage requirement for 

LBS cache data invalidation. In the proposed approach, a spatial version of Autoregressive 

Integrated moving average (ARIMA) is used to get time-series data from preprocessing 

the user’s movement non-stationary trajectory data and then to uses this and support se-

quence prediction it applies CNN-LSTM to find out the pattern that appears frequently on 

input data combined with LSTMs. Based on these frequent patterns, prediction of the next 

probable location has been done. The paper discusses the cache replacement and invalida-

tion strategy through the predicted region concept [9]. Root-means square distance be-

tween moving client current location (Cm) and cached data items valid scope (Ci) is used 

to estimate radius length (Lr) in predicted region-based replacement strategy. Query in-

terval specifies query issue time while prediction interval (or movement interval) specifies 

a time to estimate predicted region.  

3.1 Mobility Model for Next Location Estimation  

Deep Neural Networks (DNNs) are strong models that have demonstrated excep-

tional success in complex tasks in learning. While DNNs function well, they could not be 

used to map sequences to sequences whenever broad labeled training sets are available. 

The enhanced CNN-LSTM hybrid model for regular sequence pattern mining with time 

intervals between each sequence pattern is proposed in this article. The CNN-LSTM hy-

brid caching scheme includes fully connected layers, convolutional layers, LSTM layers, 

and max-pooling layer as depicted by Fig. 1. In Algorithm 1, the steps necessary for the 

CNN-LSTM model are given. The learning process is constructed by a network that learns 

movement patterns from trajectory data of the time series. As a learning function, a simi-

larity measure is used. From learning steps, CNN learns to know the movement pattern, 

and LSTM uses frequent data to learn the interval of time between each frequent sequence 

pattern.  

 
Fig. 1. A basic flow diagram for sequential pattern mining based on CNN-LSTM.  
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Algorithm 1: CNN-LSTM hybrid model for frequent sequence pattern mining 

Input: Check-ins dataset having attributes (standard time, timezone offset, longitude, latitude, 

check-in category name, check-in category id, check-in id, and user id), data item scope distribu-

tion 

Output: Frequent pattern, and time interval list for sequence patterns. 

Begin 

1. Acquired time-series data from progressive non-stationary database using ARIMA. 

2. Use CNN-based mining of pattern: In convolutionary layer 1, by organizing the entity set in the 

support priority sequences, create the candidate frequent 1 sequence. 

3. In convolutional layer 1, the item having support larger than the supp_min threshold is chosen 

for the frequent 1 pattern in max-pooling layer 1. 

4. Construct the frequent 2 candidate sequence in convolutionary layer 2 by generating two sq-

uences (S1, S2) and (S2, S1).S1 from S2 frequent sequences. 

5. Determine the support value for each object set again in the layer of max-pooling, and use LSTM 

to pick the time interval for frequent 2 sequences. 

6. Use frequent two sequences achieved in the previous step to find the equivalent frequent time 

interval. 

7. To generate one output, use the time step and frequency step from the previous output. 

End 

 

3.1.1 Time-series data from non-stationary data 

In the proposed technique, the input progressive data is preprocessed to eliminate the 

unnecessary noise before the implementation of CNN-LSTM for regular sequence pattern 

mining. To achieve time-series data from non-stationary data, an expanded spatial version 

of the Autoregressive Integrated Moving Average (ARIMA) is then used to obtain a fixed 

interval time series trajectory data. Three models are used in the ARIMA method: an au-

toregressive (AR) model, a moving average (MA) model, and an integrated (I) model. The 

process of moving average with order q is a linear combination of q historical noises and 

current noise; the Autoregressive process with order p is a regression in itself, meaning 

that current value xt is a linear combination of historical p observations, with a white noise 

t. ARMA combines them to achieve p autoregressive and q moving average components. 

Using the differentiation operation of the integrated model (I), the ARMA combination 

can be further applied to achieve the ARIMA model.  

3.1.2 Frequent sequence pattern mining using CNN layer 

The essential parameters in CNN layers construction are sliding window size, sliding 

steps, pooling size, filters for each convolutional layer, and the count of pooling and con-

volutional layers. First, the convolutionary layer integrates several local filtering with the 

sequential input to handle the sequences, arranges the item sets into the prefix from suffix 

order, and finds support with each item set relative to the initial sequential pattern. Every 

feature is mapped by sliding the local filter over an entire sequential pattern. The max-

pooling layer has been evolved to retrieve the fixed-length attributes and the most im-

portant item sets from frequent sequences. To locate the sequence pattern, the conventional 

operation removes the local recurrent pattern by its time dimensionality. The filter se-

quences FS = W1, W2, …, Wt and sequential input data T = S1, S2, …, SN are the time series, 

where Wi, N, T, and t denotes the filter vector, duration of the sequential input, sequential 

data ordered based on time, and the number of filters used in the convolution layer res-
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pectively. The multiplication operation performed in a convolutionary procedure is then 

follows the below-mentioned equation. 

Sj to j+n-1 = Sj⊕Sj+1⊕Sj+2⊕, …, ⊕Sj+n-1 (1) 

where Sj to j+n-1 measures the time step of n starts window starting from the step of jth time. 

The bias term (B) formula is expressed by, 

Cj = F(Wi
TSj to j+n-1 + B) (2) 

where ith filter is represented by i index, jth time step represented by j index, the nonlinear 

activation function is represented by F, and transpose response for filter matrix is repre- 

sented by Wi
T. The convolutionary process carried out for the entire sequential pattern de-

pends on the filter window sliding from the beginning to the endpoint. Because of that, 

according to the filter, the function maps are defined by the following equation. 

Mj = C1, C2, …, Cl-n+1  (3) 

The max-pooling function will effectively compact the length of the map of functionality, 

so the number of design variables is decreased. The compact function vector Cj-compress can 

be obtained by evolving max-pooling in the system. Moreover, for the feature map, the 

max-pooling procedure applies the maximize function from the sequential P-value. 

- 1 2, ,..., 1l n
P

j compressC H H H −
 = +
 

 (4) 

In the above equation pooling size is represented by P, and Cj = max(C(i-1)p, C(i-2)p+1, …, 

Cip-1). The convolutional layer input series size from these two layers is N × L × 1, where, 

the length of each subsequence is represented by L, and the data sample is represented by 

N. Then, the max-pooling layer’s equivalent output is N × ((L − n)/P + 1). The length of 

input sequences has been proven to be compressed from L to L to ((L − n)/P + 1). As a 

result, CNN pattern mining offers a frequent sequential pattern on CNN. The dropout, 

Flatten and Repeat Vector levels are added in the CNN-LSTM structure (Fig. 2) before 

supplying the dataset to LSTM. To avoid the model from becoming overfit, the Dropout 

layer is being introduced to the network. The random subsampling of a layer’s outputs 

under dropout has the potential to reduce the network’s capacity or weaken it during train-

ing. The flattening level after the dropout level carries a single long vector from distilled  

 

 
Fig. 2. CNN-LSTM structure. 
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feature maps, which may be used as input to the decoding algorithm. In the Repeat Vector 

level, the input sequence with internal representation is repeated several times, one for 

each time step in the output sequence. 

 

3.1.3 Long short-term memory (LSTM) network dependent frequent time interval 

computation  

 

The CNN LSTM architecture [74, 79] was created to solve sequence prediction issues 

for trajectories spatial data. One of the key benefits of LSTMs is the memory expansion 

that enables this system to retain its inputs over a prolonged period. Further, LSTMs de-

crease the number of training samples needed to create the models relative to this architec-

ture. As a function of its inputs, the memory cell maintains its importance for a while and 

includes 3 gates that facilitate information flow out and into of cell: the output gate regu-

lates if the data stored in the cell is included in the output; When the stored information is 

forgotten, the forgot gate enables the cell to store new data; the input gate determines when 

new knowledge will flow into memory. Each gate is regulated by weights in the memory 

cell as well. Based on the resulting network performance error, the training algorithm op-

timizes certain weights. The stage of subspace decomposition for LSTM is executed by 

the LSTM’s gate standard architecture. Detailed mathematical expressions of the proposed 

LSTM architecture are given below. The formulas for 4 Gates are given by the following 

equations depending on the time phase T for a given frequency step K. 

 

C
s
t-1 = tanh(WdCt-1 + bd)    (5)   C̃

s
t-1 = C

s
t-1  g(t)         (6) 

C
T
t-1 = Ct-1 − C

s
t-1       (7)   C*

t-1 = C
T
t-1 + C̃

s
t-1         (8) 

ft = (bf + Ufht-1 + Wfxt)    (9)   it = (bi + Uiht-1 + Wixt)      (10) 

ot = (bo + Uoht-1 + Woxt)    (11)    C = tanh(bc + Ucht-1 + Wcxt)    (12) 

Ct = ft  C*
t-1 + it C      (13)   ht = ot  tanh(Ct)        (14) 

 

where the functions for Current hidden state, Current memory, Candidate memory, Output 

gate, Input gate, Forget gate, Adjusted previous memory, Long-term memory, Reduced 

short-term memory, and Short-term memory are represented by ht, Ct ,C, ot, it, ft, C*
t-1, C

T
t-1, 

C̃
s
t-1, C

s
t-1 respectively. The elapsed time between xt-1 and xtxt is represented by ∆t, subspace 

decomposition network parameters for current input are represented as {Wd, bd}, the net-

work parameters for candidate memory, forget, input, and output gates are represented by 

{Wc, Uc, bc}, {Wo, Uo, bo}, {Wi, Ui, bi}, (Wf, Uf, bf) respectively. The current and previous 

hidden states are represented by ht and ht-1 respectively. The previous and current cell 

memories are represented as Ct-1 and Ct respectively. Finally, one output OT is provided by 

the LSTM. Finally, we can find the order of the time sequence itemsets and sequence pat-

tern’s time interval list. After frequent sequence pattern mining through CNN-LSTM hy-

brid model, the distance between reference point Li = (Lxi, Lyi) for ith data item valid scope 

and user predicted subsequent position Lam = (Lxam, Lyam) for subsequent query data item 

(di) are computed for cache replacement purpose.  

2 2( ( )) | | ( ) ( )i am i am i am iD vs d L L Ly Ly Lx Lx= − = − + −     (15) 
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3.2 Next Location Integrated Metric Based Invalidation, and Replacement  

 

The CNN-LSTM hybrid model-based caching policies, namely CNN-LSTM Invali-

dation and Replacement consists of two underlying revised methods, namely invalidation 

and replacement method. Distance between the valid scope to the actual position of the 

client, size of the data item, valid scope, and probability of access are the various input 

variables in the cost computation of data item for cache replacement. 

( ( ))1
( ( ))

( ( ))1
min( , ( ( )))

 if ( ( ) _

 if ( ( ) _
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i

i

i i i
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vs d pred Reg
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 (16) 

Pi stands for access possibility and has zero as its initial value. A(vs(di)) is the area of 

valid scope region (vi,j). The valid scope reference point to predicted region center distance 

is expressed by D(vs(di)).  

2 2( ( )) | | ( ) ( )i p i p i p iD vs d L L Ly Ly Lx Lx = − = − + −     (17) 

Li = (Lxi, Lyi), Lm = (Lxm, Lym), and Vm are the valid scope reference point, current lo-

cation and velocity at the time of the query issue of client m, respectively. For ith data item, 

the mean query and update rate are represented by i and i respectively. The new cost 

equation is being proposed in this policy that improves temporal locality features through 

query rate to update rate fraction.  

The cache data invalidation strategy includes a new CELP dependent measure for 

accurate scope estimates in prediction intervals. For precision with space overhead im-

provement of valid scope representation scheme, the potential traversing edges aid in the 

best collection of sub-polygons. The rules of mobility here help to predict a specific next 

location. Ultimately, a possible movement direction (edges) may be deduced from the ex-

pected next spot, when the client with the same pattern reaches any previously accessed 

data items’ valid scope area. Let TQ be the timestamp of the issuance of a query in a par-

ticular prediction interval, and EQI be the timestamp of the last query interval in a given 

prediction interval. Then future total inscribed moving path (FTIMP) for the interval [TQ, 

EQI], is the sum of all the paths for a given valid scope v. The optimal sub-polygon pick 

for greater accuracy and reduced memory overhead in the representation of valid scope in 

cache invalidation policy is aided by these projected future traversal edges. Best polygon 

selection for valid scope representation is made by selecting a sub-polygon, covering most 

of the FTIMP, i.e., sub-polygon having the highest future access (FA) value. Future access 

(FA) appropriate for scope vi in [TQ, EMI] is estimated as below. 

,

,

,

( )

( )
( ) Q QI

Q QI

T E i

T E

Q QIT E i

FTIMP v

FTIMP v
FA v


 =  (18) 

Algorithm 2 describes CELP metric-based invalidation procedure using the predicted 

client’s next location. The CELP based invalidation policy consists of Future Access (FA) 

and Caching Efficiency (CE). In this algorithm, the FA used sequential pattern mining and 

clustering for the user’s next location prediction. CE deals with the trade-off between 
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memory overhead and scope precision. The integrated metric CELP for vi (valid scope) in 

the duration [TQ, EQI] is given below. 

, ,( ) ( ) ( )
Q QI Q QIT E i i T E iCELP v E v FA v  =   (19) 

Concerning the scope vi, the caching efficiency E(vi) the below equation estimates the valid 

scope vi parameter i.e. Future Access (FA) in [TQ, EMI]. 

,

,

,

( )( )

( ) ( ( )) ( )
( ) Q QI

Q QI

T E i
i

i T E

Q QIT E i

FTIMP vA v D

A v D O v FTIMP v
CELP v

 

 +
 =   (20) 

Algorithm 2: CELP based Invalidation Method  

Input: valid scope in the form of v = pol(e1, …, en), EQI and TQ;  
Output: v: Optimal Valid scope endpoints; 
Start 

v1 = Inside circle with maximum radius (pol(e1, …, en)); 
    v  = v1; 

CELPmax = E(v1);  
v2 = pol(e1, …, en);  
i = 1;  
Do Until 1 > n – i do //Three end-points is necessary for polygon representation  
i := i + 1; 
If CELPTQ,EQI(v1) > CELPmax then  

    v  = v1;  
CELPmax = CELPTQ,EQI(v1); 

End_if   
If 1 < n − i  

v1+1 = Subpolygon with (2 − i + (n − 1)) endpoints of v covers the major part of 
(FTIMPTQ,EQI(v1)); 

End_if 
End_Do  
Return v; 

End 

4. PERFORMANCE EVALUATION 

The test was performed on a computer with an Octa-core 3.2 GHz CPU, 64 GB of 

RAM, a Windows 8 operating system, and an Intel i7 processor with constructs imple-

mented in Java. To research the issues of customized location suggestion and scan, we 

have crawled a portion of digital footprints from Foursquare check-ins in New York for 10 

months. The two modules that are used to simulate the proposed model are the interval 

process and the query process. The Zipf distribution is used to model data item access non-

uniform distribution. The data objects are sorted in order of frequency of access, the least 

probable accessed data item is termed by (DBSize – 1)th and the most probable accessed is 

termed by 0th data item. For ith data item access probability, the below Zipf probability 

equation is employed. 

1

1

1
( )

( )
Prob U

j

Zaccess

Zaccess

i

j

Zipf i

=

=


 (21) 
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The term U and Zaccess indicate the total number of data objects and the Zipf ratio, 

respectively. When Zaccess = 0, every data object is accessed using a uniformly distrib-

uted access pattern with the same probability. The growing value of Zaccess has revealed 

skewness in the access pattern. The default values for different simulation variables are 

given in Table 1. We use the first eight-month check-in (April 12, 2012, to December 12, 

2012) with a discussion of preparation and studies in experiments as a training dataset to 

build human temporal and spatial models. After this, 9th-month check-ins (December 13, 

2012, to January 12, 2013) is being used as a validation dataset for the location-dependent 

fusion framework to measure the success rate of individual models. Finally, we use check-

ins for the 10th month (January 13, 2013, to February 12, 2013) as a test data set for ex-

periments. The mobility prediction accuracy is also calculated using recall being a total 

count of correct locations to the total count of requests issued ratio. The average for cache 

hit / cache miss is computed for all the users. The data item size of Si ranges from Smax to 

Smin. INCRT is skewed access patterns with incremental size distribution is considered by 

the implementation to benefit the users mostly querying tiny data items. To compute the 

ith data object size, the following formula is applied. 

max min
min

(1 ) ( 1)
    For 1,  ...,  i Size

size

S S i

DB
S S i DB

+ −  −
= + =  (22) 

The mathematical representation for the equation of cache size can be given by the equa-

tion below. 

max min

2
 Size Size

S S
Cache DB Cache Ratio

−
=    (23) 

Table 1. Simulation parameter. 

Parameter 
Represented 

by 

Initial 

Value 
Parameter Represented by 

Initial 

Value 

Outlier O Variable 
Minimum support 

threshold 
supmin 30% 

Minimum confi-

dence threshold 
confmin 50% Data item Count Num_Scope 220 

Query range radius R 0.5 km 

The average time 

interval for next 

query 

Query_Interval 60 min 

Biasing constant 

for access 

probability 

Α 0.70 
Number of POI 

(point of interest) 
POI_Num. 220 

Distance threshold 

for trajectory pre-

processing 

Dr 20 mtr 
Zipf access distri-

bution parameter 
Zaccess 0.1–1.0 

Trajectories dataset 

count (number of 

users) 

N 1083 Cells count M 
1000-

10,000 

Data item mini-

mum size 
Smin 64 bytes 

Data item Maxi-

mum size 
Smax 

1024 

bytes 

Size of cache vs. 

database 

Ra-

tio_C_Size 
20% 

Predicted Region 

Computation 

Time interval 

Prediction  

Interval 

180 

Minutes 

Service area size Rect_Size 
48650m* 

25400m 
Count of states n. 10 
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SPMC-CRP+CEB and CEMP-IR based policy suffer from memory overhead prob-

lems as it involves the production of a huge number of candidate sets and repetitive pattern 

matching assessment of the candidates. For low memory overhead, the past movement 

pattern-based caching policies have a low success rate when it is validated against the test 

data set. Deep Neural Networks are strong models that have demonstrated exceptional suc-

cess in complex tasks in learning. The model achieves a higher success rate on complex 

trajectory patterns of different user preferences with the use of an expanded spatial version 

of the ARIMA-based LSTM layers to learn frequent data time series. We have compared 

various policies on the cache hit rate parameter. Fig. 3 (a) compares cache hit ratio perfor-

mance for the proposed PREMIER policy from existing cache replacement strategies with 

varying Query Intervals (QI) based on a fixed value of 180 minutes for the Moving Interval. 

The variable impact of the Prediction Interval on replacement methods is compared in Fig. 

3 (b). If the client changes its velocity and direction fast in PPRRP, it is analogous to a 

small moving interval. In PPRRP, it is indeed reasonable to conclude that client movement 

unpredictability is higher in small Movement Intervals (MIs) than in larger MIs. The pre-

dicted region-based replacement cost function concept in PPRRP facilitates storing the 

cached data objects within the client’s movement influence, thus minimizing the impact of 

client movement randomness. The replacement cost function of Manhattan did not deal 

with the client’s movement influence on cached data items, and therefore they show a 

lesser cache hit rate than CEMP-IR+CEB, SPMC-CRP+CEB, and PPRRP+CEB. Caching 

efficiency tends to decline as the moving interval becomes larger. For comparatively lon-

ger moving intervals, a large gap of distance was found between subsequent queries. And 

in this case, the client has a high likelihood of quitting those areas. As a consequence, the 

cached data are far less probable to be reused for future requests, resulting in reduced effi-

ciency. PREMIER, SPMC-CRP+CEB, and CEMP-IR employ Prediction Interval rather 

which is based on data item valid scope characteristics and are independent of direction or 

speed. The PREMIER, SPMC-CRP+CEB, and CEMP-IR are superior over PPRRP+CEB 

because it improves the client’s movement influence on cached data items through move-

ment prediction and further modified the cost function by improving temporal locality fea-

ture through ratio of query rate to update rate.  

 

O= 30%, Sup_Min=30%, Conf_Min=50%, 
         Moving Interval = 180 min

Query Interval (Minutes)

0 20 40 60 80 100 120 140

C
ac

he
 H

it 
R

at
e

0.2

0.3

0.4

0.5

PREMIER

CEMP-IR

SPMC-CRP+CEB

PPRRP+CEB

Manhattan+CEB

O= 30%, Sup_Min=30%, Conf_Min=50%, 
              Query Interval = 60 min

Moving Interval (Minutes)

0 100 200 300 400

C
ac

he
 H

it 
R

at
e

0.2

0.3

0.4

0.5

PREMIER

CEMP-IR

SPMC-CRP+CEB

PPRRP+CEB

Manhattan+CEB

 
(a)                                    (b) 

Fig. 3. Effects of query interval and moving interval on cache hit. 
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The motion trajectories are being used to predict where mobile users will be next. if 

the trajectories have a greater outlier ratio then It degrades the prediction function precision 

for the subsequent likely location. As a result of low precision, it results in a reduction of 

the cache hit rate for the CEMP-IR, SPMC-CRP+CEB, and PREMIER. Fig. 4 (a) depicts, 

the efficiency of PPRRP [9] surpassed that of the PREMIER, CEMP-IR, and SPMC-

CRP+CEB at a certain increase of outliers percentage in trajectory in trajectory. The next 

position estimation procedure is not available in the Manhattan policy, and therefore, out-

liers do not affect the cache hit rate in this policy. A higher speed of the client results in a 

higher distance gap for two consecutive queries, which implies, the client has a higher 

likelihood of quitting those areas. As a consequence, the cached data are far less probable 

to be reused for future requests, resulting in a reduction in the cache hit rate. Fig. 4 (b) 

shows the mobile user speed effect on cache hit rate for various policies  
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(a)                                    (b) 

Fig. 4. Impact of outlier and speed of user on cache hit rate. 

 

There are data sequences in the database given as an input to the SPMC-CRP+CEB 

based method. Each data sequence is interpreted as an ordered list of transactions. Se-

quence ordering as transaction information relies on the association of time-stamps. The 

SPMC-CRP+CEB algorithm aims to classify acceptable sequential patterns that meet the 

minimum support threshold identified by the consumer. As required by the user, the min-

imum support threshold determines the percentage of sequences in the database having a 

similar pattern. SPMC-CRP+CEB struggles to identify small patterns at a high minimum 

support threshold value and thereby results in erroneous class label predictions. Also in the 

case of PREMIER policy, data item having support larger than the supp_min threshold is 

chosen for frequent 1 sequences in the max-pooling layer. Fig. 5 (a) shows that with an in-

crease in the minimum support threshold, the processing gets faster. But, it neglects the 

lower order patterns and compromises the precision of mobility prediction. Due to this, the 

cache hit ratio of the SPMC-CRP+CEB and PREMIER reduces. However, CEMP-IR, 

PPRRP+CEB, Manhattan+CEB policies are invariant to minimum support threshold supp 

_min as they do not involve in the mining of mobile patterns for mobility prediction. For 

the mobility rules filter, the SPMC-CRP+CEB algorithm uses a threshold (confmin) of con-

fidence level. The volume of established mobility rules grows with the reduction in thres-
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hold (confmin) of confidence level as shown in Fig. 5 (b). The cache hit rate for PREMIER, 

CEMP-IR, PPRRP+CEB, and Manhattan+CEB is invariant to the minimum confidence 

threshold as they do not apply mobility rules in mobility prediction.  
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(a)                                    (b) 

Fig. 5. Minimum support thresholds and minimum confidence threshold effect.  

 

The memory overhead of the system is substantially improved due to a reduction in 

the size of candidate sets. The comparison of incurred memory overhead in PREMIER 

policy with that of previous replacement schemes is shown in Fig. 6 (a). With increasing 

valid scope distributions and query rate in a given service area rectangle, the system incurs 

more cache miss which ultimately results in more network traffic or memory overhead (in 

KB) for valid scope information. The effects of the Zipf access parameter Zaccess on the 

cache hit rate are shown in Fig. 6 (b). When the value of Zaccess is zero, then every data item 

follows a uniformly distributed access pattern with the same probability. On the high value 

of Zaccess, access patterns for data items are more skewed on one side. The data items from 

the skewed area have more likelihood to be queried in near future. Caching these data items 

improves the cache hit rate of a given policy. 
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(a) Memory overhead.                      (b) Zipf parameter variation. 

Fig. 6. Memory overhead and variation in Zipf parameter. 
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5. CONCLUSIONS 

In this paper, an effective approach is being proposed for better precision of the next 

location prediction function and to design the efficient caching (replacement and invalida-

tion) policy for reducing the memory overhead with a better cache hit ratio. We have also 

discussed some of the most important research issues that researchers should think about 

while developing answers to major research concerns. According to a recent estimate [21], 

the need for content retrieval would continue to expand at a greater rate. Internet consumers 

are more concerned with information access (e.g., Uber, news, video, social feeds, etc.) 

than with the precise location or host with which they connect [22]. The information-cen-

tric user access is not intrinsically supported by the location-based Network infrastructure. 

The Information-Centric Network (ICN) is a receiver-driven networking paradigm in 

which end-users express a need for a specific identified item, such as content. When pro-

vided the content name, a named item such as content might be cached in various places, 

and the network can offer the material from the ‘best.’' location. Instead of being a simple 

interconnection of nodes, the network becomes a network of caches. In ICN, caching is the 

most adaptable way to improve data dissemination [23]. In future, the database researchers 

must consider offering scalable, generic, and comprehensive caching alternatives for Spa-

tio-temporal data objects that can be compatible with conventional DBMSs. In a summary, 

the future policy objective should respond to the following questions. 

 

(a) How difficult is it to come up with a technique to give a forecast feature that is accurate 

for both short- and long-term forecasting? 

(b) How is it to manage imprecise data regarding positions, paths & speeds of objects and 

to map the movement of mobile objects in such a way that only valid updates are rec-

orded [24]? 

(c) How is it to preserve the anonymity of the user position while serving their query re-

quest [25]?  

(d) How is it to provide a tool for users to verify the completeness and correctness of the 

responses obtained in the event when data processing is outsourced? 
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