JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 34, 401-417 (2018)
DOI: 10.6688/JISE.201803_34(2).0006

Phrase Search for Encrypted Cloud Storage”

YEN-CHUNG CHEN'"?, YU-SUNG WU' AND WEN-GUEY TZENG'

'Department of Computer Science

National Chiao Tung University
Hsinchu, 300 Taiwan

Information and Communication Security Laboratory

Chunghwa Telecom Laboratories

Taoyuan, 326 Taiwan
E-mail: {yenchung; ysw; wgtzeng}@cs.nctu.edu.tw

With the growth in the popularity of cloud storage service (CSS), the accumulation
of private data on the cloud requires the use of data encryption to prevent leakage of sen-
sitive information to untrusted third parties. However, as the amount of data kept on the
cloud storage is increasing, the use of data encryption makes it difficult or even impossi-
ble to locate the data of interest efficiently and securely.

In this paper, we present a framework for CSS to support queries in encrypted form
so that the data on cloud storage can be located efficiently and securely. At the core of
the framework is a novel indexing structure, called the bloom filter encrypted search tree
(BFEST). The BFEST supports queries in the form of phrase keywords. Client-side en-
cryption, using secret keys that are unknown to the cloud service provider, protects the
queries and the retrieved data.

We implemented a prototype by extending the hicloud S3 [13] CSS with the pro-
posed framework. The experimental results indicate that the framework can ensure query
privacy for encrypted data with an acceptable performance overhead in a practical set-
ting.

Keywords: cloud storage, privacy, encrypted search, phrase search, bloom filter

1.INTRODUCTION

Cloud computing has not only led the evolution of system architecture but it has al-
so brought benefits and changed the way people interact with applications. However, the
resulting security issues should also be considered. Consolidation in cloud computing
implies the sharing of underlying resources. If the security isolation mechanism fails be-
cause of accidents or malicious attacks, no physical boundary at the infrastructure level
can deter the attack propagation. In addition, the cloud service provider may not be fully
trusted either. This is a great concern for users who would like to store sensitive data.

Data encryption is a practical way to protect data residing on a cloud. The secret
keys used to encrypt each user’s data can be stored locally by individual users [1] or re-
motely by a storage service provider [1, 10]. Assuming that the client-side does not con-
tain backdoor programs or malware, keeping the encryption key locally can protect the
data from security attacks on the cloud. However, as the amount of data stored on the
cloud increases, we will need a search mechanism to ensure that the data of interest can
be located and retrieved efficiently. Most existing cloud storage services (CSSs) [1, 12,

Received August 2, 2016; revised October 6 & November 12, 2016; accepted January 6, 2017.

Communicated by Xiaohong Jiang.

" This research supported in part by MOST project 104-2221-E-009-112-MY3 and 104-2221-E-009-104-MY3,
Taiwan.

401

402 YEN-CHUNG CHEN, YU-SUNG WU AND WEN-GUEY TZENG

13] do not implement a search mechanism on the server-side. Instead, the search mecha-
nism and the underlying index have to be maintained by the client-side. One reason why
the server-side search mechanism is not commonly used is because users may want to
encrypt the data on the cloud, which includes encrypting the index of the data. A server-
side search mechanism would have to support searches over an encrypted index, which is
unintuitive and difficult. The previous studies of Private Information Retrieval (PIR) al-
low users to retrieve data from the servers without revealing for what data they are look-
ing. However, PIR requires a large volume of network transmission between the client
and the servers, and it is not yet suitable for practical applications. Additionally, many
studies focus on individual aspects, such as a conjunctive search, query hiding by an ex-
tra user-trusted layer, or a two-round phrase search.

Our study extends the existing CSS hicloud S3 [13] to support phrase search on the
server-side. To ensure the service provider cannot read the user’s data, the data kept on
the cloud is encrypted, and the encryption key is maintained by the user. We design a
secure searchable index named BFEST (bloom filter encrypted search tree) that allows
the service provider to perform a search without compromising data confidentiality. The
user can use the extended APIs (Application Program Interfaces) to locate data objects
that satisfy the given query.

___________ . I Cloud Storace :
End-user Device <PUT Object> | Cloud Storage | |[rq 01 Cloud Storage Service _ Secure
| Secarchabl
Q |<Ope1 ation Result> | Service Provider : PN I:(]Li‘:u:nce
. | PUT
8 { JAPP] | <DELETE Object> l Storage | || @ BT B >
Service I \Object
D I <Operation Result> I Gateway : Delete ™, <1 EU _2,, Css
BEOwSer | | Objecl ST Object Object
' <GET Bucket> | |)))
I‘—l | ()ucl\ - 1 Handler | (2) | Handler |3 query data
Browser, | <Object List> : Data N Object \, >
! . . | Objects : 3 6)get data
Data Storage|!| <GET Object> | |) -
Application - - | | [Data Storage Server
I <Target Object> |
e : e __ | | -=>PUT Object flow - DELETE Object flow <—> GET Bucket + GET Object flow
Fig. 1. Baseline cloud storage. Fig. 2. The architecture of hicloud S3 security.

2.CLOUD STORAGE SERVICE

2.1 Baseline Architecture

CSSs such as Amazon S3 and Google Cloud Storage let the users store and access
the data in the cloud through the APIs. They mostly follow the usage scenarios shown in
Fig. 1, where an end-user (EU) can upload data via the PUT object API and download
data via the GET object APIL. To protect user data privacy, in general, data objects are
encrypted before uploading. For user convenience, the provider could maintain a search-
able index, so the user can conduct a full-text search for the data of interest. However,
one main issue with the providers is that the queries sent to them leak private information.
In the following section, we formalize the threat model of a cloud-based storage service
(Section 2.2) and present a framework to ensure user query privacy (Section 3).

PHRASE SEARCH FOR ENCRYPTED CLOUD STORAGE 403

2.2 Threat Model

We assume that an encrypted channel is available for securing the communication
between the CSS and the EU device; the EU is assumed to be fully trusted. However, the
storage service provider may be untrusted, even though it could guarantee data integrity
and data availability.

While the user can maintain the secret keys for data encryption and the secure
searchable index respectively, the data and the index can be encrypted in the EU device.
Therefore, it is secure for the data at rest in the cloud. However, if the query mechanism
is enabled, the query criteria contain what can be used to derive private information
about the user [7, 29]. Thus, the user’s privacy will be considered compromised. The act
of sending a query is not considered part of user privacy. The user can mix true queries
with meaningless queries randomly to mask the events of sending queries if needed.

3.SYSTEM DESIGN

Existing CSSs, as mentioned earlier, have limited support for encrypted query and
protection of user privacy. In this paper, we propose a cloud storage system called
“hicloud S3 security” to address the limitations. hicloud S3 security supports the same
PUT/DELETE/GET operations as in representative CSSs such as Amazon S3 [1]. How-
ever, the data objects and the index are encrypted by secret keys that are only known by
the EU. In addition, hicloud S3 security allows users to specify encrypted phrase criteria
in the GET operation so that only data objects that match the query need to be returned to
the EU. Under hicloud S3 security, neither the user query nor the user data is exposed to
the CSS, and all the secret keys are only known to the EU. Fig. 2 shows the architecture
of hicloud S3 security.

3.1 Secure Searchable Index

The secure searchable index is structured by BFEST, as shown in Fig. 3. It has two
parts: a document tree (DT) and a number of phrase trees (PTs). The EU uploads a PT for
each data object to the CSS via the PUT Object API. The CSS inserts the PT received
from the EU into the secure searchable index as a DT leaf node.

Every PT node in a PT contains a bloom filter (BF) bf and a location list /oc. Fig. 4
shows an example of a PT, and we take the leaf node K, for instance. As each leaf node
represents a distinct keyword, K stores all information including the bloom filter values
for all possible k| (encrypted format of k) and the location information for the keyword.
During the construction of a PT, the bloom filter of a non-leaf node forms the bitwise-OR
of the bloom filters of its child nodes. For example, the bloom filter of BF _1v4 1 is the
bitwise-OR of the bloom filters of K; and K.

Conversely, each DT node contains a counting bloom filter (CBF) cbf and an identi-
fier fid. If a DT node is a leaf node, its fid will serve as the reference to the associated
object and its chf will record the keywords in that object. If a DT node is a non-leaf node,
its cbf value will be the element-wise summation of the chf values from its child nodes.

404 YEN-CHUNG CHEN, YU-SUNG WU AND WEN-GUEY TZENG

DT et
@[] ha [3] 3171 = = =
2 5 . 2 2| | 93 3 [1(7 3"(' //\
: “\ element by element 3
K| a4l [[[2[[] accumulation ™/ \() R w
/\ 24 y E
A T2 [TT2l Tl [T2[[T 70T [] Level .
PTin m Keyword .
.Root "2.Ro0l 1. i
NN AT[]0 [[[T[] - DocumentTree S =2 For every distinct keywords
k1=fx(k1) | k2'=fx(k2) | K={k1, k2, ... K16}
- - I g.(Loc11), g,(Loc12), ... g:(Loc21), g,(Loc22), ... Loc={Loc11,Loc1z, ...
(i e o Locz21, Loc22, ... } E
A e T ... k1'=fjioc-1)(KT) ‘ k2'=fyj10c-1)(k2) | —
Phrase Tree1 Phrase Tree2 Phrase Treen 9x(Loct), g,(Loc12), .. ||| g,(Loc21), g,(Loc22), .. Data object
Fig. 3. Secure searchable index (BFEST). Fig. 4. Example of a phrase tree (PT).
3.2 PUT Object

Once we use the PUT Object API to upload a data object, the EU Object Handler at
first creates the PT for the data object based on the index key. It then encrypts the data
object with the data key. The encrypted data object and the PT are uploaded to the CSS,
where the PT is integrated into the secure searchable index.

Fig. 7 shows the pseudo code of the protocol described above, and Table 1 presents
the notations used in those functions. In step 1, the EU, which is demoted as Uy, plans to
save the data object F and its PT into the cloud storage via the EU Object Handler. To
make the data secure and searchable, the EU generates an index key SK,, a data key SK,
and a location key SK. for F in step 2.

In step 3, the EU creates the PT called PTr for F by PHRASE TREE BUILDER
(SK.,, SK, F) shown in Fig. 5. The PHRASE TREE BUILDER function finds each word
in F from Line 3 and uses two index keys to encrypt the word w; at Line 4. The first key
is the generated key SK,, and the second key is generated based on its preceding word,
i.e., wi1. We generate only one encrypted word by using SK, if the word is the leading
word in the document. The second key is needed to support the phrase search because it
guarantees the correct order between a keyword and its preceding keyword in the phrase.
Once the encrypted words w;} and w' are prepared, they are pushed into the bloom filter,
which represents the encrypted format of w;. We also use the location key SK; to encrypt
the location information for w;. The location value is useful for the EU to validate wheth-
er a phrase query is matched after the operation of GET Bucket with a privacy-preserving
query. When each word in F is processed, the final step is to calculate each BF value in
each node of PTF.

The data object is encrypted to F' in EU in step 4, and PTr and F' are sent to the
CSS over the established encrypted communication channel in step 5. After the CSS Ob-
ject Handler receives PTr and F' in step 6, the DT DTy, and PT list pzList are updated by
DOCUMENT _TREE BUILDER(Uy, Fi4, PTr), as shown in Fig. 6. In DOCUMENT _
TREE BUILDER , we first copy the BF values in the root node of PT} to the newly cre-
ated leaf node of DTy, and save identifier Fj, to indicate that this leaf node represents the
data object F. Additionally, after calculating every CBF value for the nodes in each level
in Line 5, we put the PT PTx, LOC,y, which corresponds to the location number in DTy,
and the data object identifier F into ptList. ptList is used when updating or deleting the
data object, which already exists in the CSS.

PHRASE SEARCH FOR ENCRYPTED CLOUD STORAGE 405

The encrypted data F" is stored to the Data Storage Server in step 7, and, as the final

step, the EU is notified that the PUT operation is complete.

Table 1. Notations used in the protocol of data object operations.

Notation Meaning Notation Meaning
F Data object owned by EU SK, The location key for EU
F’ Data object encrypted from F' Uy The identifier for EU
Fi, The identifier for F DTy The document tree for U,
SK, The index key for EU PTx The phrase tree for F'
SK, The data key for EU 0 The query data

01 PHRASE TREE BUILDER(SK., SK., F){

02 Create a phrase tree PTr /* PTris a binary tree for data object F */

03 For each word w; in F/

04 Encrypt w; with SK, and with w;, if i > 1, i.e., wi=fsx(w;) and wi=f,,;.1(w;)
05 Create a leaf node LN for w,, and add the BF values of w} and w/'to LN
06 Encrypt the location of w; with SK_, i.e., l;=gsx.(loc(w;)), and tag it to LN

07 From the leaf nodes in PTF, repeatedly OR the BF value with its sibling, or directly copy the BF
value if no sibling exists to the parent node in each level of P7r until the root node is calculated
08 Return PTj }

Fig. 5. PT builder function.

01 DOCUMENT TREE_BUILDER(Uy, Fi, PTr){

02 If DTy does not exist for owner Uy, create DTy, and its leaf node LN

03 Else, create a leaf node LN for DT,y

04 Set the CBF value of LN as the BF value of PTr.root and tag F;; to LN

05 From the leaf node LN in DTy, repeatedly sum up each sibling node of the CBF values or directly
copy the CBF value, if the node does not have its sibling node, to the parent node in each level
of DTy, until the root node is calculated

06 Add the value {F;, LOCy, PTr} to ptList /* ptList is a collection including all added PT */

07 Return {DTyi, ptList} } /* LOCpyis the leaf node location number for LN in DTy, */

Fig. 6. DT builder function.

PUT Object and BFEST

1.

2.

3.

(EU) is identified as Ui, which owns a data object F, and plans to save F and its index into the cloud
storage in encrypted format through EU Object Handler.

(EU Object Handler) generates the secret keys SK., SK,, and SK. <~ {0,1}" as the index key, data key,
and location key, respectively, if the keys do not exist.

(EU Object Handler) uses the index key SK, and the data object F to build the PT by PTr= PHRASE _
TREE BUILDER(SK,, SK., F).

(EU Object Handler) uses the data key SK, to produce the encrypted data F' = fo,(F).

(EU Object Handler) regards the object ID of F' as Fj,, and sends {Fi;, PTr, F'} for U, through the
PUT Object operation to CSS Object Handler over the established encrypted communication channel.
(CSS Object Handler) receives {U,y, Fi4, PTr}. It then updates the index by {DTyi4, ptList} = DOC-
UMENT TREE BUILDER(U, Fi4, PTF).

(CSS Object Handler) stores the encrypted data F’ to the cloud file system in Data Storage Server.
(CSS) notifies EU that the BFEST and the encrypted data are processed and saved properly through the
response of PUT Object operation.

Fig. 7. Protocol for PUT object.

406 YEN-CHUNG CHEN, YU-SUNG WU AND WEN-GUEY TZENG

3.3 DELETE Object

Similar to the case of PUT object, we rely on the baseline DELETE object function
to delete the data object from the cloud storage. However, the PT and DT corresponding
to the data object in BFEST have to be updated. Fig. 9 shows the pseudo code for delet-
ing the data object.

In step 1, the EU deletes the data object in the CSS, so the EU Object Handler uses
the Delete Object API to send object ID Fj, to the CSS Object Handler in step 2. In order
to update BFEST and delete F’, respectively, the CSS Object Handler uses the method
BFEST FILE REMOVER(Uy, F;;) shown in Fig. 8. In step 3, PTr and the location of the
leaf node LN in DTy, for F can be found by seeking ptList. To remove information re-
lated to F in DTy, we subtract the CBF value of LN from the CBF value for every node,
respectively, in the shortest path from LN to the root of DTy;,. F' is also deleted by ref-
erencing F;. After removing all the related data for F' in the CSS, the EU is notified
about the status of the operation.

01 BFEST FILE REMOVER(Uy, Fi){

02 Load the existing document tree DTy, and phrase tree list ptList for owner U,y

03 Find the phrase tree PTr and LOC y for F; from ptList

04 Read LOCy and find out the corresponding leaf node LN of DTy,

05 Subtract a CBF value of LN from each CBF value for the nodes from LN to the root of DTy
06 Mark LN as unused and remove PTr from ptList

07 Remove the encrypted data F’ from the cloud file system according to Fi, }

Fig. 8. Data object removing function.

DELETE Object and BFEST

1. (EU) whose identifier is U, has already put a data object F in the CSS and plans to delete F and its
index from it through EU Object Handler.

2. (EU Object Handler) sends the object ID Fj, through the baseline Delete Object operation to CSS
Object Handler over the established encrypted communication channel.

3. (CSS Object Handler) receives Fy;, and uses BFEST FILE REMOVER(Uy, Fi4) to update DTy and
ptList, and then delete F'.

4. (CSS) notifies the index, and the encrypted data are deleted for the EU through the response of the
Delete Object operation.

Fig. 9. Protocol for DELETE object.

3.4 GET Bucket with Privacy Preserving Object Query

The baseline GET Bucket API simply lists the data objects contained in a bucket. To
support the query ability over encrypted data, we make the search function available by
adding the query data to the request header. Thus, GET Bucket returns the list of data
objects, which may contain the query. However, if no query data is set, GET Bucket will
return a list all the data objects in the bucket. Fig. 14 shows the pseudo code for the
search feature.

In step 1, the EU plans to find the data objects that contain query data Q by using
the revised GET Bucket. EU Object Handler then uses the existing index key SK, to gen-
erate the query using the method QUERY GENERATOR(K, Q, TYPE) shown in step 2 of

PHRASE SEARCH FOR ENCRYPTED CLOUD STORAGE 407

Fig. 10. The method creates a pair of data: a bloom filter gbf and the set O', which repre-
sents the encrypted words from Q. There are actually two types of query modes: phrase
query and conjunctive query. If the EU wants to query a phrase, the first word in Q is
encrypted by SK, and the following words are encrypted by the preceding word in Q.
However, if the EU wants to perform a conjunctive query, all words in Q would be en-
crypted by SK..

Each encrypted keyword is collected into Q' and added into the bloom filter gbf.
CSS Object Handler receives the query from the revised GET Bucket sent by the EU
Object Handler in step 3. Once the CSS receives the query data, it calls BFEST TRA-
VERSER(U,4, qbf, Q") to collect the documents that match the query data in set D in step
4. This method, which is shown in Fig. 11, comprises two phases. In the first phase, we
start from the root of DT and find the documents that may contain the query data by
BFEST DT TRAVERSE(dtNode, gbf) in Line 6. Fig. 12 describes the traversing method
for DT. We would recursively call this the traversing method if the current node indicates
that gbf is at least in one of its child nodes. When traversing to the leaf nodes, we collect
the document IDs in « as the candidates of matched documents. In the second phase, we
traverse each PT, which represents the documents in « by BFEST PT TRAVERSE
(ptNode, keyword) described in Fig. 13. After the matching process is completed, D is
sent back to the EU. If the phrase query mode is selected in the initial step, the EU con-
firms which documents in D contain the query phrase. The returned location values are
decrypted and checked to ascertain whether those values are adjacent and in an incre-
mental order.

01 QUERY GENERATOR(K, O, TYPE){
02 Create a bloom filter gbf’
03 For each word w; in Q

04 If TYPE is equal to “phrase” then encrypt w; with K if i=1, or encrypt w; with w;.,,
i.e., wi'=fr(wr) or w/ =f.1(w;)

05 If TYPE is equal to “conjunctive” then encrypt w; with K, i.e., w;'=fx(w;)

06 Add the BF value of w/' to gbf

07 Add w/" to the word set Q'

08 Return {gbf, O’} }

Fig. 10. Query data generating function.

01 BFEST TRAVERSER(Uy, qbf, O'){

02 /* DT.root: The root node of document tree for owner U,

03 PTip,.root: The root node of phrase tree for document n

04 Q' ={0", Q,..., O'n}: asequence of m encrypted query keywords

05 a: A document set */

06 Find and collect the document IDs which contain each keyword in the phrase query by

a = BFEST DT TRAVERSE(DT.root, qbf)
07 If « is not NULL, for each document ID in @={ID;, ID,,..., ID,}

08 Allocate the corresponding phrase tree PT}p, and find the encrypted location for each
keyword in Q' by LOC'p, gw= BFEST_PT_TRAVERSE(PTp,.root, Q')

09 Collect each encrypted location to the location set LOCjp,

10 Return res = {<ID, LOC'p>} |1 <i<n}

11 Else

12 No document matches the auerv kevwords. and return res = NUTLT. }

Fig. 11. BFEST query processing function.

408 YEN-CHUNG CHEN, YU-SUNG WU AND WEN-GUEY TZENG

While the EU figures out which document contains the query data, it uses GET Ob-
ject to retrieve the data object from the CSS. The way it operates is very similar to the
baseline GET Object API, except that the returned data object needs to be decrypted. In
fact, the CSS only needs to send back the encrypted data object. The EU can complete
the decryption simply by using the decryption function.

01 BFEST DT _TRAVERSE(dtNode, qbf){

02 With respect to the elements with value 1 in gbf; if all the values of the corresponding locations
in dtNode are greater than 0, it implies some documents are matched to the query keywords

03 If dtNode is NOT a leaf node of DT

04 Call BFEST DT _TRAVERSE(dtNode.., qbf) if the left child of dtNode exists

05 Call BFEST DT TRAVERSE(dtNode.r, qbf) if the right child of dtNode exists

06 Else /* dtNode is a leaf node of DT. o represent the document ID set */

07 Add the document ID stored in the dfNode to «, and return o

08 Else, no document is matched, return NULL}

Fig. 12. DT traversing function.

01 BFEST PT TRAVERSE(ptNode, keyword){

02 If the bloom filter represented by ptNode contains keyword

03 If ptNode is not a leaf node of PT

04 Call BFEST PT _TRAVERSE(ptNode 1, keyword) if the left child of ptNode exists

05 If LOC is still NULL /* LOC is used to save location values */

06 Call BFEST PT _TRAVERSE(ptNode , keyword) if the right child of ptNode exists
07 Else /* ptNode is a leaf node of PT */

08 Add the encrypted location value(s) to LOC

09 Return LOC

10 Else /* keyword is not in the ptNode and its belonging nodes */

11 Return NULL }

Fig. 13. PT traversing function.

GET Bucket with Privacy Preserving Query

1. (EU) is identified as U, and plans to find all the objects which contain with query data Q in the bucket
through EU Object Handler.

2. (EU Object Handler) uses the existed index key SK, to build the query data by {gbf, O’} = QUERY _
GENERATOR(SK,, Q, “conjunctive”|“phrase”).

3. (Query Generator) sends the query data {gbf, O’} through the GET Bucket operation to CSS Object
Handler over the established encrypted communication channel.

4. (CSS Object Handler) receives the query data and collects the matched document IDs into the set D by
BFEST TRAVERSER(Uy, qbf, Q'). D is sent back to EU.

5. (EU) For each ID in D, the EU decrypts each location value in the corresponding LOC'jp, and the docu-
ment is considered to contain the phrase if the location values are adjacent and in incremental order.

Fig. 14. Protocol for GET Bucket with privacy preserving query.

3.5 Privacy Analysis for Operations

In the PUT Object operation, the index and data keys are used for the PT and the
data object, respectively; thus, the CSS cannot attack the user’s query privacy by deriving
user queries from the data object. The EU builds the PT for the data object, and the CSS
only regards the root of PT as the leaf node of DT. Therefore, the CSS can only guess the

PHRASE SEARCH FOR ENCRYPTED CLOUD STORAGE 409

existence of some identical words from the value distributions of the bloom filters among
each PT. However, in the DELETE Object operation, the EU only sends the identifier F},.
The CSS then removes its PT and updates the CBF values for each related node in DT
accordingly. The CSS does not learn any query privacy in these actions. Similarly, in the
GET Object operation, the EU simply sends the identifier F; of the required data object
and decrypts the received data object from the CSS. The CSS cannot learn any further
information.

The main privacy issue in our framework is in the GET bucket operation, which in-
volves the query strings, as the CSS manipulates PT and DT during the operation. Each
EU query is {gbf, O'}, which consists of a bloom filter and encrypted query keywords.
For simplicity in the analysis, we assume that the distribution of user queries follows a
uniform distribution. Under the threat model given in Section 2.2, there are several dif-
ferent attacks against the EU’s query privacy. The first attack is an attack by the CSS on
the user’s query privacy by deriving the distribution of user queries from the returned
data sets. While the CSS could replay the previously received query, this would result in
the same data set being returned by the protocol. The CSS does not acquire any addition-
al information regarding the distribution of user queries. As BFEST in the CSS is stored
in ciphertext, once we query something, the CSS can only know the association between
the data objects, the encrypted keywords, and what data objects the user is interested in.

The CSS may simulate user queries by generating random queries and observe the
returned data sets. The CSS could compare the returned data sets from the various simu-
lated user queries and distinguish which encrypted keywords denote the same data set. In
practice, we use the 128 or 256 bits long secret key (or even longer) as the index key; the
key space is relatively large compared to the real world plaintext we use. As a result, the
random queries may easily generate a number of nonexistent encrypted keywords and
make the CSS hard to learn from simulation.

The last attack refers to the leakage of the location values residing in the PT leaf
nodes. Since the PT contains each location value for the words in the data object, the
CSS may infer the meanings encrypted by SK.. If a PT only contains one keyword, the
CSS knows the encrypted value means 1. Once the CSS can read a number of PTs, which
contain various numbers of keywords, the location value can be identified one by one. To
solve this issue, we can add a random value to the location values for each data object
before encrypting with SK. or use an individual location key for each data object.

As the false positive feature for the bloom filter brings some ambiguity, we hide our
query intention by setting the false positive rate to obscure the CSS, even though it in-
creases the amount of returned data object from the CSS to the EU.

3.6 Performance Analysis for Operations

To support our query feature, a number of jobs have to be added into the APIs. In
the operation of PUT Object, we build the DT in the CSS and the PTs in the EU. The
extra workload for building the PT of the data object is about O(wlogw), where w is the
average distinct word count for the data object. However, after PT is put into the CSS,
the CSS uses the BF value in the root node of PT to update those related CBF values of
the related nodes in DT. This update operation costs about O(log m), where m indicates
the number of documents stored in the CSS. When removing the data object from the

410 YEN-CHUNG CHEN, YU-SUNG WU AND WEN-GUEY TZENG

CSS by the DELETE Object operation, we not only delete the PT, but also update the
CBEF values of the related nodes in DT, which also costs about O(logm).

In GET Bucket, ¢gbf in the query is used to determine how many data objects may
contain the query keywords with the root of DT in O(1). Besides, it costs O(m' - logm) to
decide which data objects contain the keywords in DT, where m' indicates the number of
matched documents. Moreover, it costs O(m'n - logw) to retrieve the detail including the
location values in the corresponding PTs, where n indicates the number of query key-
words. GET Object is not directly involved in query issues; it is only required to perform
a decryption after retrieving the data object from the CSS.

Nevertheless, the search feature introduces an extra space usage issue. The CSS
stores the DT and a number of PTs. The space is about O(mlogm/2 - Length(CBF) + mw
logw/2 - Length(BF)), where Length(CBF) and Length(BF) mean the bit lengths of coun-
ting the bloom filters used in the DT and in the PTs.

4. EXPERIMENTS

We carried out experiments to understand how the selection of BFEST parameters
affects the operation of hicloud S3 security. Specifically, we focused on the false positive
rate of the query operation and the size of BFEST index. We also studied the perfor-
mance overhead incurred by BFEST. Our experiment testbed consists of two machines
(one as the EU and the other as the CSS) on a local area network. The EU machine is
equipped with an Intel i7 3.2 GHz 64-bit processor and 1 GB of DDR3-800 RAM. The
CSS machine is equipped with an Intel 17 3.2 GHz 64-bit processor and 4 GB of DDR3-
800 RAM. For the EU client program, we modified JetS3 [14], which is compatible with
the Amazon S3 and hicloud S3 security APIs, to include the encrypted phrase search
functionality. The CSS was running the prototype of hicloud S3 security. The symmetric
encryption keys used by the prototype are all 256-bits.

We stored the event logs collected from various network devices (firewalls, proxies,
e-mail servers, efc.) in a mid-sized corporate environment over a one-hour period to
hicloud S3 security. The encrypted phrase search allows system administrators to query
for events that match certain conditions (i.e., events with specific dates, IP addresses,
error codes). A total of 609,239 event log records are grouped into 200 data objects and
stored on hicloud S3 security. The event logs collected from devices with different
brands were preprocessed to a standardized format, so they could be explored in the same
manner. The event log comprises a number of data fields including date and time, source
IP (we used xx.yy to mask the actual digits), destination, and bytes sent and received.
Each data field was indexed into the PT.

4.1 BFEST False Positives

As mentioned in Section 3.5, hicloud S3 security takes advantage of the inherent
false positives in the bloom filter queries to disguise the access pattern of the cloud stor-
age. It is critical to select the appropriate parameters for bloom filters to ensure optimal
security and performance. The bloom filters used by the PTs and DTs are controlled by
two parameters: the number of hash functions and the size of the bloom filter. The false

PHRASE SEARCH FOR ENCRYPTED CLOUD STORAGE 411

positive rate of the bloom filters can be derived from these two parameters [6]. Assume
each data object has 1,000 distinct words. If we vary the number of hash functions and
the length of the bloom filter, the expected false positive (FP) rate will be as shown in
Table 2. When increasing the number of hash functions and the size of the bloom filter,
the FP for BFEST will drop accordingly.

To validate that the BFEST implementation in the prototype follows the theoretical
FP rate during the query operarion, we set up the BFEST with different numbers of hash
functions. For each setting, we queried the prototype system with six different types of
queries as shown in Table 3 and measured the FP rates. The query types include single
keywords (log entry ID, IP address, device name, and protocol type) and also phrases
(message texts). In addition, we also made queries for nonexistent random strings.

Fig. 15 shows the FP rates of the query for each number of hash functions and que-
ry type. In all cases, the FP rate for each query type decreases as the number of hash
functions increases. The observations showed that the real FP rate is equal to or smaller
than our expectation in the first half cases. However, it has limited effectiveness when we
use more hash functions and a longer bloom filter. In the following experiments, we
chose to use the setting of three hash functions and a 4328-bit bloom filter to maintain
the FP rate at about 10%.

Table 2. BF parameters and the expected FP rate. Table 3. Types of queries.
of bloom filter Bloom filter = Expected BFEST Query Query type Kevword
hash functions length (bits) false positive rate type description Y
1 1443 50.00% A Logentry ID dgqmTpKiaolJdzrg==
2 2885 25.00% B IP address 192.168.xxx.XX
3 4328 12.50% C Device name netscreen
4 5771 6.25% ’2 ;’ZOtOCOI type tep -
5 7213 3.13% essage text system cloc
F Nonexistent tcpp
6 8656 1.56%
7 10099 0.78%
8 11542 0.39%
9 12984 0.20%
10 14427 0.10%
70% 25
60% gm f
§15
g
gm
s @@
1 2 3 4 5 6 4 8 9 10 ’ 0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 510 540 570 6"30
K: The number of hash functions for BFEST Number of records (x1000)
BAVG. = Term A-+-Term B Term C--# Term D-+-Term E --Term F—Expected [ZIAVG. DT Size(per record) AVG. PT Size(per record) ~ —Total DT Size

Fig. 15. BFEST false positive rates. Fig. 16. BFEST index space.

412 YEN-CHUNG CHEN, YU-SUNG WU AND WEN-GUEY TZENG

4.2 BFEST Index Space

The parameters of the bloom filter not only control BFEST FP rate, but also affect
the length of the bloom filter used in the DT and the PTs. To understand how much index
space BFEST used, we calculate the space usage in detail with the parameters that bring
less than the 10% average FP rate mentioned in the previous section (3 hash functions/
4328-bit long bloom filter). In this experiment, we again put all data files into the CSS.

Fig. 16 shows the average DT size for each event log record, the average PT size for
each event log record, and the total DT size in logarithm scale. Whenever a new PT is
put into the BFEST index space, the total DT size grows logarithmically. Therefore, with
respect to the average PT size for each event log record, the average DT size would
gradually decrease. As we expected, the overall BFEST index space in the CSS increases
in a reasonable manner; the rate of the BFEST index space growth does not go beyond
the logarithmic scale.

4.3 PUT Object Operation Processing Time

To evaluate the processing time of PUT Object, we measure the upload time for all
event log records to the CSS. The processing time of PUT Object includes the network
transmission time and the BFEST update time at the CSS. We do not include the PT cre-
ation time because the PT is created by the EU and the creation time is negligible.

We uploaded each successively generated event log file as a data object to the CSS
via the PUT Object. The numbers of records in each event log file in fact vary from 1 to
50,000 and in a random order. We sort the processing times by the number of records
shown in Fig. 17. The round-shaped points correspond to the PUT object operation
times, and the diamond-shaped points correspond to the times for updating the BFEST.
We can see that the PUT Object operation time is dominated by the network transmission
time as updating the BFEST only consumes a small portion of the overall time.

Time (ms) Updating secure searchable index[SSP] ¢ Putting object 600 FIBFEST(DT+PT) WEGET Bucket(+search) ~—GET Bucket(baseline) .,
20,000]
500
15,000
400
0‘ —-
10,000 £ 300
s
£ B s
S -V
5,000 200 |
. - 1 ‘ e & T
R A j H—
ke : 100 W A
0 M
0 5000 10,000 15,000 20,000 25,000 30,000 35,000 40,000 45,000 50,000 0 o
Number of records i each log file 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
Number of log files in CSS
Fig. 17. Performance of PUT object operation. Fig. 18. Performance of GET Bucket operation.

4.4 GET Bucket Operation Processing Time

To evaluate the processing time of GET Bucket, we invoked the GET Bucket API
against hicloud S3 security by using IP addresses in the logs as the query strings. As the
size of BFEST affects the processing time of the GET Bucket, we also varied the number
of log files stored at the CSS and measured the respective GET Bucket processing time.

PHRASE SEARCH FOR ENCRYPTED CLOUD STORAGE 413

Fig. 18 shows the experimental result. The Get Bucket (baseline) corresponds to the time
taken to list all the log files without any search filtering (i.e., listing the content from all
the buckets). BFEST(DT+PT) corresponds to the time taken for searching the DT and
PTs. The GET Bucket(+search) corresponds to the overall processing time of the GET
Bucket operation on hicloud S3 security (including the time taken by BFEST(DT+PT) at
the CSS and the time for handling the returned result at the EU).

We can also see that the time it takes to list all the bucket information by GET
Bucket (baseline) is insensitive to the number of log files and remains at about 56.36ms.
Nevertheless, the processing time for GET Bucket(+search) and for BFEST(DT+PT)
increases with the number of log files stored in the CSS, and unsurprisingly, the manipu-
lation of BFEST occupies the most usage time.

5.RELATED WORK

In terms of privacy-preserving query to an “honest-but-curious” (HBC) cloud stor-
age provider, an encrypted search is a prerequisite option to satisfy the requirement.
There are two types of encrypted search schemes: deterministic encrypted search
schemes [3, 5, 9, 19, 24, 30] and probabilistic encrypted search schemes [23]. Liu et al.
[19] introduced a deterministic encrypted search scheme that allows an EU to retrieve an
encrypted file owned by a content provider from a cloud storage provider without re-
vealing the query keywords. The primary limitation of the scheme is that it requires a key
server to maintain the corresponding relation between files and encryption keys. Bellare
et al. [3], Sun et al. [24] and Zheng et al. [30] all proposed public-key based schemes to
the encrypted search problem. The public-key based schemes require extra key manage-
ment and higher computation cost. Song et al. [23] proposed a probabilistic scheme to
search over encrypted data and hide user query information from the CSS. However, they
only encrypt the data, and it takes linear time to search every document to locate the
document with the matching keyword. In comparison, the BFEST search index allows
the user to determine the presence of given keywords in O(1l) time and retrieve the
matched documents in O(logn) time.

The bloom filter has been widely used to implement the search functionality [4, 11,
20, 22] such as checking the presence of keywords in a document. The bloom filter can
also be adapted to support advanced search features. Pal ef al. [20] supported case sensi-
tive and approximate search features with synonyms. The BFEST in our work is an ex-
tension of the bloom filter that allows encrypted phrase searches.

Some of the encrypted search schemes employ an additional layer to hide user que-
ries from the data owner [2, 18]. EUs have to fully trust this layer, or the protection of
EU query privacy cannot be achieved. Our framework does not require the additional
layer, so the EU query privacy can be fully ensured.

Yavuz et al. [27] proposed a dynamic searchable encryption that supports single
keyword search. In addition, there are a number of works supporting more sophisticated
search schemes including verifiable multi-keyword search [8, 25], multi-keyword ranked
search [16] and similarity search [28]. However, none of those work supports phrase
search.

Many phrase searches, which first appeared in [26, 31], involve two-phase protocols

414 YEN-CHUNG CHEN, YU-SUNG WU AND WEN-GUEY TZENG

[15, 21, 26, 31]. Zittrower et al. [31] used a trusted server to accomplish an encrypted
phrase search. Tang et al. [26] and Poon et al. [21] used a dictionary to map keywords to
unique words in the client side. Our framework can perform phrase search in a single
phase and does not require an extra trusted server or a dictionary on the client-side. Li et
al. [17] proposed a lightweight phrase encrypted search scheme, which uses a lookup
table and an array with a number of linked lists for each distinct keyword in documents.
The index update cost in the BFEST involves a replacement for each individual PT and
an update operation for the DT. By contrast, an update in [17] requires the user to search
for every word of the document in the lookup table to locate the places in the linked list
for updates. Thus, the overall time complexity is higher than ours.

6. CONCLUSION

We propose a privacy-preserving query framework for encrypted cloud storage. The
framework adopts symmetric-key encryption and a tree-based search structure to main-
tain query performance and ensure query privacy. The secure searchable index (BFEST)
in the framework is jointly operated by the EU and the CSS to reduce computation and
network communication costs of the EU.

In terms of query format, we support queries in the form of phrases. The framework
is flexible enough to suit real-world applications, such as supporting searches in en-
crypted corporate event logs. The experimental results indicate that the framework can
effectively protect the user data and the privacy of user queries. The computation over-
head on the EU is negligible, and the communication overhead can be minimized by
tuning BFEST parameters to limit the number of candidate data objects returned by the
CSS.

REFERENCES

1. Amazon S3, https://aws.amazon.com/tw/s3.

2. S. Artzi, A. Kiezun, C. Newport, and D. Schultz, “Encrypted keyword search in a
distributed storage system,” Technical Report, MIT-CSAIL-TR-2006-010, Computer
Science and Artificial Intelligence Laboratory, MIT, February 2006.

3. M. Bellare, A. Boldyreva, and A. O’Neill, “Deterministic and efficiently searchable
encryption,” in Proceedings of the Annual International Cryptology Conference on
Advances in Cryptology, 2007, pp. 535-552.

4. S. M. Bellovin and W. R. Cheswick, “Privacy-enhanced searches using encrypted
bloom filters,” Technical Report, CUCS-034-07, Department of Computer Science,
Columbia University, September 2007.

5. R. Bost, “Forward secure searchable encryption,” in Proceedings of the 23rd ACM
Conference on Computer and Communications Security, 2016, pp. 1143-1154.

6. A. Broder and M. Mitzenmacher, “Network applications of bloom filters: A survey,”
Internet Mathematics, Vol. 1, 2004, pp. 485-509.

7. D. Cash, P. Grubbs, J. Perry, and T. Ristenpart, “Leakage-abuse attacks against
searchable encryption,” in Proceedings of the 22nd ACM Conference on Computer
and Communications Security, 2015, pp. 668-679.

10.
11.

12.
13.
14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

PHRASE SEARCH FOR ENCRYPTED CLOUD STORAGE 415

. R. Cheng, J. Yan, C. Guan, F. Zhang, and K. Ren, “Verifiable searchable symmetric

encryption from indistinguishability obfuscation,” in Proceedings of the 10th ACM
Symposium on Information, Computer and Communications Security, 2015, pp. 621-
626.

. R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable symmetric encryp-

tion: improved definitions and efficient constructions,” in Proceedings of the 13th
ACM Cnference on Computer and Communications Security, 2006, pp. 79-88.
Dropbox, https://www.dropbox.com.

E.-J. Goh, “Secure indexes,” Technical Report, 2003/216, IACR ePrint Cryptology
Archive, March 2004, Google Cloud Storage, https://cloud.google.com/storage.
Google Cloud Storage, https://cloud.google.com/storage.

hicloud S3, http://hicloud.hinet.net/s3.

JetS3, http://www.jets3t.org.

Z. A. Kissel and J. Wang, “Verifiable phrase search over encrypted data secure
against a semi-honest-but-curious adversary,” in Proceedings of IEEE International
Conference on Distributed Computing Systems Workshops, 2013, pp. 126-131.

H. Li, D. Liu, Y. Dai, T. H. Luan, and X. S. Shen, “Enabling efficient multi-keyword
ranked search over encrypted mobile cloud data through blind storage,” IEEE Tran-
sactions on Emerging Topics in Computing, Vol. 3, 2015, pp. 127-138.

M. Li, W. Jia, C. Guo, W. Sun, and X. Tan, “LPSSE: Lightweight phrase search with
symmetric searchable encryption in cloud storage,” in Proceedings of International
Conference on Information Technology: New Generations, 2015, pp. 174-178.

M. Li, S. Yu, N. Cao, and W. Lou, “Authorized private keyword search over en-
crypted data in cloud computing,” in Proceedings of International Conference on
Distributed Computing Systems, 2011, pp. 383-392.

H.-X. Liu, J.-X. Dai, and C. Jiang, “Research on privacy preserving keyword search
in cloud storage,” in Proceedings of IEEE International Conference on Computer
Science and Information Technology, 2010, pp. 444-446.

S. K. Pal, P. Sardana, and A. Sardana, “Efficient search on encrypted data using
bloom filter,” in Proceedings of International Conference on Computing for Sus-
tainable Global Development, 2014, pp. 412-416.

H. T. Poon and A. Miri, “An efficient conjunctive keyword and phase search scheme
for encrypted cloud storage systems,” in Proceedings of IEEE International Con-
ference on Cloud Computing, 2015, pp. 508-515.

M. Raykova, B. Vo, S. M. Bellovin, and T. Malkin, “Secure anonymous database
search,” in Proceedings of ACM Workshop on Cloud Computing Security, 2009, pp.
115-126.

D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for searches on en-
crypted data,” in Proceedings of IEEE Symposium on Security and Privacy, 2000, pp.
44-55.

S.-F. Sun, J. K. Liu, A. Sakzad, R. Steinfeld, and T. H. Yuen, “An efficient non-
interactive multi-client searchable encryption with support for Boolean queries,” in
Proceedings of the 21st European Symposium on Research in Computer Security,
Vol. 9878, 2016, pp. 154-172.

W. Sun, X. Liu, W. Lou, Y. T. Hou, and H. Li, “Catch you if you lie to me: Efficient
verifiable conjunctive keyword search over large dynamic encrypted cloud data,” in

416

26.

27.

28.

29.

30.

31.

YEN-CHUNG CHEN, YU-SUNG WU AND WEN-GUEY TZENG

Proceedings of IEEE Conference on Computer Communications, 2015, pp. 2110-
2118.

Y. Tang, D. Gu, N. Ding, and H. Lu, “Phrase search over encrypted data with sym-
metric encryption scheme,” in Proceedings of International Conference on Distri-
buted Computing Systems Workshops, 2012, pp. 471-480.

A. A. Yavuz and J. Guajardo, “Dynamic searchable symmetric encryption with
minimal leakage and efficient updates on commodity hardware,” in Proceedings of
the 22nd International Conference on Selected Areas in Cryptography, Vol. 9566,
2016, pp. 241-259.

X. Yuan, H. Cui, X. Wang, and C. Wang, “Enabling privacy-assured similarity ret-
rieval over millions of encrypted records,” in Proceedings of the 20th European
Symposium on Research in Computer Security, Vol. 9327, 2015, pp. 40-60.

Y. Zhang, J. Katz, and C. Papamanthou, “All your queries are belong to us: The
power of file-injection attacks on searchable encryption,” in Proceedings of the 25th
USENIX Security Symposium, 2016, pp. 707-720.

Q. Zheng, S. Xu, and G. Ateniese, “VABKS: Verifiable attribute-based keyword
search over outsourced encrypted data,” in Proceedings of IEEE Conference on
Computer Communications, 2014, pp. 522-530.

S. Zittrower and C. C. Zou, “Encrypted phrase searching in the cloud,” in Pro-
ceedings of IEEE Global Communications Conference, 2012, pp. 764-770.

Yen-Chung Chen (FBREft) received his B.S. degree in Com-
puter Science and Information Engineering from Fu Jen Catholic
University, Taipei County, Taiwan in 2001; and M.S. degree in
Computer and Information Science from National Chiao Tung
University, Hsinchu, Taiwan in 2003. He joined Chunghwa Tele-
com Laboratories in 2004, and is currently working at Information
and Communication Security Laboratory and pursuing Ph.D. de-
gree in the Department of Computer Science, National Chiao Tung
- -~ University, Hsinchu, Taiwan. His research interests include infor-
mation security, cloud computing and communication networks.

Yu-Sung Wu (25 #2) received B.S. in Electrical Engineer-
ing from National Tsing Hua University, Hsinchu, Taiwan in 2002,
M.S. and Ph.D. in Electrical and Computer Engineering from Pur-
due University, West Lafayette, Indiana in 2004 and 2009. In 2009,
he joined National Chiao Tung University in Hsinchu, Taiwan,
where he is currently an Associate Professor of the Computer Sci-
ence Department and Director of Laboratory of Security and Sys-
tems. Previously, he had worked at Purdue CERIAS research cen-
ter conducting research on the design of automated response sys-

tem for distributed applications. He had also worked at Avaya Labs in New Jersey de-
veloping prototypes of intrusion detection system for VoIP environment. Prof. Yu-Sung

PHRASE SEARCH FOR ENCRYPTED CLOUD STORAGE 417

Wu is a member of IEEE and ACM. He had served on the committees of several confer-
ences including DSN, ICDCS, SERE, and APNOMS.

Wen-Guey Tzeng (ZX &) received his B.S. degree in Com-
puter Science and Information Engineering from National Taiwan
University, Taiwan, 1985; and M.S. and Ph.D. degrees in Comput-
er Science from the State University of New York at Stony Brook,
USA, in 1987 and 1991, respectively. He joined the Department of
Computer Science, National Chiao Tung University, Taiwan, in
1991. His current research interests include security data analytics,
cryptology, information security and network security.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

