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In this paper, under the condition of D-differentiation, we consider the fuzzy pro-

gramming problem with the general fuzzy mapping (non-convex) as the objective map-
ping. By discussing the characteristics of the optimal solution of unconstrained fuzzy 
programming, we give the KKT condition of the optimal solution of more general fuzzy 
programming with real value function as the constrained condition, and some test exam-
ples. Meanwhile, we discuss the optimal condition of a special class of fuzzy program-
ming problem with the real-valued concave function as the constrained condition and the 
convex fuzzy mapping as the objective mapping.     
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1. INTRODUCTION 
 

Fuzzy mapping is a function (fuzzy value function) whose value is fuzzy number, 
and is an important part of fuzzy analysis. Optimization Theory, an important branch of 
Mathematics, has widely application. However, the parameters of many mathematics 
programming are uncertain during the process of mathematical modeling. So it’s very 
important that the fuzzy programming is studied [1-4]. With the deepening research and 
the development of fuzzy programming, some classical mathematics methods will be 
generalized and applied to the study of fuzzy programming. Therefore, the differentia-
tion and sub-differentiation of fuzzy mapping and their applications in the fuzzy pro-
gramming are discussed.  

There are many discussions on the differentiation of fuzzy mapping based on dif-
ferent background. The most common used are the generalization of Hakuhara derivative 
for set-valued function (denoted as H-derivative) and the derivative of fuzzy mapping 
(denoted as L-derivative), which are defined by Goetschel-Voxmann [5] and Puri-Ra- 
lescu [6] and by Buckley-Feuring [7, 8] using the left and right endpoint functions of the 
horizontal interception set, respectively. Motial Panigrahi et al. [9] generalized the dif-
ferentiation of fuzzy mapping [7, 8] to the situation of multivariable, and obtained the 
KKT condition of the optimal solution of fuzzy programming with L-differentiable con-
vex fuzzy objective mapping. Hsien-Chung Wu [10, 11] further discussed the H-diff- 
erentiability of fuzzy mapping and its application in fuzzy programming, and obtained 
the characters of H-differentiable fuzzy mapping, the optimal condition of saddle point 
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and the KKT condition of the optimal solution of H-differentiable convex (or general-
ized convex) fuzzy objective programming. Bede and Stefanini [12] proposed the gener-
alized differentiability of fuzzy mapping and gave its application. Chalco-Cano [13, 14] 
provided some new description of generalized differentiable fuzzy mapping and obtained 
the KKT condition of the optimal solution of fuzzy programming with generalized dif-
ferentiable convex (or generalized convex) fuzzy objective mapping. Shexiang Hai et al. 
[15] discussed several kinds of generalized convex fuzzy programming under the condi-
tion of generalized differentiation and obtained the sufficient condition of optimal solu-
tion. Wang and Wu [16] proposed a kind of differentiation of fuzzy mapping (denoted as 
D-differentiation) and the concepts of the sub-differentiation, gradient and sub-gradient 
in order to avoid the difficulty brought by H-difference, applied them to the convex 
fuzzy programming and obtained the characters of solution. Bao et al. [17] further stud-
ied the D-differentiability of fuzzy mapping, obtained some new descriptions of D-diff- 
erentiation and gave its application. Zhang et al. [18] proposed the concepts of sub-gra- 
dient, sub-differentiation and differentiation of convex fuzzy mapping from the point of 
view of convex analysis, studied the extremum of convex fuzzy mapping and obtained 
the sufficient/necessary condition of the existence of extremum for convex fuzzy map-
ping.  

Although many results on the fuzzy programming have been obtained, there are still 
a large number of unexplored problems in this field. Especially, up to now, there are not 
the research results on the KKT condition of the optimal solution for fuzzy programming 
problems with the general fuzzy mapping (non-convex) as the objective mapping. There 
are few results on the optimal conditions of fuzzy programming problems with D-diff- 
erentiable fuzzy objective mapping. In this paper, under the condition of D-differen- 
tiation, we consider the optimal conditions of more general fuzzy programming problem 
with the general fuzzy mapping (non-convex) as the objective mapping. In this sense, it 
can be said that the results of this paper are the generalization of some results in the ref-
erences [9, 11, 14-16, 18]. In Section 2, the gradient of D-differentiable fuzzy mapping 
and the new description of D-differentiable convex fuzzy mapping are given. In Section 
3, the characteristics of the optimal solution of fuzzy programming problem with the 
D-differentiable fuzzy objective mapping and the unconstrained condition are discussed. 
In Section 4, the KKT condition of the optimal solution of fuzzy programming problem 
with D-differentiable fuzzy objective mapping and the constrained condition is discussed. 
Meanwhile, the optimal condition of a special class of fuzzy programming problem with 
the real-valued concave function as the constrained condition and the convex fuzzy 
mapping as the objective mapping is also discussed. 

2. PRELIMINARIES 

First, we quote some notations, basic definitions and operations about fuzzy number 
[9, 16, 17]. 

Let R be the set of all real numbers. A fuzzy set u:R[0, 1] in R is called a fuzzy 
number if u is normal and upper semi-continuous, and its support set is compact set.  

We will denote  as the set of fuzzy numbers and call it the space of fuzzy numbers. 
It is clear that for any r  R, the fuzzy number r̂ can be defined by 
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for any t  R. For r  [0,1], the r-level set of fuzzy number u is a nonempty bounded 
closed interval [u]r = [u*(r), u*(r)]. Thus the parameter expression of a fuzzy number u 
can be represented as u = {(u*(r), u*(r), r)|0  r  1}. 

For u, v   and R(  0), the addition, multiplication and scalar product can be 
represented respectively as below: 

 
u + v = {(u*(r) + v*(r), u*(r) + v*(r), r)|0  r  1}, 
u  v = {(uv)*(r), (uv)*(r)+v*(r), r)|0  r  1}, 
u = {(u*(r), u*(r), r)|0  r  1}, 

where 

(u + v)*(r) = u*(r) + v*(r), (u + v)*(r) = u*(r) + v*(r),  
(uv)*(r) = min{u*(r)v*(r), u*(r)v*(r), u*(r)v*(r), u*(r)v*(r)},  
(uv)*(r) = max{u*(r)v*(r), u*(r)v*(r), u*(r)v*(r), u*(r)v*(r)}.  

 
Definition 2.1 [9]: For u, v  , we say that  

 
(i) u  v if u*(r)  v*(r) and u*(r)  v*(r) for each r[0,1]; 
(ii) u = v if u  v and u  v; 
(iii) u < v if u  v and there exists r0[0,1] such that u*(r0) < v*(r0) or u*(r0) < v*(r0).   

 
Given u, v  , we define the distance between u and v by 

        
[0,1]

( , ) sup max ,
r

D u v u r v r u r v r 
 


   . 

Then (, D) is a complete metric space and satisfies 
 

D(u + w, v + w) = D(u, v), D(u, v) = ||D(u, v), for any u, v, w and R.  
 
For ui  (i = 1, 2, …, n), we define u = (u1, u2, …, un) as n-dimensional fuzzy vec-

tor in . The set of all n-dimensional fuzzy vector is denoted as n. For x, y  Rn, d(x, y) 
denotes the Euclidean metric between x and y.  

For u = (u1, u2, …, un), v = (v1, v2, …, vn)  n and x = (x1, x2, …, xn), y = (y1, y2, …, 
yn)  Rn, we define: 

(i) u + v = (u1 + v1, u2 + v2, …, un + vn), u = (u1, u2, …, un)(  0), 
(ii) u = v  ui = vi(i = 1, 2, …, n), 

(iii)
1

,
n

i i
i
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

    0, 1, 2, ,ix i n   ,
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for any r[0, 1]. 
In this paper, a mapping F:M is said to be a fuzzy mapping (fuzzy-valued func-

tion), where M is a nonempty subset of Rn and  is the space of fuzzy numbers. Accord-
ing to the parametric expression of fuzzy number, that fuzzy mapping can be expressed 
as: 

F(x) = {(F(x)*(r), F(x)*(r), r)|0  r  1}. 
 
Where F(x)*(r) and F(x)*(r) are real-valued functions defined on M. 
 
Definition 2.2 [16]: Let F:M be a fuzzy mapping, x0 = (x0

1, x
0
2, …, x0

n)Rn. If there 
exists a u = (u1, u2, …, un)  n such that 

0
0 0

0 0 0 0lim ( ) , ( ) ( , ) 0
i i i i

i i i i i i
x x

x x x x

D F x x x u F x x x u d x x


 

 
      

 
  . (1) 

then we say that F is differentiable at x0, and call (u1, u2, …, un) (denoted by F(x0) = (u1, 
u2, …, un) the gradient of F at x0. Let 
 

(x  x0)+ = ((x1  x0
1)

+, (x2  x0
2)

+, …, (xn  x0
n)

+),  
(x  x0)- = ((x1  x0

1)
-, (x2  x0

2)
-, …, (xn  x0

n)
-), 

where 
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0

,  
( )    

0,  
i i i i
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i i

x x x x
x x

x x
     


 for each i = 1, 2, …, n.  

Then  
(i) x  x0 = (x  x0)+  (x  x0)-, (x  x0)+ = [(x  x0)+, (x  x0)- = [(x  x0)]-(  0).  

(ii) Formula (1) can be rewritten as Formula (2) 

 0

0 0 0 0lim ( ) ,( ) , ( ) ,( ) ( , ) 0.
x x

D F x u x x F x u x x d x x 


      (2) 

Remark 2.1: In this paper, the differentiation given in Definition 2.2 is called D-differ- 
entiation. 
 
Remark 2.2: By the relevant conclusions in [16, 17], we know that H-differentiable fuz- 
zy mappings must be D-differentiable. The following Example 2.1 shows that the con- 
verse is not necessarily true. 
 
Example 2.1: Let F(x) = {(x2

 + r, x2
  r + 4, r)|0  r  1} be a fuzzy mapping defined on 

[1, 1]. Then for x = 0[1, 1], we have 
 

  
0

ˆlim ( ), (0) 0 0 0 0,
x

D F x F x x


      

  
0

ˆlim ( ) 0 0, (0) 0 0.
x

D F x x F x


      

Therefore, F is D-differentiable at x = 0, and F(0) = (0̂). 
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On the other hand, we show that F is not H-differentiable at x = 0. Suppose F  is H- 
differentiable at x = 0, then there exists  > 0 such that  the H-difference F(0 + h)  F(0) 
exists, i.e., F(0 + h)  F(0) for any h(0, ). So (F(0 + h)  F(0))*(r)  (F(0 + h)  

F(0))*(r), i.e., F(0 + h)*(r)  F(0)*(r)  F(0 + h)*(r)  F(0)*(r) for any h(0, ). 
Therefore, we have 
 
h2

 + r  (02
 + r)  h3

  r + 4  (03
  r + 4). 

 
Hence, h2

  h3 for any h(0,). Thus, we obtain wrong conclusion h  1 for any h(0, ). 
So F is not H-differentiable at x = 0. 
 
Definition 2.3 [16]: A fuzzy mapping F:M defined on a convex subset M in Rn is 
convex if and only if 
 

F(x + (1  )y)  F(x) + (1  )F(y) 
 
for any x, yM and [0,1]. 

The convexity of F is linked to convexity of its endpoint functions. In fact, F is 
convex if and only if F(x)*(r) and F(x)*(r) are convex functions for any r[0,1]. 

 
Lemma 2.1: [19] (Gordan Theorem).  Let A be an m  n matrix. Then Ax < 0 has solu-
tions if and only if there not exists nonzero and non-negative yRn(y0) such that ATy = 0.  

3. D-DIFFERENTIABILITY OF FUZZY MAPPING 

In this section, we give the gradient of D-differentiable fuzzy mappings and a new 
description of D-differentiable convex fuzzy mappings. 
 
Theorem 3.1: Let F:M be a fuzzy mapping,  

x0 = ( x0
1, x

0
2, …, x0

n)int M, u = (u1, u2, …, un)n.  

Then  
0

0 * 1* 2* *
1 2 0

1 2

( ) ( ) ( ( ), ( ), , ( ))
( ) ( , , , )

( ) ( ) ( ( ), ( ), , ( ))
n

n

n

F x r u r u r u r
F x u u u

F x r u r u r u r   

    
 





  

for any r[0,1]. 
 
Proof: Let F(x0) = (u1, u2, …, un). According to Definition 2.2, we have 

 0

0 0 0 0lim ( ) ,( ) , ( ) ,( ) ( , ) 0
x x

D F x u x x F x u x x d x x 


     . 

0

0 0 0 0
* *

[0,1] 1 1
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n n

i i i i i i
x x r i i

F x r x x u r F x r x x u r d x x 
 

   


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
   

0 0 0 0

1 1
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n n

i i i i i i
i i

F x r x x u r F x r x x u r d x x     

 
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
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
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 for any r[0,1]. 


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( ) ( ) ( ) ( ) ( ) ( ) ( , )

( ) ( ) ( ) ( ) ( ) ( ) ( , )

n
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n

i i i
i

F x r F x r x x u r d x x

F x r F x r x x u r d x x






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


   


    




 for any r[0,1]. 


0

* 1* 2* *

0 * * * *
1 2

( ) ( ) ( ( ), ( ), , ( ))

( ) ( ) ( ( ), ( ), , ( ))

n

n

F x r u r u r u r

F x r u r u r u r

 

 




 for any r[0,1]. 

Corollary 3.1: Let F:M be a fuzzy mapping. If F is D-differentiable at x0M, then 
 
F(x) + F(x0), (x  x0)- = F(x0) + F(x0), (x  x0)- + o(||x  x0||)   

where 

[o(||x  x0||)]r = [o(||x  x0||), o(||x0
  x||)] for any r[0,1]. 

 
Proof: According to Definition 2.2, if F is D-differentiable at x0  M, then there exists u 
= (u1, u2, …, un)n such that 

 0

0 0 0 0lim ( ) ,( ) , ( ) ,( ) ( , ) 0.
x x

D F x u x x F x u x x d x x 


      

From the proof of Theorem 3.1, for any r[0,1], we have 

F(x)*(r) + u*(r), (x  x0)- = F(x0)*(r) + u*(r), (x  x0)+ + o(d(x, x0)), 
F(x)*(r) + u*(r), (x  x0)- = F(x0)*(r) + u*(r), (x  x0)+ + o(d(x, x0)). 

This implies that 

F(x) + F(x0), (x  x0)- = F(x0) + F(x0), (x  x0)+ + o((x  x0)).   

Theorem 3.2: Let M be a convex open set in Rn. A fuzzy mapping F:M which is 
D-differentiable is a convex fuzzy mapping if and only if F(x) + F(y), (x  y)-  F(y) + 

F(y), (x  y)+ for any x, yM. 

Proof: Necessary. Let F:M be a D-differentiable convex fuzzy mapping, and the gra- 
dient of F at xM is denoted as F(x) = (u1, u2, …, un)n. 

According to Definition 2.2, we can know that F(x)*(r) and F(x)*(r) are both dif-
ferentiable convex real valued functions on M for any r[0,1]. And by Theorem 3.1 we 
have F(x)*(r) = (u1*(r), u2*(r), …, un*(r)), F(x)*(r) = (u*

1(r), u*
2(r), …, u*

n(r)) for any 
r[0,1]. 

Thus, we can obtain by the properties of convex real-valued function that F(x)*(r)  
F(y)*(r) + F(x)*(r), x  y, F(x)*(r)  F(y)*(r) + F(x)*(r), x  y for any for any r[0,1]. 

This implies that 
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* * * *

* * * *

( ) ( ) ( ) ( ),( ) ( ) ( ) ( ) ( ),( )

( ) ( ) ( ) ( ),( ) ( ) ( ) ( ) ( ),( )

F x r F x r x y F y r F x r x y

F x r F x r x y F y r F x r x y

 

 

       


      
  

for any for any r[0,1]. Therefore, F(x) + F(y), (x  y)-  F(y) + F(y), (x  y)+.  
Sufficiency. Supposing that  

F(x2) + F(x1), (x2
  x1)-  F(x1) + F(x1), (x2

  x1)+ 

for any x1, x2M and for (0,1), taking y = x1 + (1  )x2, then yM. Thus for x1, x2, 
yM, we have 

1 1 1( ) ( ),( ) ( ) ( ),( )F x F y x y F y F y x y        ,   (3) 

2 2 2( ) ( ),( ) ( ) ( ),( )F x F y x y F y F y x y        .    (4) 

So for any r[0,1], by Eqs. (3) and (4), we have 

1 1
* * *( ) ( ) ( ) ( ) ( ) ( ),F x r F y r F y r x y    ,    (5) 

1 1( ) ( ) ( ) ( ) ( ) ( ),F x r F y r F y r x y      .    (6) 

And 
2 2

* * *( ) ( ) ( ) ( ) ( ) ( ),F x r F y r F y r x y    ,    (7) 

2 * * * 2( ) ( ) ( ) ( ) ( ) ( ),F x r F y r F y r x y    .    (8) 

Hence, considering the sum of formula (5) multiplied by  and formula (7) multi-
plied by (1  ), we have 

1 2 1 2
* * * *( ) ( ) (1 ) ( ) ( ) ( ) ( ) ( ) ( ), (1 )F x r F x r F y r F y r x x y           .    (9) 

Similarly, considering the sum of Eq. (6) multiplied by  and Eq. (8) multiplied by 
(1  ), it implies that  

 

1 2 1 2
* * * *

1 2
* *

( ) ( ) (1 ) ( ) ( ) ( ) ( ) ( ) ( ), (1 )

( ) ( ) (1 ) ( ).

F x r F x r F y r F y r x x y

F y r F x x r

   

 

       

   
    (10) 

According to Eqs. (9) and (10), we have  

F(x1) + (1)F(x2)  F(x + (1)y), 

for any x1, x2  M and [0,1], which implies that F is convex fuzzy mapping. 

4. OPTIMALITY CONDITIONS FOR UNCONSTRAINED FUZZY 
PROGRAMMING 

In this section, we give the characteristics of the optimal solution of unconstrained 
fuzzy programming. 
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Let F:M be a fuzzy mapping, then the following problem 

 
(FP)  Minimize F(x),  

Subject to x  M, 
 
is called unconstrained fuzzy programming problem, where M is called feasible set, and 
point x  M is called a feasible solution. 

Since “  ” and “  ” are both partial ordering on , we may quote some concept of 
solution in multi-objective programming problems [9, 11, 14]. 

Ifx  M and there not exists x  M(x x) such that F(x)  F(x), then we callx the 
global optimal solution of fuzzy programming problem (FP) on M. If there exists an 
-neighborhood N(x, ) aroundx for some  > 0 such that there not exists xN(x, )  
M(x x) such that F(x)  F(x), then we callx a local optimal solution of fuzzy program- 
ming problem (FP) on M. 
 
Theorem 4.1: Supposing that fuzzy mapping F:M is D-differentiable atx  M. If 
there exists the direction dRn such that F(x), d+ < F(x), d-. Then there exists  > 0 
such that F(x + d) < F(x), for any (0, ). 
 
Proof: Let F be D-differentiable atx. According to Corollary 3.1, we have 

 ( ) ( ),( ) ( ) ( ),( ) .F x d F x d F x F x d d             

So for r[0,1], we have 

 * * * *( ) ( ) ( ) ( ), ( ) ( ) ( ) ( ),F x d r F x r d F x r F x r d d            , 

 ( ) ( ) ( ) ( ), ( ) ( ) ( ) ( ),F x d r F x r d F x r F x r d d                . 

That is 

 * * *( ) ( ) ( ) ( ) ( ) ( ), ,F x d r F x r F x r d d               (11) 

 ( ) ( ) ( ) ( ) ( ) ( ), .F x d r F x r F x r d d                 (12) 

According to F(x), d+ < F(x), d-, we have 

* * * *( ) ( ), ( ) ( ), ( ) ( ), ( ) ( ), 0.F x r d F x r d F x r d d F x r d             

Similarly, it implies that F(x)*(r), d+  0 and there exists r0[0,1] which allows 

*
0( ) ( ), 0F x r d   or *

0( ) ( ), 0.F x r d    

Again by  
0

lim 0,d


  


  there exists  > 0 such that  

 ( ) ( ), 0,F x r d d         

 *( ) ( ), 0.F x r d d         
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for any [0,] and r[0,1]. And there exists r0[0,1] such that  

 0( ) ( ), 0F x r d d         or  * 0( ) ( ), 0F x r d d         

for any [0,]. Thus, according to Eqs. (11) and (12), for r[0,1], we have

 
* *( ) ( ) ( ) ( )F x d r F x r  ,  
* *( ) ( ) ( ) ( )F x d r F x r  . 

And there exists r0[0,1] such that  

* 0 * 0( ) ( ) ( ) ( )F x d r F x r   or 0 0( ) ( ) ( ) ( ).F x d r F x r     

Therefore, F(x + d) < F(x), for any [0,]. 
 
Theorem 4.2: Let F:Mbe a D-differentiable convex fuzzy mapping, andxM. If  
F(x) = 0, thenx is the global optimal solution. 
 
Proof: Let F be a D-differentiable convex fuzzy mapping, and F(x) = 0. Then for x Rn,  

( ),( ) ( ),( ) 0.F x x x F x x x        

According to Theorem 3.2, we have  

( ) ( ) ( ), ( ) ( ) ( ), ( ) ( )F x F x F x x x F x F x x x F x          . 

Sox is the global optimal solution. 
 
Definition 4.1: Let F:M be a fuzzy mapping, dRn be a nonzero vector. We say that 

d is the descent direction of F atx if there exists  > 0 such that  

( ) ( )F x d F x   for any (0, ).   

According to Theorem 4.1, d is the descent direction of F at x if F is D-differentiable 
fuzzy mapping and F(x), d+ < F(x), d-. Let 

MF = {d|F(x), d+ < F(x), d-, dRn and d  0}.    (13) 

Then MF is the descent direction set of F at x. 
 
Definition 4.2: Let M  Rn be a closed set, dRn be a nonzero vector,xM. d is the fea-
sible direction of M atx if there exists  > 0 such thatx + dM for any x(0, ). 

Set made up by all of the feasible direction of M atx which can be written as 

 0, 0, (0, ), .MD d d x d M               (14) 

And DM is called the cone of feasible directions of M atx. 
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Theorem 4.3: Let a fuzzy mapping F:M be D-differentiable atx in a fuzzy program- 
ming problem (FP). Ifx is the local optimal solution, then MFDM = . 
 
Proof: Supposing that there exists nonzero vector dMFDM, then dMF and dDM. 
According to Eq. (13), we have F(x), d+ < F(x), d-. So according to Theorem 4.1, 
there exists 1 > 0 such that 

( ) ( )F x d F x  , for any 1(0, ).      (15) 

Moreover, according to Eq. (14), there exists 2 > 0 such that 

x + dDM  for any (0, 2).   (16) 

Taking  = min{1, 2}, then Eqs. (15) and (16) both hold when (0, ), which contra-
dicts thatx is the local optimal point. The proof is complete. 
 
Remark 4.1: By Remark 2.2, the corresponding results still hold when the mapping F:M 
 in Theorem 4.3 is H-differentiable. 

5. OPTIMALITY CONDITIONS FOR CONSTRAINED FUZZY 
PROGRAMMING 

In references [9, 11, 14-16], the (convex) fuzzy programming problem is discussed 
in which the objective mapping and the constrained function are convex. In this section, 
under the condition of D-differentiation, we discuss the fuzzy programming problem 
with the general fuzzy mapping as the objective mapping and the general real-value 
function as the constrained function (both non-convex), and give the KKT condition of 
corresponding optimal solution. 

Let F:M be a fuzzy mapping, Gi : RnR(i = 1, 2, …, m) be real valued function. 
The problem like  

 
(MFP) Minimize F(x),  

Subject to Gi(x)  0, i = 1, 2, …, m,  
 
is called constrained fuzzy programming problem where the set 

 
M = {x|Gi(x)  0, i = 1, 2, …, m}  

 
is called feasible set and the point xM is called feasible solution. 

Constraint conditions satisfying Gi(x) > 0 are called inactive constraint atx. On the 
other hand, those satisfying Gi(x) = 0 are called active constraint atx.  

Let I = {i | Gi(x) = 0}. If Gi is differentiable real-valued function, then 
 
GI = {d |Gi(x), d > 0, iI}, 

can replace the cone of directions in Theorem 4.3. 
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Theorem 5.1: Suppose thatxM. F:M is D-differentiable atx, Gi(iI), is differen-
tiable atx and Gi(iI) is continuous atx. Ifx is the local optimal solution of fuzzy pro-
gramming (MFP), then MFGI = . 
 
Proof: According to the proof of Theorem 4.3, we have MFDM =  at pointx.  

Next we prove that GI  DM. Suppose that the direction dGI. We can obtain that 

( ), 0.iG x d      (17) 

For any r[0,1], taking Hi(x)*(r) = Gi(x), Hi(x)*(r) = Gi(x). Then the fuzzy map-
ping Hi:M is D-differentiable atx, and  

*( ) ( ) ( ) ( ) ( )i i iH x r H x r G x       

for any r[0,1]. That is, we have ( ) ( ).i iH x G x    By Eq. (17), it implies that 

( ), ( ), ( ), ( ),

( ), ( ), 0.

i i i i

i i

H x d H x d G x d G x d

G x d d G x d

   

 

      

       
 

Hence, ( ), ( ),i iH x d H x d    . Thus, according to Theorem 4.1, there exists 1 > 0 
such that  

( ) ( )( )i iH x d H x i I    for each 1(0, ).   

So for all iI, we have ( ) ( ) 0i iG x d G x   . Since ( ) 0iG x   when iI, by the continuity 
of Gi(iI) atx, there exists 2 > 0 such that 

( ) 0iG x d   for each x(0, 2).  

Taking  = min(1, 2), then we can obtain that ( ) 0iG x d   for each i = 1, 2, …, m 
and (0, ). Sox + dM. According to Definition 4.2, we have dDM. Thus, GI  DM, 
that is MF  GI = . 
 
Theorem 5.2: Suppose thatx  M. F:M is D-differentiable atx, Gi(iI) is differen-
tiable atx and Gi(iI) is continuous atx. Ifx is a local optimal solution of problem 
(MFP), then for any r[0,1] there exists non-negative real numbers (no all zero) w0*(r), 
wi*(r)(iI), w*

0(r), w*
i(r)(iI), such that  

0* * *( ) ( ) ( ) ( ) ( ) 0,i i
i I

w r F x r w r G x


      

0 ( ) ( ) ( ) ( ) ( ) 0.i i
i I

w r F x r w r G x  



   
 

Proof: Supposex is a local optimal solution of (MFP). According to Theorem 5.1, we 
have MF  GI = . So the following inequalities system is unsolvable 

*

( ), 0

( ) ( ), 0

( ) ( ), 0

iG x d

F x r d

F x r d

  
  

 
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for any r[0,1]. Therefore, for any r[0,1], according to Lemma 2.1 there exists non-
zero and non-negative vector w* = (w0*(r), wi*(r), iI), w* = (w*

0(r), w*
i(r), iI), such that  

0* * *( ) ( ) ( ) ( ) ( ) 0,i i
i I

w r F x r w r G x


      

0 ( ) ( ) ( ) ( ) ( ) 0.i i
i I

w r F x r w r G x  



   
 

Theorem 5.3 (KKT Condition): Suppose F is D-differentiable atx, Gi(i  I) is differen-
tiable atx and Gi(i  I) is continuous atx in fuzzy programming (MFP).  ( )iG x i I   

are linearly independent. Ifx is a local optimal solution, then there exists two non-nega- 
tive real-valued function families wi*(r)(i  I) and w*

i(r)(i  I), defined on [0,1], such that 

* *( ) ( ) ( ) ( ) 0,i i
i I

F x r w r G x


     

( ) ( ) ( ) ( ) 0i i
i I

F x r w r G x 



   
  

for any r[0,1]. 
 
Proof: Letx be a local optimal solution of fuzzy programming (MFP). Then According 
to Theorem 5.2, there are two real number families w0*(r),wi*(r)(iI) and w*

0(r) ,w*
i(r)(i 

I), which are not all zero and non-negative, such that 

0* * *( ) ( ) ( ) ( ) ( ) 0,i i
i I

w r F x r w r G x


   
 

0 ( ) ( ) ( ) ( ) ( ) 0i i
i I

w r F x r w r G x  



   
 

for any r[0,1]. Thus, we can obtain that w0*(r)  0 and w0*(r)  0 for any r[0,1] by the 
linear independence of  ( )iG x i I  . (Otherwise it implies that  ( )iG x i I   are line-
arly dependent becausewi*(r)(iI) andw*

i(r)(iI) are not all zero). Therefore, taking 
w0*(r)   =wi*(r)/w0*(r), w*

i(r) =w*
i(r)/w*

0) for each iI,  then wi*(r)(iI) and w*
i(r)(iI) are 

two non-negative function families defined on [0,1], and satisfy 

* *( ) ( ) ( ) ( ) 0i i
i I

F x r w r G x


    , ( ) ( ) ( ) ( ) 0i i
i I

F x r w r G x 



     for any r[0,1]. 

Remark 5.1: In Theorem 5.3, if Gi(i  I) is differentiable atx, then we easily obtain the 
following the KKT condition of the optimal solution. 

* *
1

1

*

*

( ) ( ) ( ) ( ) 0

( ) ( ) ( ) ( ) 0

( ) ( ) 0

( ) ( ) 0

( ) 0, 1,2, ,

( ) 0, 1,2, ,

m

i i
i

m

i i
i

i i

i i

i

i

F x r w r G x

F x r w r G x

w r G x

w r G x

w r i m

w r i m



 








   


   

 

 


 
  









  

for any r[0,1]. 
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Example 5.1: we Consider the following fuzzy programming problem: 

1 2 1 1 2 2

1 2

1 2

min ( , )

4 0

1, 1

F x x x x x x

x x

x x

   
   
  

   
  

where  

 1 1 1( (1 ), (1 ), ) 0 1x x r x r r r       ,  2 2 2( (1 ), (1 ), ) 0 1x x r x r r r          

are triangular fuzzy numbers. Then through the addition and multiplication of fuzzy num- 
bers, we get 

         2 2 2 2

1 2 1 2 1 2( , ) (1 ) (1 ) , (1 ) (1 ) , 0 1F x x x r x r x r x r r r             .  

Therefore, according to Theorem 3.1, we can obtain that 
 
F(x1, x2) = ({(2(x1  1 + r), 2(x1 + (1  r)), r) | 0  r  1}, {(2(x2  1 + r), 2(x2 + (1  

r)), r) | 0  r  1}. 

Let  

G1(x1, x2) = x1 + x2  4, G2(x1, x2) = x1  1, G3(x1, x2) = x2  1,    

then we have 

G1(x1, x2) = (1, 1), G1(x1, x2) = (1, 0), G2(x1, x2) = (0, 1).  

So by Eq. (18), the KKT condition is  

 
 

1 2 1* 2* 3*

1 1 1 2 3

1* 1 2 2 1 2

2* 1 2 1

3* 2 3 2

2( 1 ),2( 1 ) ( )(1,1) ( )(1,0) ( )(0,1) 0

2( 1 ),2( 1 ) ( )(1,1) ( )(1,0) ( )(0,1) 0

( )( 4) ( )( 4) 0

( )( 1) ( )( 1) 0

( )( 1) ( )( 1)

x r x r w r w r w r

x r x r w r w r w r

w r x x w r x x

w r x w r x

w r x w r x

  







       

       

     

   

   

 
 

*

0

( ) 0 1,2,3

( ) 0 1,2,3

i

i

w r i

w r i










  

  

  

for any r[0,1]. After some algebraic calculations, we easily obtain two non-negative 
real valued functions defined on [0,1]:  

1* 2* 3*( ) 2+2 , ( ) 0, ( ) 0w r r w r w r     

1 2 3( ) 6+2 , ( ) 0, ( ) 0w r r w r w r       

andx = (2, 2). Therefore,x = (2, 2) is the point which satisfies the KKT conditions. 
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Theorem 5.4: Assume that the real valued constraint functions Gi(i = 1, 2, …, m) are 
concave and differentiable, and the fuzzy mapping F is convex on M and D-differen- 
tiable atxM. If the KKT condition of the optimal solution of problem (MFP) is true 
atx, thenx is the global optimal solution. 
 
Proof: Suppose that the fuzzy mapping F is convex on M and D-differentiable atxM. 
According to Theorem 3.2, for any xM, we get 

( ) ( ),( ) ( ) ( ),( ) .F x F x x x F x F x x x          

Thus for any r(0,1), we have 

* * * *( ) ( ) ( ) ( ),( ) ( ) ( ) ( ) ( ),( ) ,

( ) ( ) ( ) ( ),( ) ( ) ( ) ( ) ( ),( ) .

F x r F x r x x F x r F x r x x

F x r F x r x x F x r F x r x x

 

     

      

      
 

So  

* * *( ) ( ) ( ) ( ) ( ) ( ), ,F x r F x r F x r x x     (19) 

( ) ( ) ( ) ( ) ( ) ( ), .F x r F x r F x r x x       (20) 

Moreover, KKT conditions are true atx, that is, there are two non-negative real valued 
function families wi*(r)(iI) and w*

i(r)(iI) defined on [0,1], such that 

* *( ) ( ) ( ) ( ),i i
i I

F x r w r G x


    (21) 

( ) ( ) ( ) ( ).i i
i I

F x r w r G x 



    (22) 

Now Eqs. (19)-(22) imply that 

( ) ( ) ( ) ( ) ( ) ( ), ,i i
i I

F x r F x r w r G x x x  



   
 (23) 

* * *( ) ( ) ( ) ( ) ( ) ( ), .i i
i I

F x r F x r w r G x x x


     (24) 

Since Gi are real valued concave functions for i = 1, 2, …, m, Gi are real valued 
convex functions for i = 1, 2, …, m. Therefore, for iI we have 

( ) ( ) ( ), .i i iG x G x G x x x        

i.e., 
( ), ( ) ( )i i iG x x x G x G x     for each iI.  

Thus by  ( ) 0, ( ) 0i iG x G x i I   , we can obtain that  

 ( ), 0iG x x x i I    .  

Now by Eqs. (23) and (24), it implies that  

* *( ) ( ) ( ) ( )F x r F x r , * *( ) ( ) ( ) ( )F x r F x r   
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for any r[0,1]. Thus, ( ) ( ).F x F x  Hence,x is the global optimal solution of problem 
(MFP). 
 
Remark 5.2: By Remarks 2.2 and 4.1, the corresponding results still hold when the 
fuzzy mappings F:M in Theorem 5.3 and Theorem 5.4 are H-differentiable. 
 
Remark 5.3: The KKT conditions of the optimal solution in [9, 11, 14-16] are only ap-
plicable to a special class of fuzzy programming (convex fuzzy programming) problems, 
while the KKT condition of the optimal solution obtained in this paper is applicable to 
more general fuzzy programming (non-convex fuzzy programming) problems. 

6. CONCLUSIONS 

In references [9, 11, 14-16], under the conditions of L-differentiation, H-differentia- 
tion and generalized differentiation, the (convex) fuzzy programming problem with the 
convex objective mapping is discussed, and the KKT conditions of corresponding opti-
mal solution are obtained. In this paper, under the condition of D-differentiation, we 
discuss the fuzzy programming problem with the general fuzzy mapping (non-convex) as 
the objective mapping. By discussing the characteristics of the optimal solution of un-
constrained fuzzy programming, we give the KKT condition of the optimal solution of 
more general fuzzy programming (non-convex) with real value function as the con-
strained condition. We also discuss the optimal condition of a special class of fuzzy pro-
gramming problem with the real-valued concave function as the constrained condition 
and the convex fuzzy mapping as the objective mapping. The research method in this 
paper provides a new method for further research on the fuzzy programming problem in 
which the general fuzzy mapping is the objective mapping. In particular, under the con-
dition of D-differentiation, some results obtained in this paper will provide a good foun-
dation for further studying the KKT condition of the optimal solution of fuzzy program-
ming problem with the fuzzy mapping as the constrained condition. 
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