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Atrial Fibrillation (AF) is the most common arrhythmia type that affects patients today. 

Detecting and classifying a patient’s electrocardiogram (ECG) beats, especially the supra-

ventricular ectopic beats (SVEB) class, can help assess if the patient has high possibilities 

of AF/atrial flutter in the future. Detecting the SVEB class considered more difficult than 

the other classes. Related works show low classification (prediction) performance, in terms 

of sensitivity, F1 score, and G score, for detecting the SVEB class in a single-lead ECG. 

This work focuses on designing an arrhythmia beats detection method using single-lead 

ECG data with a patient-specific training model design, and does classification based on 

the AAMI standards. This work aims at achieving high classification performance in the 

SVEB class and still meets the real-time ECG classification requirement. The proposed 

method uses Empirical Mode Decomposition (EMD) with resampling (EMDR), which 

resamples only the first Intrinsic Mode Function (i.e., IMF 1) as a main input, for the pro-

posed EMDR-LSTM (Long Short-Term Memory) architecture. In contrast to the related 

works that use two separate models with one or two LSTM layers for each input, we de-

signed a novel LSTM model architecture that only uses a single model with one LSTM 

layer for each input. The proposed LSTM architecture is suited for our preprocessing 

method, EMDR, and can enhance the SVEB classification performance. To the best of our 

knowledge, the proposed EMDR-LSTM is the first one that uses resamples first IMF in 

LSTM that classifies arrhythmia using single-lead ECG data based on the AAMI standards. 

Compared to representative related works, experiment results show that the proposed 

EMDR-LSTM achieves the highest classification performance, in terms of the following 

performance metrics: accuracy, sensitivity, positive predictivity, and F1 and G scores, for 

the SVEB class in all datasets used. In addition, although the proposed EMDR-LSTM has 

higher preprocessing cost and higher computational complexity in terms of MACs (multi-

ply-accumulate operations), it has lower standard deviations of the performance metrics 

and lower inference time, which are important performance metrics for real time or time-

critical applications, e.g., ECG medical monitoring applications, compared to the repre-

sentative related works.      
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1. INTRODUCTION 
 

Atrial Fibrillation (AF) is the most common arrhythmia type that affects patients to-

day. Patients with AF are at risk of heart failure, angina, dementia, and stroke [1, 21]. Di-

sease prevalence of AF is increasing at an alarming rate worldwide [21, 22]. Overall, in 

patients with AF, the crude mortality rate for all-cause death was 63.3 per 1,000 person-

years [29]. The estimated number of individuals with AF globally in 2010 was 33.5 million 

(20.9 million men and 12.6 million women) and is predicted to affect 6-12 million people 

in the USA by 2050 and 17.9 million in Europe by 2060 [30]. According to the landmark 

Framingham Heart Study in 1998, the mortality rates attributable to AF were 50% for men 

and 90% for women [31]. The Renfrew-Paisley Study in two Scottish towns in 2002 show-

ed that AF increased all-cause mortality by 50% amongst men and 120% amongst women 

[32]. 

This work focuses on designing an arrhythmia beats detection method using single-

lead ECG data with a patient-specific training model design since ECG waveforms vary 

significantly among different patients [3]. Furthermore, our arrhythmia classification work 

is based on the AAMI standards to make the proposed work comparable with representa-

tive related works. This work aims at achieving high classification (prediction) perfor-

mance in the SVEB class and still meets the real-time ECG classification requirement. The 

proposed method uses Empirical Mode Decomposition (EMD) with resampling (EMDR), 

which resamples the first Intrinsic Mode Functions (i.e., IMF 1) as a main input, for the 

proposed EMDR-LSTM architecture, and can improve the SVEB classification perfor-

mance. By this method, we can achieve high classification performance in terms of accu-

racy, sensitivity, positive predictivity, and F1 and G scores for the SVEB class in all da-

tasets (A, B, and C) [14]. Note that it is important to improve SVEB class detection because 

two subclasses in the SVEB class, which are Supraventricular Premature Beats (SPB) and 

Atrial Premature Beats (APB), can help assess if patients have high possibilities of AF/ 

atrial flutter in the future [18, 19]. The SPB has also been shown to be one of the reasons 

to trigger AF [20]. 

The proposed work only uses single-lead ECG data instead of multilead ECG data. 

This is useful in some wearable health monitoring devices, where only one lead is available 

[2]. Using multilead ECG is more expensive in terms of time and computational resources 

for processing ECG signals since each lead needs to be processed. Multilead ECG also 

increases model complexity due to the increasing number of parameters in a model since 

using multilead ECG means more ECG signals, which makes the input length becomes 

longer. Single-lead ECG data are from Modified Limb lead II (MLII) because it is the most 

common lead that is used for a single lead record [2-4]. In addition, this work uses the 

LSTM as a classifier since the heartbeat activities are reflected in an ECG waveform, so 

there are temporal dependencies naturally existing in the ECG waveform [2]. The LSTM 

can capture such temporal dependencies in sequential data more efficiently compared to 

other types of neural networks [2]. 

 

1.1 Problem Statement 

 

In a single lead ECG, detecting the SVEB class is considered more difficult than the 

other classes, such as normal class and VEB class [2, 3]. Related works [2-4] show low 
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Fig. 1. A typical waveform of a normal ECG.  Fig. 2. RR intervals in a normal ECG waveform. 

classification performance, in terms of sensitivity, positive predictivity, and F1 and G 

scores, for detecting the SVEB class in a single-lead ECG. The low classification perfor-

mance is related to the chosen features and the classification method. In this work, we 

focus on selecting a different combination of common ECG features, experimenting with 

a different resampling factor for the EMD feature, and also experimenting with a novel 

LSTM architecture for achieving high SVEB classification performance. 

1.2 Contribution 

For improving SVEB classification performance in a single-lead ECG, we proposed 

EMDR-LSTM that uses EMD with resampling (resamples the first IMF) for feature ex-

traction and a novel LSTM architecture. The proposed EMDR-LSTM can improve and 

achieve the highest classification performance in terms of accuracy, sensitivity, positive 

predictivity, and F1 and G scores in the SVEB class, compared to representative related 

works [2-4]. To the best of our knowledge, the proposed EMDR-LSTM method is the first 

work that uses resampling the first IMF in the LSTM. 

The rest of this paper is organized as follows. Section 2 describe the background and 

review related works. In Section 3, we present the proposed EMDR in a novel LSTM ar-

chitecture. Section 4 shows experiment setup and experiment results. Finally, conclusions 

of this work and directions of future work are presented in Section 5. 

2. BACKGROUND AND RELATED WORKS 

This section describes the background on ECG, EMD and LSTM, and reviews repre-

sentative related works on ECG signal classification techniques.  

2.1 Background 

2.1.1 R-peak and RR interval 

As shown in Fig. 1, a typical waveform of a normal ECG consists of several points 

such as P, Q, R, S, T. Each of these points related to the heartbeat muscle movement and 

the way electrocardiogram records the heartbeat electrical impulse [28]. The R-peak posi-

tion is the highest peak in the ECG waveform. In Fig. 2, an RR interval is the duration 

between two subsequent R-peak’s, where the current R-peak position denotes as R(i), the 

previous R-peak position denotes as R(i − 1), and the next R-peak position denotes as R(i 

+ 1). The RR interval value is used as one of the concatenation materials for the input in 

this work. 
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2.1.2 EMD 

The EMD is an adaptive time-space analysis method developed by N. E. Huang et al. 

[12]. Its effectiveness has already been demonstrated successful to many important prob-

lems encountered in processing biomedical, financial, geographical, and acoustic signals. 

The EMD has already been demonstrated to be very efficient for such ubiquitous tasks as 

denoising, time-frequency analysis [17]. The EMD decomposes a signal into a set of IMFs 

by a series of shifts. An IMF is a function that satisfies two conditions [35]: 

1. In the whole data set, the number of extrema and the number of zero crossings must ei-

ther equal or differ at most by one. 

2. At any point, the mean value of the envelope defined by the local maxima and the en-

velope defined by the local minima is zero. 

The shifting process terminates when the original signal contains no significant fre-

quencies. The last IMF obtained is known as residue r. 

2.1.3 LSTM architecture 

The LSTM is a type of recurrent neural networks (RNNs) [16] used in the field of 

deep learning, and all RNNs have feedback loops in the recurrent layer. However, the 

training of traditional RNNs suffers from a vanishing gradient problem [35-37]. The LSTM 

addresses the problem via input, forget, and output gates [36] in a cell which regulate the 

information flow into and out of the cell to overcome the vanishing gradient problem of 

the traditional RNNs [37]. The LSTM can process single data points and sequences of data. 

We chose this architecture because this deep learning technique is suitable for handling 

time series data. Fig. 3 shows an LSTM architecture. The LSTM units includes cells, an 

input gate (It), an output gate (Ot), and a forget gate (Ft). A cell remembers values over 

arbitrary time intervals, and the other three gates regulate how the flow information comes 

in or out of the cell. It also includes an intermediate vector (Mt), the input vector at time t 

(Xt) and two state vectors, Ht and Ct which are carried from time t − 1 to time t.  

 

Ht-1

Ct-1 Ct

Ht

Xt

Ft it OtMt

Element-wise 
Multiply

Element-wise 
Addition

Linear 
Combination

Activation 
Function  

Fig. 3. Long short-term memory (LSTM) 1. 
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2.2 Related Works 

Fig. 4 presents the classification techniques of ECG signals that compares the pro-

posed EMDR-LSTM with representative related works. We categorize ECG signals into 

the single-lead and the multilead ECG. In the single-lead ECG, we split the category based 

on the AAMI standard and non-AAMI standard, which is also related to the dataset source 

and heart disease. Based on the most recent researches, we separate the classification 

methods into LSTM-based and 1-D CNN-based, and the proposed EMDR-LSTM is 

LSTM-based. 

ECG signal 

classification

Single-lead 

ECG

EMDR-LSTM 

(proposed)

S. Saadatnejad et al.  [2]

X. Fan et al. [15]

P. D. Chazal et al. [6] 

AAMI 

standard

Non-AAMI 

standard

Multilead 

ECG

M. Kachuee et al. [4]

S. Kiranyaz et al. [3]

N. Strodthoff et al. [23] 

U. B. Baloglu et al. [24] 

W. Liu et al. [25] 

W. Liu et al. [26] 

LSTM

1-D CNN

Linear 

discriminants

CNN

CNN-RNN

MS-CNN

 
Fig. 4. Classification techniques of ECG signal. 

2.2.1 Related works on multilead ECG and EMD 

L. Y. Wang et al. [13] used EMD with singular value decomposition and the support 

vector machine (SVM) for classification. First, a signal is decomposed with EMD into a 

set of IMFs that are used to create a feature vector matrix. Then the feature vector matrix 

is decomposed using singular value decomposition and singular values of the matrix can 

be calculated as a feature of the ECG. After that, they used the SVM to identify the condi-

tion of arrhythmia. Izci et al. [8] used EMD for one of their main steps. Power spectral 

density (PS) and the variance of PS are extracted, which are applied to IMF 1 to IMF 7. 

Then classification using linear discriminant analysis is applied to differentiate normal and 

arrhythmic signals. Both related works [8, 13] were using the MIT-BIH arrhythmia data-

base, However, they did not use the AAMI standards for their classification results, which 

makes their works not comparable to this proposed work. 

Related works from [21, 22, 24] used CNNs to classify myocardial infarction beats 

into normal and abnormal classes. W. Liu et al. [23] used hybrid CNN-RNN for classifying 

the same disease using 12 lead ECG record data. However, their works [21-24] are not 

comparable to this proposed work since they used the multilead approach and did not focus 

on the heart disease. P. de Chazal et al. [6] used heartbeat intervals and morphology fea-

tures from two ECG leads to classify ECG signals into classes based on the AAMI stand-

ards. They used a linear discriminant as the classifier. Although they used the patient-spe-

cific method and the same dataset source, their work used two ECG leads. Therefore, their 

work is also not comparable to the proposed work which uses only single-lead ECG. 
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2.2.2 Related works on single-lead ECG 

There are related works on single-lead ECG. X. Fan et al. [13] proposed multi-scaled 

CNN (MS-CNN) to extract different feature sizes from ECG signal data. They used two 

inputs with two branches for their model with each branch implementing VGG architecture 

and used a different kernel size for each branch. Their work considered only two classes 

which are Atrial fibrillation (AF) and Normal and they used a dataset from Computing in 

Cardiology Challenge 2017 [5]. Since the dataset did not come from the MIT-BIH arrhyth-

mia database and they did not use the AAMI standards, which makes their work not com-

parable to the proposed work. 

S. Saadatnejad et al. [3] proposed an LSTM-based ECG classification for personal 

wearable devices. They used a combination of several input features based on the seg-

mented ECG signal using the R-peak position, four distinct RR intervals and ECG signals 

that were transformed with discrete wavelet transform (DWT). Their model has three   

inputs. They used one or two layers RNN with LSTM cells and used multilayer perceptron 

(MLP) to produce classification results. They used the MIT-BIH arrhythmia database and 

implemented a patient-specific method to preprocess the dataset. They evaluated their 

work using a dual-lead ECG dataset, but also conducted evaluation on a single-lead ECG 

dataset using the MLII channel. Their method showed both lightweight and had good clas-

sification performance. In our proposed work, we used a new feature, which only resam-

ples the first IMF with other common ECG features such as the ECG segment and the RR 

interval, and a novel LSTM architecture. The proposed work achieves higher SVEB clas-

sification performance in all metrics of single-lead ECG than this work, which will be 

shown later. 

Kiranyaz et al. [3] used a one-dimensional (1-D) CNN to do the feature extraction 

and ECG classification based on the AAMI standards. Their method only utilizes a beat 

ECG segment and a beat-trio ECG segment, which both centered at the R-peak in the mid-

dle. Their method used only three layers of CNN and ran only 50 epochs with early stopping 

which can reduce the training time. In addition, their method is lightweight and have good 

classification performance. Compared to this work, the proposed work achieves higher 

SVEB classification performance in terms of accuracy, sensitivity, positive predictivity, 

and F1 and G scores. Kachuee et al. [4] used a 1-D residual CNN as their classification 

method. They also used the dataset from the MIT-BIH arrhythmia database and was based 

on the AAMI standards. Their work only used a segmented ECG as an input and used a 

13-layer CNN architecture [4]. Compared to this work, the proposed work performs better 

in terms of SVEB classification performance and has less model complexity since the pro-

posed work only utilizes a single layer LSTM architecture. 

Table 1 summarizes the qualitative comparison of single-lead ECG signal classification 

approaches that includes the proposed work. First, the proposed work uses a unique feature 

that resamples only the first IMFs. Second, for the model architecture, we used a novel 

LSTM architecture, which is different from related works [2-4]. Besides, the proposed 

work achieves the highest performance results in terms of accuracy, sensitivity, positive 

predictivity, and F1 and G scores in the SVEB class and, compared to the representative 

related works [2-4]. While the preprocessing time of the proposed work is longer than that 

of related works [2-4], the inference time of the proposed work is lower than that of related 

works [2, 4]. Note that the quantitative evaluation of these single-lead ECG signal classi-

fication approaches will be shown in Section 4. 
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Table 1. Comparison of single-lead ECG signal classification approaches. 

Approach 
S. Saadatnejad et al. 

[1] 

M. Kachuee et al. 

[3] 

S. Kiranyaz et al. 

[2] 

EMDR-LSTM 

(Proposed) 

Dataset 
source 

MIT-BIH arrhythmia 
MIT-BIH  

arrhythmia 
MIT-BIH  

arrhythmia 
MIT-BIH  

arrhythmia 

Classifica-
tion classes 

5 classes − AAMI 

standard 

5 classes − AAMI 

standard 

5 classes − AAMI 

standard 

5 classes − AAMI 

standard 

ECG lead 
Dual lead or single-

lead (MLII) 
Single-lead (MLII) Single-lead (MLII) Single-lead (MLII) 

Evaluation 
metric 

Accuracy, sensitivity, 

specificity, positive 
predictivity, and F1 

and G scores 

Average accuracy 

Accuracy, sensitiv-

ity, specificity, posi-

tive predictivity 

Accuracy, sensitiv-

ity, specificity, posi-

tive predictivity, F1, 
G scores (highest in 

SVEB in all metrics 

except specificity) 

Classifica-

tion tech-

nique 

LSTM (Two separate 

RNN-based models, 

model A and model B) 

Deep residual CNN 1-D CNN 
LSTM (One RNN-

based model) 

Features 
RR-interval, ECG  

segment, DWT 

Resampled ECG 

segment 

A beat ECG  

Segment and a beat-
trio ECG segment 

EMD with resamp-
ling (resamples only 

the first IMF), RR in-  
terval, ECG segment 

Preprocess- 

ing time  
Short Short Short  Long 

Inference 
time 

Medium High Not available Low 

3. PROPOSED EMD WITH RESAMPLING IN A NOVEL 
LSTM ARCHITECTURE 

3.1 Proposed EMD with Resampling for ECG Signal Preprocessing 

In the proposed work, we used EMD with resampling (EMDR) as the main feature 

alongside other features as an input for the proposed LSTM architecture. As shown in Fig. 

5, in the EMDR preprocessing design, we used an ECG signal as an input. This ECG signal 

consists of at least 10 R-peak’s in order to extract the RR interval value. We used beat 

annotation that is in compliance with the AAMI standards to classify arrhythmia. As for 

the segmentation, the incoming digitized ECG samples are programmatically segmented 

into a sequence of heartbeats based on the R-peak position from the ground truth labeling 

so that each ECG segment has a fixed length of 0.25 seconds before R-peak and 0.45 

seconds after R-peak 1. Note that there are R-peak position detection algorithms that are 

well established and highly accurate [42, 43]. This segmentation process also extracts the 

RR interval value for the current segmented ECG. In total, there are four RR interval values 

[2]. The first RR interval value is rr1, which comes from the distance between one previous 

R-peak position (i − 1) and the current R-peak position (i). The second RR interval value 

is rr2, which comes from distance from the current R-peak position (i) and one next     

R-peak position (i + 1). Third, rr3 is the average of 10 RR intervals from eight previous  

R-peak positions (i − 8) until one next R-peak position (i + 1). Originally, the rr3 feature 

by Saadatnejad [1] is from (i − 4) until (i + 5). In our pre-processing method, we modified 

the rr3 feature to reduce the prediction delay since the original one needs five next R-peak 

positions for classifying the current beat. In our modified rr3 feature, only one next R-peak 
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position is needed. Nevertheless, the modified rr3 feature does not affect the classification 

performance which has been validated by experiments. The fourth RR interval value is rr4, 

which is the average RR interval per patient (first 5 minutes). After getting all RR interval 

values, we concatenate it into one value (rr1, rr2, rr3, rr4), and it is denoted as RRF. Then 

we apply normalization by dividing RRF with the rr4 value [27]. RRF will become one of 

the features used for an LSTM input. 

There will be three outputs for our preprocessing method. We called these outputs as 

Preprocessing Outputs (POs). For the first PO, which PO1, the EMD function is applied to 

the segmented ECG (ECGF). The EMD will decompose the ECGF into several IMFs. In 

the proposed EMDR preprocessing technique, we only use the first IMF, and we only take 

the real number and remove the imaginary. After getting the first IMF, we apply it with a 

resampling function with a factor of 0.3. Note that we searched for the best resampling 

factor using a grid search and 0.3 is the best value for the resampling factor.   

R-peak 
segmentation

EMD

Resampling
(factor: 0.3)

Concatenation
(RRF, EMDF, RRF)

Concatenation 
(RRF, ECGF, RRF)

First IMF

EMDF

Concatenation
(rr1, rr2, rr3, rr4)

Normalization

R-peak

Concatenation
(RRF, EMDF, BEATF)

EMDF

Moving average
(window = 5)

ECGF

Normalization

BEATF

RRF

RRF

Preprocessing 
Output 1

Input ECG 
signal

Preprocessing 
Output 3

Preprocessing 
Output 2

EMDR
preprocessing

 
Fig. 5. EMDR preprocessing design. 

 

Using EMD with resampling can enhance the SVEB classification performance in 

terms of Sen, and F1 and G scores since it helps extract the first IMF feature from seg-

mented ECG for the SVEB class. Using resampling can reduce the complexity of the deep 

learning model by reducing the length of the first IMF by 70%, from the original EMD 

data length 250 reducing to 75, which reduces the number of parameters. This resampling 

the first IMF is denoted as EMDF. After that, we concatenate it with the order of RRF, 

EMDF, and RRF, to get the final Preprocessing Output 1 (PO1) results. For PO2, we dir-

ectly use the ECGF and RRF with the following concatenation order, RRF, ECGF, and  

RRF. In EMDR, by concatenating RRF twice for PO1 and PO2, and ECGF for PO2, the 

classification performance can be improved, which were our empirical research findings. 

This is for improving the classification performance by adding a raw ECG segment feature. 

For PO3, we do further preprocessing for ECGF with downsampling using a moving 

average function with a window size of 5 and min-max normalization. The output for this 

process is called BEATF. This is to reduce the model complexity by reducing the input 
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length. The final PO3 result is a concatenation of RRF, EMDF, and BEATF. We employed 

a patient-specific training design method in the proposed work. 

 

3.2 EMDR-LSTM Architecture 

 

This proposed work is based on the LSTM architecture. We chose this architecture 

since it is suitable for handling the ECG waveform data. We cannot directly use related 

work [2]’s LSTM architecture, because our preprocessing method, EMDR, is different 

from that of related work [2]. This makes the three Pos’ complexities and lengths of the 

proposed work be different, and several things are not optimized, such as LSTM hyperpa-

rameters and the number of layers for each LSTM input. Since the three POs are different, 

we need to design a novel LSTM architecture that is suitable for the POs to achieve the 

highest SVEB classification performance. In contrast to Saadatjad et al. [2] that uses two 

separate models with one or two LSTM layers for each input, we proposed a novel LSTM 

architecture that has one single model with a single LSTM layer only for each input and a 

single fully connected (FC) layer for achieving the highest SVEB classification perfor-

mance.  

Table 2 shows the LSTM architecture differences between the proposed EMDR-

LSTM and Saadatjad et al. [1]. We chose a single model instead of two separate models 

used by Saadatjad et al. [1] because we found that our POs perform better in a single model 

instead of two. If we use two separate models, we need to have another FC layer and MLP 

to combine the result from each model. We found that an additional MLP layer makes the 

classification performance become worse compared to that using an FC only. We only use 

one LSTM layer instead of two, which also have an advantage of reducing the model com-

plexity. 

 

Table 2. The LSTM architecture differences between the proposed EMDR-LSTM and 

Saadatjad et al. [1]. 

Saadatnejad et al. [2] EMDR-LSTM (proposed)

RNN cells LSTM LSTM

Number of inputs 3 3

Number of models two separate models one single model

Number of RNN layers 1 or 2 layers one layer only

Multilayer perceptron 

layers
Yes, 2 hidden layers

No, only a single fully connected 

layer  

 

Fig. 6 shows how the proposed EMDR-LSTM works. The three outputs from EMDR, 

PO1, PO2, and PO3 are fed to the proposed LSTM architecture as inputs. The three POs 

will be reshaped to make them suitable for LSTM layer inputs, which are denoted as inputs 

1, 2, and 3. Each input is fed and processed by an LSTM layer. The result from each LSTM 

layer is an array of LSTM features. Then the array of LSTM features from each input are 

concatenated into a large array of features. The final length of this concatenated array fea-

ture is the addition of a length of array features from each LSTM layer for inputs 1, 2, and 

3. This concatenated array of LSTM features is then fed into the FC layer in order to get 

one-class classification results for the input beat. 
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Segmentation

Input

Output

LSTM

PO 2
PO 1

Input 1 Input 2

LSTM

Fully connected 
layer (FC)

Concatenation

Input 3

LSTM

PO 3

Preprocessing
(EMDR)

 
Fig. 6. EMDR-LSTM: Preprocessing and LSTM design architecture. 

Segmentation

Input

Output

LSTM

PO 2
PO 1

Input 1 Input 2

LSTM

Fully Connected 
layer (FC)

Concatenation

Input 3

LSTM

PO 3

Preprocessing
(EMDR)

A

B1

B2

C1

C2

C3

C4

D
 

Fig. 7. EMDR-LSTM process flow. 

 

3.3 EMDR-LSTM Process Flow 

An example is used to illustrate each state of the proposed EMDR-LSTM. Fig. 7 

shows the process flow of the EMDR-LSTM. Part A is the input, part B (B1 + B2) is for 

data preparation and processing, where part B1 is for ECG segmentation and part B2 is for 

EMDR-LSTM preprocessing. Part C (C1 + C2 + C3 + C4) is the LSTM architecture, where 

part C1 is for input reshaping for each LSTM, part C2 is the LSTM layer, part C3 is 

concatenation for the array features results from the LSTM layer for each input, and 

part C4 is the FC layer. The last part is part D which is the output for the ECG classi-

fication prediction result. 
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Preprocessing output (PO) 2

Array(1,131)

Preprocessing output (PO) 3

Input 1
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Array(8, 30)

Input 2
Array(8, 10, 27)
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Array(8, 60)

LSTM layer for input 3
Array(8, 60)

Array(1,250)

Input ECG signal

ECG Segment

 
Fig. 8. Intermediate results of the EMDR-LSTM process flow. 

 

Fig. 8 shows the intermediate results of the EMDR-LSTM process flow and the 

detailed data shape for each part. Part A is an input ECG signal, with at least 10 R-

peak’s, which consists of eight previous R-peak’s, one current R-peak, and one next 

R-peak positions. Part B1 is the process of R-peak detection and R-peak based beat 

segmentation, where the results are segmented ECG and the RR interval values, as 

explained in Section 3.1. In part B2, after acquiring the ECG segment and RR interval 

values, the preprocessing is started, where it applies the EMD with resampling to the 

ECG segment and proceeds the preprocessing method, as explained in Section 3.1. 

There are three POs, which are PO1, PO2, and PO3 from the results of part B2. PO1 

is the preprocessed signal with shape (1, 84), PO2 has shape (1, 260) and PO3 has 

shape (1,131). 

Each PO will then be reshaped in order to make it suitable for an LSTM input, 

which is done in part C1: the final shape (8, 5, 17) for input 1, (8, 10, 27) for input 2 

and (8, 5, 27) input 3. Each input shape is related to the number of batches, which is 8 

and the timesteps, which are 5, 10, and 5 for inputs 1, 2, and 3, respectively, in the 

LSTM hyperparameters and each PO length settings. Part C2 shows the LSTM layer 

for each input with each array feature results from the LSTM layer. The output array fea-

ture is related to the neuron setting for each LSTM layer, which are 30, 60, and 60 for 

inputs 1, 2, and 3, respectively. In part C3, the array of features from each LSTM layer 

is concatenated into one large array of features, which makes the length become 150 

because it is a concatenation of the array features from the LSTM layer for each input. 
Part C4 uses the concatenated array of features from part C3 as an input for the FC 
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layer which applies the Softmax function in order to classify into 7 classes. Finally, 

part D is the output from the FC layer, which is the classification prediction result of 

one final class for the input beat, 1 predicted class out of 7 available classes.  

4. EXPERIMENT SETUP AND RESULTS 

In the proposed LSTM architecture, the setting of hyperparameters is an important 

matter. We used Neuron (N) settings N1 = 30 for the LSTM layer for input 1, and N2 = 60 

for input 2, and N3 = 60 for input 3. We obtained optimum neuron values by using the grid 

search from 10 − 100 with a step value of 10 for each increment. The proposed architecture 

was trained with epoch 110 and the number of batches per epoch was set to 8. The values 

of timesteps for LSTM inputs is 5, 10, and 5 for inputs 1, 2, and 3, respectively. We em-

ployed early stopping to prevent overfitting and to reduce training time. We used two cri-

teria in early stopping: first, if the training loss is below 0.11 and second, if the training 

accuracy is above 0.98. The proposed LSTM architecture will stop the training to avoid 

overfitting if either of these criteria is met. We used the categorical cross-entropy function 

[38] as the loss function and the training accuracy, in the range from 0 to 1, is defined as 

the number of correct predictions divided by the number of total predictions during the 

training process [39]. For the FC layer, we used the softmax activation function to take the 

classification result with the highest probability to be the final result for the beats. Other 

parameters for LSTM cells were the tanh activation function and sigmoid for recurrent 

activation. For kernel initialization, we used Glorot uniform, and recurrent initialization 

was orthogonal with gain value 1.0 and biases were initialized to zeros. The random seed 

was set to 18 for kernel initialization in each layer. We chose the trained LSTM model 

with the one that has the minimum training loss value. 

 

4.1 Dataset and Tools 

 

The dataset from the MIT-BIH ECG arrhythmia database [14] was used for evaluating 

the proposed EMDR-LSTM, and we chose this dataset to make our evaluation comparable 

with that of related works [2-4]. This dataset consists of 48 records from 47 patients. Each 

record has two leads; the first one is MLII and the second one is modified lead V1 or V2, 

V4, and V5. Note that for beat annotations, two or more cardiologists independently anno-

tated each record in the MIT-BIH dataset [14]. This dataset contains two sets of data based 

on patient id. It is called DS100 with an id range from 100-199 and DS200 from 200- 299. 

This dataset includes data for both normal and abnormal beats. Based on the AAMI stand-

ards [7], patient id with paced beats (102, 104, 107, and 217) are excluded from testing 

and training datasets. This work uses a single-lead ECG approach that uses the first lead, 

the MLII, since it is the most common lead for a single-lead experiment. 

Hardware specifications for training the LSTM model were Intel i9 CPU, NVIDIA 

GeForce RTX 2080 SUPER with 8 gigabytes GPU memory, and 32 gigabytes RAM 

memory. The LSTM architecture was implemented in Keras deep learning API [10] that 

ran on the top of TensorFlow [9]. The EMD algorithm was implemented in Python that 

used the EMD-signal library [11]. We used the Python 3.0 scripting language for data pre-

processing and for developing of the LSTM model. 
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4.2 Patient-Specific Training 

We used a patient-specific training method in the proposed EMDR-LSTM architec-

ture to make it comparable to representative related works [2-4]. Patient-specific training 

means that each patient has his/her patient-specific training data and his/her model is 

trained using his/her data. Each patient-specific training data come from the first 5 minutes 

of each patient data, and are combined with global data. The global data come from patient 

DS100. We randomly added the global data to each first 5 minutes of patient data with the 

size of the maximal 30 global data for each class representative. For example, for patient 

id 200, we added a maximal of 30 beat data from the global data (random chosen) for each 

class representative which is 7, to the first 5 minutes of patient id 200 data, so the maximal 

global data that used were 30 ×  7 = 210. The random global data are the same for all patients. 

For test data, the first 5 minutes of each patient data were removed. Since we employed 

the patient-specific training method, each patient has his/her model instead of one model 

for all patients. Fig. 9 shows how we combine the data and how the model is generated for 

each patient. 

 

Training

ECG data from 
patient n

Global ECG 
data

Inference

Patient n

Trained 
model for 
patient n

 
Fig. 9. Patient-specific training and ECG signal classification [2]. 

 

4.3 Evaluation Metrics 

The proposed EMDR-LSTM was evaluated and compared with representative re-

lated works [2-4] in terms of accuracy (Acc), sensitivity (Sen), specificity (Spe), positive    

predictivity (Ppr), and F1 and G scores. This work performs the multi-class classification 

and evaluates the VEB and SVEB classes in binary classification. The terms TP, TN, FP, 

and FN denote as true positive, true negative, false positive, and false negative, respec-

tively. The performance metrics are summarized as follows: 

TP TN
Acc

TP TN FP FN

+
=

+ + +
 (1) 

TP
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TP FN
=

+
 (2) 

TN
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TN FP
=

+
 (3) 
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TP FP
=

+
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G Sen Ppr=   (6) 

We classify the results into seven arrhythmia classes where we split the normal class 

(N) into two conduction abnormalities, which are left bundle branch block (L) and right 

bundle branch block (R) to increase resolution [2]. Then the seven classes were combined 

into five classes based on the AAMI standards to make the proposed work comparable to 

related works [2-4]. Note that five arrhythmia classes based on the AAMI standards are 

Normal (N), Supraventricular ectopic beats (SVEB or S), Ventricular ectopic beats (VEB 

or V), Fusion (F), and Unknown (Q). Table 3 shows the seven classes and its relation to 

the five classes that is based on the AAMI standards. There is a specific dataset of patient 

id’s for testing purposes based on related work [1]. We follow this dataset to make the 

proposed work comparable to related works [1-3]. The datasets are dataset A: VEB: 200, 

202, 210, 213, 214, 219, 221, 228, 231, 233 and 234 (11 Patient id’s), SVEB: the same as 

VEB, plus 212, 222, and 232 (14 Patient id’s), dataset B: 100, 103, 105, 111, 113, 117, 

121, 123, 200, 202, 210, 212, 213, 214, 219, 221, 222, 228, 231, 232, 233, 234 (22 patient 

id), and dataset C: 200, 201, 202, 203, 205, 207, 208, 209, 210, 212, 213, 214, 215, 219, 

220, 221, 222, 223, 228, 230, 231, 232, 233, and 234, (24 patient id’s). 

In addition, we derived the inference time for each model. Note that inference time, 

which is the latency (or the response time) of an AI model, is an important metric, espe-

cially for real-time or time-critical applications, such as an ECG medical monitoring ap-

plication, which is the target application of this paper. We computed inference time using 

the timeit library in Python and ran on Google Colab. We used a patient-specific method 

to calculate the inference time of each model. The testing data consist of 44 patients,    

denoted as Total Patients (TPs), and a total of 83714 segmented beats, denoted as Total 

Segmented Beats (TSBs). First, we calculate Inference Time Per Patient (ITPP) and sum-

marize all the patient’s inference time to get Total Inference Time (TIT). Then we calculate 

the average of Inference Time per Patient (aITP) and the average of Inference Time per 

Beat (aITB). We also calculate the Longest Inference Time from All Patients (LITAP) and 

the Shortest Inference Time from All Patients (SITAP), as follows: 

TIT
TPs

aITP = ,  (7) 

TIT
TSBs

aITB = ,  (8) 

1LITB = max((ITPP ), ..., (ITPP ))n  (9) 

1SITAP = min((ITPP ), ..., (ITPP ))n  (10) 

Table 3. Heartbeat classes [2, 7]. 

5 Labels 7 Labels Hearbeat Types 

N N Normal beat, atrial escape beat, junctional escape beat 

L Left bundle branch block beat 

R Right bundle branch block beat 

S S Atrial premature beat, aberrated atrial premature beat, junctional 

premature beat, supraventricular premature beat 

V V Premature ventricular contraction, ventricular escape beat 

F F Fusion of ventricular and normal beat 

Q Q Paced beat, fusion of paced and normal beat, unclassifiable beat 
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4.4 Evaluation Results 

4.4.1 Evaluation of ECG signal classification 

For evaluation, we implemented the proposed model so as to compare with repre-

sentative related works [2-4]. Note that S. Saadatnejad et al. [2] provides online source 

codes for data and their model approach, but it is only for dual-lead ECG. To produce the 

results of related work [2] in terms of a single lead under the same environment, we recre-

ated the preprocessing and a deep learning model based on their work. We also recreated 

the work by Kachuee et al. [4] and implemented their work in a patient-specific train-   

ing way. We make sure our implementation is correct by comparing and checking the      

similarities between our produced results to the results of their works. As to Kiranyaz et al. 

[3], based on our observation, the total beats data difference between the two approaches 

is only 69. Therefore, we directly used their results because there is no significant results 

difference if the total beats data difference is not more than 250. Since the training of deep 

learning depends on randomness such as initial weights and the optimizer used, we ran the 

test of the proposed work 10 times and took the average. Tables 4 and 5 show the classifi-

cation results comparisons between the proposed model and related works [2-4] for VEB 

and SVEB classes, respectively. In Table 4, the proposed EMDR-LSTM model achieves 

better classification performance compared to related works [2-4] in VEB class, for da-

tasets A and B. However, in Table 4, the proposed model achieves lower classification 

performance compared to related works [2, 3] in VEB class, for dataset C. This is because 

we designed the preprocessing method and fine-tuned the LSTM hyperparameter to en-

hance the SVEB class instead of the VEB class. In Table 5, the proposed model has the 

highest SVEB classification performance in terms of Acc, Sen, Ppr, and F1 and G scores 

compared to all related works [2-4] in all datasets. In addition, the proposed model has the 

lowest standard deviations compared to related works [2, 4] in both VEB and SVEB classes, 

as shown in Tables 4 and 5, respectively, which indicates the stability of the proposed 

model. By utilizing two early stopping criteria [40] that were not used by related works [2, 

4] and by using mini-batch gradient descent [41] with a smaller mini-batch size than that 

of related work [2] for training, the proposed model can avoid the overfitting problem and 

can thus produce the model with the lowest standard deviations. 

In addition, we derived the total number of parameters (Total params) and MACs 

(multiply-accumulate operations) to reflect cost, and inference time, which is an im-

portant performance metric for real-time or time-critical applications, to reflect an ad-

ditional performance measure besides the original performance measures (Acc, Sen, 

Spe, etc.) that have been derived. Based on the experiment results in Table 6, the Total 

params in the proposed EMDR-LSTM model is higher than that of Saadatnejad et al. [2], 

but lower than that of Kachuee et al. [4]. As to the MACs, the proposed model is higher 

than the other two related works. However, Table 7 shows that the proposed model has the 

lowest inference time in terms of LITAP, SITAP, aITP and aITB, compared to related works 

[2, 4]. Note that we repeated this experiment 10 times and took the average for each of the 

above performance metrics. The reasons that the proposed model has the lowest inference 

time among the three models are described as follows. Saadatnejad et al. [2] uses two 

RNN-based models, named model alpha and model beta. Both models use an RNN 

with LSTM cells with one or two layers, where model alpha consists of two branches 
while model beta has only one branch. Kachuee et al. [4] uses a model consists of five 

residual blocks and each residual block contains two convolutional (CNN) layers in 
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series. In total, the resulting network is a deep network consisting of 13-layer CNN 
architecture [4]. In contrast, the proposed EMDR-LSTM model uses an LSTM archi-

tecture that has three LSTM layers branches to process preprocessing outputs PO1, 

PO2, and PO3, in parallel. This indicates that the proposed model makes better use of 

underlying parallel software/hardware, where the three LSTM layers branches use prepro-

cessing outputs PO1, PO2, and PO3, in parallel, as shown in Fig. 7, in contrast to S. Saadat-

nejad et al. [2] and Kachuee et al. [4]. In summary, although the proposed EMDR-LSTM 

has higher preprocessing cost and higher computational complexity in terms of MACs, it 

not only has higher overall classification performance, but also has lower standard devia-

tions of all the performance metrics and lower inference time, which are important perfor-

mance metrics for real time or time-critical applications, e.g., ECG medical monitoring 

applications, compared to representative related works [2, 4].  

 

Table 4. Comparison of single-lead ECG signal classification performance for VEB class 

in terms of Average and standard deviation of each performance metric. 

Dataset Approach Acc Sen Spe Ppr F1 G

Saadatnejad et al. [2] 98.86 ± 0.18 94.69 ± 0.49 99.42 ± 0.19 95.62 ± 1.34 95.15 ± 0.72 95.15 ± 0.73

Kachuee et al. [4] 97.60 ± 0.99 91.95 ± 1.71 98.36 ± 1.18 88.27 ± 7.07 90.07 ± 3.55 90.09 ± 3.43

Kiranyaz et al. [3]* 98.90 95.90 99.40 96.20 96.05 96.05

EMDR-LSTM (proposed) 99.26 ± 0.06 95.60 ± 0.56 99.75 ± 0.08 98.09 ± 0.59 96.83 ± 0.24 96.84 ± 0.24

Saadatnejad et al. [2] 99.30 ± 0.10 94.36 ± 0.53 99.64 ± 0.10 94.76 ± 1.33 94.56 ± 0.71 94.56 ± 0.71

Kachuee et al. [4] 98.27 ± 0.49 91.57 ± 1.70 98.74 ± 0.48 83.40 ± 5.24 87.29 ± 3.21 87.39 ± 3.10

EMDR-LSTM (proposed) 99.41 ± 0.07 95.42 ± 0.55 99.68 ± 0.09 95.44 ± 1.21 95.43 ± 0.53 95.43 ± 0.53

Saadatnejad et al. [2] 98.14 ± 0.14 85.27 ± 0.73 99.53 ± 0.15 95.07 ± 1.45 89.90 ± 0.68 90.04 ± 0.71

Kachuee et al. [4] 97.04 ± 0.40 83.32 ± 1.82 98.51 ± 0.34 85.75 ± 2.94 84.52 ± 2.02 84.53 ± 2.03

Kiranyaz et al. [3]* 98.60 95.00 98.10 89.50 92.17 92.21

EMDR-LSTM (proposed) 98.17 ± 0.10 87.36 ± 1.02 99.33 ± 0.09 93.34 ± 0.79 90.25 ± 0.50 90.30 ± 0.49

VEB

A

B

C

 
* Since the source code of Kiranyaz et al. [3] is not available, the average of each metric is directly coming from [3]. 

 

Table 5. Comparison of single-lead ECG signal classification results for SVEB class in 

terms of Average and standard deviation of each performance metric. 

Dataset Approach Acc Sen Spe Ppr F1 G

Saadatnejad et al. [2] 96.7 ± 0.25 80.90 ± 1.78 97.81 ± 0.35 68.41 ± 3.13 74.13 ± 1.30 74.39 ± 1.16

Kachuee et al. [4] 95.90 ± 0.94 80.38 ± 3.34 96.81 ± 1.04 59.61 ± 7.05 68.45 ± 4.69 69.22 ± 4.14

Kiranyaz et al. [3]* 96.40 68.80 99.50 79.20 73.63 73.82

EMDR-LSTM (proposed) 98.07 ± 0.21 83.44 ± 0.79 98.93 ± 0.23 82.10 ± 3.06 82.76 ± 1.52 82.77 ± 1.50

Saadatnejad et al. [2] 97.77 ± 0.17 80.94 ± 1.74 98.45 ± 0.22 67.74 ± 2.85 73.75 ± 1.21 74.05 ± 1.07

Kachuee et al. [4] 96.96 ± 0.73 80.02 ± 3.20 97.64 ± 0.78 57.78 ± 7.35 67.11 ± 5.10 68.00 ± 4.49

EMDR-LSTM (proposed) 98.57 ± 0.15 83.35 ± 0.77 99.18 ± 0.16 80.42 ± 3.01 81.86 ± 1.56 81.87 ± 1.52

Saadatnejad et al. [2] 96.94 ± 0.18 62.97 ± 1.58 98.61 ± 0.23 69.16 ± 3.20 65.92 ± 1.16 65.99 ± 1.22

Kachuee et al. [4] 95.62 ± 0.80 60.37 ± 2.58 97.36 ± 0.89 53.02 ± 7.84 56.46 ± 4.17 56.58 ± 3.93

Kiranyaz et al. [3]* 96.40 64.60 98.60 62.10 63.33 63.34

EMDR-LSTM (proposed) 97.64 ±0.14 65.63 ± 1.12 99.22 ± 0.15 80.67 ± 2.83 72.38 ± 1.34 72.76 ± 1.43

SVEB

A

B

C

 
     * Since the source code of Kiranyaz et al. [3] is not available, the average of each metric is directly coming from [3]. 
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Table 6. Comparison of Total number of parameters and MACs. 

Approach 
Saadatnejad et al. 

[2] 

Kachuee et al.  

[4] 

EMRD-LSTM 

(Proposed) 

Total params 33,751 53,957 49,057 

MACs 1,256,760 3,586,559 3,812,250 

 

Table 7. Comparison of average inference time in terms of LITAP, SITAP, aITP and 

aITPB. 

Approach LITAP (Sec) SITAP (Sec) aITP (Sec) aITB (Sec)

Saadatnejad et al. [2] 0.51604 0.20940 0.29751 0.00016

Kachuee et al. [4] 0.81132 0.32479 0.51333 0.00027

EMDR-LSTM (Proposed) 0.33155 0.13293 0.19832 0.00010  
 

4.4.2 Evaluation of EMD and resampling features 

 

We also conducted ablation studies to know which feature has a significant effect on 

the proposed method. We did three kinds of evaluation. The first is without EMD and with-

out resampling, which means ECG segment beats are processed directly without prepro-

cessing. The second is with EMD and without resampling, which checks the effect of 

resampling that is applied to the EMD. The third is with EMD and with resampling, which 

is the proposed method. 

In Table 8, for the VEB class, the resamples first IMF feature does not affect the   

results significantly. In Table 9, it shows the proposed preprocessing method which uses 

the EMD with resampling achieves the highest performance results in terms of Sen, and 

F1 and G scores in all the datasets (A, B, C) in the SVEB class compared to that if we did 

not use the EMD or the resampling method. In Table 9 the proposed resampled first IMFs 

feature shows to have a significant contribution to the SVEB class, since if the feature is 

removed, Sen, and F1 and G scores decrease significantly. The resampling method that is 

applied to the first IMF contributes to increase Sen, although it decreases Ppr and Spe. We 

chose the one with the highest Sen, F1, and G scores results since in the medical field 

sensitivity (Sen) is an important metric for evaluation. Another advantage of using the 

resampling method is that we can reduce the LSTM model complexity by reducing the 

number of parameters since the input length becomes short. 

 

Table 8. Ablation studies of the main EMD features in the VEB class. 

Dataset EMD Features Acc Sen Spe Ppr F1 G

w/o EMD and w/o resampling 99.15 95.17 99.68 97.56 96.35 96.36

With EMD, w/o resampling 99.14 95.52 99.63 97.18 96.34 96.35

EMD with resampling (proposed) 99.26 95.60 99.75 98.09 96.83 96.84

w/o EMD and w/o resampling 99.32 94.93 99.63 94.65 94.79 94.79

With EMD, w/o resampling 99.34 95.37 99.61 94.42 94.89 94.89

EMD with resampling (proposed) 99.41 95.42 99.68 95.44 95.43 95.43

w/o EMD and w/o resampling 98.19 86.11 99.49 94.80 90.25 90.35

With EMD, w/o resampling 97.96 85.83 99.26 92.60 89.09 89.15

EMD with resampling (proposed) 98.17 87.36 99.33 93.34 90.25 90.30

VEB

A

B

C
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Table 9. Ablation studies of the main EMD features in the SVEB class. 

Dataset EMD Features Acc Sen Spe Ppr F1 G

w/o EMD and w/o resampling 97.80 77.23 99.01 81.99 79.54 79.57

With EMD, w/o resampling 98.12 79.56 99.21 85.44 82.40 82.45

EMD with resampling (proposed) 98.07 83.44 98.93 82.10 82.76 82.77

w/o EMD and w/o resampling 98.20 76.48 99.07 76.89 76.68 76.68

With EMD, w/o resampling 98.61 79.44 99.38 83.88 81.60 81.63

EMD with resampling (proposed) 98.57 83.35 99.18 80.42 81.86 81.87

w/o EMD and w/o resampling 97.27 57.99 99.21 78.44 66.68 67.44

With EMD, w/o resampling 97.50 61.58 99.28 80.83 69.90 70.55

EMD with resampling (proposed) 97.64 65.63 99.22 80.67 72.38 72.76

SVEB

A

B

C

 
 

We did experiments on using different resampling factor values. We conducted a grid 

search from 2 to 5 with a step value of 1. In the VEB class, the resampling factor does not 

significantly affect the classification performance. On the other hand, in the SVEB class, 

it has a significant effect on the classification performance. Fig. 10 is the evaluation results 

of using dataset A in the SVEB class, which shows the resampling factor 0.3 achieving the 

highest Ppr, and F1 and G scores and achieving the second highest result on Sen compared 

to the other resampling factors. Evaluation of datasets B and C in the SVEB class shows 

similar improvements of the same metrics as those of dataset A, as shown in Figs. 11 and 

12, respectively. The evaluation results show that resampling factor 0.2 achieves the high-

est Sen and the resampling factor 0.3 achieves the second highest Sen. However, we chose 

the resampling factor 0.3 as the proposed resampling factor because with this value it can 

achieve the highest classification performance in terms of Ppr, and F1 and G scores in the 

SVEB class, among all resampling factors. 

 

 
Fig. 10. Resampling factor evaluation in SVEB class − dataset A. 

 
Fig. 11. Resampling factor evaluation in SVEB class − dataset B. 
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Fig. 12. Resampling factor evaluation in SVEB class − dataset C. 

4.4.3 Evaluation of preprocessing time 

 

We evaluated the preprocessing time of the proposed method compare to representa-

tive related works [2-4]. As shown in Fig. 13, the preprocessing time of the EMDR-LSTM 

is longer, compared to related works [2-4]. It is because the EMD takes time to decompose 

signals into a set of IMFs, even we only use the first IMF. Although the preprocessing  

time is longer, the EDMR-LSTM is still able to meet the real-time ECG classification   

requirement. This is because that the maximum heartbeat per minute for a person is around 

220 beats, and our preprocessing time for each beat is only 7 milliseconds. 

 

4.4.4 Discussion 

 

Our work investigates the arrhythmias that are not imminently life-threatening 

but may require therapy to prevent further problems [6]. We plan to integrate our work 

to wearable sensor devices [33, 34] for monitoring and notifying a user to have an 

arrhythmia survey if any abnormality is detected. For example, if a user has obvious 

structural heart diseases and has more than 40 atrial premature beats/h, there is a very 

high possibility of AF/atrial flutter development in the next 2 to 3 years [44]. With this 

integration, the user can be advised for an intensive arrhythmia survey since he/she 

may have a high possibility to develop into AF/atrial flutter in the future. 
 

 

 
Fig. 13. Comparison of average preprocessing time for each ECG segment. 
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5. CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

 

In this paper, we have presented a novel EMDR-LSTM architecture to enhance SVEB 

classification performance. The EMDR-LSTM has been proven to achieve the highest 

SVEB classification performance in terms of accuracy, sensitivity, positive predictivity, 

and F1, and G scores in all datasets (A, B, and C) compared to the three representative re-

lated works [2-4]. The EMDR-LSTM achieves 98.07%, 83.44%, 82.10%, 82.76%, 82.77% 

in dataset A, 98.57%, 83.35%, 80.42%, 81.86%, 81.87% in dataset B and 97.64%, 65.63%, 

80.67%, 72.38%, 72.76%, in dataset C in terms of accuracy, sensitivity, positive predic-

tivity, F1, and G scores, respectively, in SVEB class. The proposed EMD with resampling 

method that resamples the first IMF has been shown to enhance the SVEB classification 

performance in terms of sensitivity, and F1 and G scores for all datasets, compared to the 

one without using the EMD or the resampling method. However, for EMD, since it takes 

time to decompose the signal into a set of IMFs, this makes preprocessing time long. Nev-

ertheless, it still meets the real-time ECG classification requirement. In addition, although 

the proposed EMDR-LSTM has higher computational complexity in terms of MACs, it 

has lower standard deviation of the performance metrics and lower inference time, which 

are important performance metrics for real time or time-critical applications, e.g., ECG 

medical monitoring applications, compared to the representative related works [2, 4]. 

 

5.2 Future Work 

 

In future work, we will evaluate the EMDR-LSTM for classifying live data from common 

wearable ECG monitoring devices, such as Holter monitor [33, 34], which can be used to 

notify a user to have a heart health check if an abnormal condition is detected. We will 

also evaluate the EMDR-LSTM using multilead data to see if it is also applicable to handle 

multilead data, such as data for myocardial infarction. In addition, we will experiment on 

different deep learning architectures, such as a hybrid CNN-RNN, to see if it can enhance 

classification performance since the CNN and RNN have been shown to have good clas-

sification performance in the VEB and SVEB classes, respectively. 
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