
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 34, 1329-1349 (2018)
DOI: 10.6688/JISE.201809_34(5).0013

1329

Mining and Maintenance of Sequential Patterns
using a Backward Generation Framework

MING-YEN LIN1, SUE-CHEN HSUEH2,+ AND CHIH-CHEN CHAN1

1Department of Information Engineering and Computer Science
Feng Chia University
Taichung, 407 Taiwan

2Department of Information Management
Chaoyang University of Technology

Taichung, 417 Taiwan
E-mail: linmy@mail.fcu.edu.tw; schsueh@cyut.edu.tw; zesiva01@hotmail.com

Common sequential pattern mining algorithms handle static databases. Once the da-

tabase updates, previous mining results would be incorrect, and we need to restart the en-
tire mining process from scratch. Previous approaches mine patterns in a forward manner
in both static and incremental databases. Considering the incremental characteristics of
sequence-merging, we propose a novel methodology, called backward mining, to update
the patterns in an incremental sequence database. Stable sequences, whose support counts
remain unchanged in the updated database, are identified and eliminated from the support
counting process using the backward mining methodology. We develop both the BSpan
algorithm within the pattern-growth framework and the BSPinc algorithm within the
Apriori-based framework for incremental discovery of sequential patterns. BSpan prunes
all the stable sequences and their super sequences so that database projections are mini-
mized. BSPinc generates candidate sequences using backward extensions and mines pat-
terns recursively within the ever-shrinking bit-sequence space. The experimental results
using both synthetic and real-world datasets show that BSpan and BSPinc work an aver-
age of 4 times faster than the well-known IncSpan algorithm. In comparison to re-mining,
the average improvement is 6 times faster.

Keywords: incremental discovery, sequential pattern, backward mining, stable sequence,
sequence merging, incremental database

1. INTRODUCTION

Mining frequent sequences is a challenging research topic due to its high complexi-
ty. Extensive research has been conducted to improve the mining efficiency of sequential
patterns [1, 2, 18, 19]. The issue of incremental maintenance of sequential patterns, or
called incremental sequence mining, cannot be overlooked because the database is con-
stantly updated. In this paper, we focus on efficient algorithms for incremental discovery
of sequential patterns.

A sequential pattern is a frequent sub-sequence discovered from a set of transaction-
sequences, where each transaction is an itemset (i.e., a set of items). For example, each
record in a transactional database is an itemset purchased by a customer at a transaction
time. Data from the same customer are sorted in ascending time order into a data se-
quence before mining. A data sequence supports a sequence if each transaction of the
sequence is contained by a distinct transaction in the data sequence, sequentially with

Received January 20, 2017; revised April 21 & June 9, 2017; accepted June 11, 2017.
Communicated by Chia-Feng Juang.
+ Corresponding author.

MING-YEN LIN, SUE-CHEN HSUEH AND CHIH-CHEN CHAN

1330

respect to all transactions of the sequence. The number of data sequences supporting the
sequence is referred to as the support count. A sequential pattern (also called frequent
sequence) refers to a sequence whose support count exceeding a user-specified number.
For example, if a sufficient number of customers in the transactional database have the
purchasing sequence of home audio, projector, and then home theater, such a sequence is
a sequential pattern. Sequential pattern mining is complicated, considering the abundant
combinations of potential sequences, not to mention the re-mining required when data-
bases are updated or changed.

Common algorithms for sequential pattern mining handle static databases, which
mean the data in the database will not change. Once the data change, the previous mining
result will be incorrect, and we need to restart the entire mining process for the new up-
dated sequence database. However, in practice, sequence databases are not static, and
they are usually updated by appending new transactions of existing customers or data
sequences of new customers. Moreover, the database often changes in small increments.
For example, a retail sales database is updated each week. The sales data for the new
week often represent only a small percentage of the previous year’s sales data. We ob-
serve that not only the database but also the sequential patterns change in small incre-
ments. Mining the entire updated database is very time-consuming because many se-
quential patterns’ support counts do not change after the update. If we can find the se-
quential pattern that remains unchanged after the update, we may free from examining
the support counts of such patterns. Unfortunately, finding this type of patterns is very
difficult because if one transaction is appended to an existing data sequence, many pos-
sible new patterns are generated. Although re-mining the unchanged pattern is unneces-
sary, the changed pattern must be re-mined. Detecting unchanged patterns as early in the
process as possible could benefit incremental mining very much. If we can use previous-
ly unchanged sequential patterns to speed up incremental sequence mining, this will be a
useful and efficient breakthrough.

Several algorithms [3-8, 12, 17] were introduced to deal with the problem of incre-
mental mining of sequential patterns, based on common sequence mining algorithms.
However, these algorithms still have some limitations on finding the unchanged patterns
for incremental mining. Previous sequential pattern mining approaches, within either the
Apriori-based [2, 19, 22] or the projection-based [16, 18, 20] framework, mine patterns
in a forward manner, called forward mining here. Let k-pattern be a sequential pattern
with k items. A discovered k-pattern is used as a prefix, and one potential item is added
after the k-pattern to form the candidate (k+1)-pattern in forward mining. For example,
after mining pattern <(a)(b)> in forward mining, the pattern is employed as a prefix and
one item after the pattern is added (or projected), such as <(a)(b)(c)>, to be tested.

After an in-depth study of the incremental characteristics of sequences, we develop
a novel methodology, called backward mining, for efficient incremental sequence dis-
covery. In contrast to forward mining, the candidate pattern <(c)(b)(a)> is mined after
<(b)(a)> is discovered in backward mining. A discovered k-pattern is used as a postfix,
and one potential item is added before the k-pattern to form the candidate (k+1)-pattern
in the proposed backward mining methodology.

We found that backward mining methodology is more efficient than forward mining
for incremental sequence discovery. A particular issue in incremental sequence mining,
named sequence merging, is that all transactions of a customer, either appeared in previ-

SEQUENTIAL PATTERNS: BACKWARD GENERATION FRAMEWORK 1331

(a) Forward mining: scattered subsequences. (b) Backward mining: grouped subsequences.
Fig. 1. Various flows of sequential pattern mining: appending b to <abc>.

ous mining or just emerged in current mining, are to be sorted into one data sequence.
Consequently, newly appended items will change the previous sequence into a new se-
quence due to sequence merging so as to complicate the support counting in incremental
sequence mining. Many new sub-sequences are generated but only the supports of those
sub-sequences not existing in the previous data sequence should be increased. The merge
step may introduce redundant counting operations without systematic checking. For ex-
ample, a data sequence <(a)(b)(c)> appended item b to become <(a)(b)(c)(b)> so that the
boxed nodes in Fig. 1 will be affected. Using backward mining, we may easily skip the
checking required in forward mining, i.e. those nodes prefixed by items a and c in Fig. 1
(a). In addition, the anti-monotone property, referring to all the sub-patterns of a frequent
pattern must be frequent, still holds for backward mining. Therefore, if a k-sequence is
infrequent, none of its super sequence can be frequent. Hence, if <(c)(b)> is infrequent,
<(b)(c)(b)>, <(a)(c)(b)>, <(b)(a)(c)(b)>, and so on can be eliminated in backward min-
ing since they cannot be frequent. Fig. 1 shows two different methodology of sequential
pattern mining.

To the best of our knowledge, no algorithms with backward mining flow have been
proposed for the mining and the maintenance of sequential patterns. In this paper, we
present the backward mining methodology and describe a unique property, called stable
sequence properties, for incremental discovery of sequential patterns. We develop two
incremental mining algorithms within different frameworks to show the applicability of
the backward mining methodology. First, the BSpan (Backward Sequential PAtterN
mining and updating) algorithm utilizes the PrefixSpan algorithm [18] to incrementally
mine and update sequential patterns within the pattern-growth framework. Second, the
BSPinc (Backward SPAM for incremental mining) algorithm utilizes the SPAM algo-
rithm [2] as the basis to incrementally mine the sequential patterns within the Apriori-
based framework. The extensive experiments show that the backward methodology is
several times faster than the well-known incremental mining algorithms.

The rest of the paper is organized as follows. Section 2 addresses the problem
statements. Section 3 briefly reviews the related work. Section 4 introduces the proposed
methodology of backward mining and two algorithms BSPinc and BSpan. The Experi-
mental results are reported and discussed in Section 5. Section 6 concludes the study.

subtrees need mining: <a>, , <c>

boxed: new subsequences

 subtrees need mining:

boxed: new subsequences

MING-YEN LIN, SUE-CHEN HSUEH AND CHIH-CHEN CHAN

1332

2. PROBLEM STATEMENTS

The problem of incremental discovery of sequential patterns is formally defined as
follows. Let  = {1, 2, …, r} be a set of literals, called items. An itemset e = (1,
2, …, q) is a nonempty set of q items such that e  . A sequence s, denoted by <ew

ew-1 … e2 e1>, is an ordered list of w elements where each element ei is an itemset. With-
out loss of generality, we assume the items in an element are in reverse lexicographic
order. The size of a sequence s, written as |s|, is the total number of items in all the ele-
ments in s. Sequence s is a k-sequence if |s| = k. A sequence s = <ewew-1…e2e1> is a sub-
sequence of another sequence s = <emem-1…e2e1> if there exist 1  i1 < i2 < … < iw  m
such that e1 ei1, e2 ei2, …, and ewein. Sequence s is a super-sequence of s if s is
a subsequence of s. Note that the parentheses for an itemset are omitted whenever there
is no ambiguity. For example, <(c)(d,b)(a)> is a 4-sequence, which can be represented as
<c(d,b)a>, and it contains a 3-sequence <cba>.

The sequence database DB contains |DB| data sequences, where each data sequence
ds is a sequence with a unique identifier sid. The support count of sequence s, denoted
by s.count, is the number of data sequences containing s. The support of sequence s, de-
noted by s.sup, is s.count divided by |DB|. The minsup is the user specified minimum
support threshold. A sequence s is a frequent sequence, or called sequential pattern, if
s.sup  minsup. A sequential pattern s having |s| = k is referred to as a k-pattern. Lk is the
set of all the k-patterns.

Given the minsup and the sequence database DB, the problem of sequential pattern
mining is to discover the set of all sequential patterns, denoted by PDB. In practice, the
sequence database will be updated with new transactions after the mining process. Possi-
ble updating includes appending transactions, insertions of data sequences, etc. With
respect to the same minsup, the incremental mining problem aims to find out the new set
of all sequential patterns after database updating without re-mining the whole database.
We describe the issue of incremental discovery by considering the problem of transaction
appending first. Transaction modification can be accomplished by transaction deletion
and appending. Table 1 lists the notations used in this paper.

Table 1. Notations used in this paper.
1, 2, …, r Items
(1, 2, …, q) A q-itemset, each i is an item.
s = <ew ew-1 … e2 e1> A sequence with w element, each ei is an item.
s.count The support count of sequence s.
s.sup The support of sequence s.
dsDB, dsdb, dsUD A data sequence in DB, db, and UD respectively.
minsup The user specified minimum support.
PDB The set of all sequential patterns in DB.
s= <(x)ewew-1… e2e1> A sequence-extension with item x to sequence s
s= <{x}ew ew-1… e2e1> An itemset-extension with item x to sequence s
s-pj projection of sequence s; the set of all data sequences containing s in UD.
s-end ending of sequence s = <ewew-1… e2 e1>, i.e. e1.

dsUD-inc increment of a data sequence dsUD.

s-end-pj end-projection of sequence s; the set of data sequences in s-pj whose in-
crement contains s-end.

s-DB-pj DB-projection of sequence s; s-pj \ s-end-pj

SEQUENTIAL PATTERNS: BACKWARD GENERATION FRAMEWORK 1333

The original database DB is appended with a few data sequences after some time.
The increment database db is referred to as the set of these newly appended data se-
quences. The sids of the data sequences in db may already exist in DB. The whole data-
base combining all the data sequences from the original database DB and the increment
database db is referred to as the updated database UD. A data sequence dsDB in DB is
updated with the data sequence dsdb and its corresponding data sequence in UD is dsUD.
An example UD, DB, and db, as shown in Table 2, will be used throughout the context.
The data sequences ds1, ds2, ds3, ds4 and ds6 are the data sequences that append new
transactions. The data sequences ds7, ds8, and ds9 are new data sequences.

Table 2. An updated database UD, its increment database db (sequences in bold face) and
the original database DB (sequences without bold face).

sid data sequence ending increment PDB (ms=1/3) PUD (ms=1/3)
ds1 <fad (f,e)> {f, e} {f, e} <a>:5, :3

<c>:3, <d>:3
<e>:2, <f>:4
<ca>:2, <(ba)>:2
<fa>:3, <bb>:2
<eb>:2,<ad>:3
<fd>:3, <fad>:3

<a>:5, :7
<c>:3, <d>:6
<e>:5, <f>:5
<fa>:3, <ab>:3
<bb>:4, <eb>:3
<fb>: 3, <(d,b)>:4
<ad>: 3, <fad>: 3
<fd>: 4,<be>:3

ds2 <b(e,c)(b,a) eb> {b} {e, b}
ds3 <f(b,a)(d,b) f> {f} {f}
ds4 <facd b> {b} {b}
ds5 <ca> {a} 
ds6 <e(f,e,b) (d,b)> {d, b} {d, b}

ds7 <(d,b)> {d, b} {d, b}
ds8 <(d,b)(e)> {e} {e, d, b}
ds9 <be(f,b)> {f, b} {f, e, b}

3. RELATED WORK

The basis of incremental mining is traditional sequential pattern mining. For exam-
ple, IncSpan algorithm [5] is based on PrefixSpan [18]; PBIncSpan algorithm [4] is also
based on PrefixSpan [18]; IncSP [12] extends GSP algorithm [19]; CISpan [21] uses
CloSpan [20] as the base mining algorithm. Nevertheless, these approaches use the for-
ward mining methodology. Some incremental sequence mining algorithms are reviewed
briefly here.

IncSpan [5] keeps the semi-frequent patterns to speed up the discovery of the newly
appeared patterns, which were not frequent in previous mining. The algorithm sets a
semi-frequent ratio and uses PrefixSpan to mine not only the frequent sequential patterns
but also the semi-frequent sequential patterns. It also can directly add the support count
that was added by a new sequence and newly appended item. However, to have the semi-
frequent patterns, a lowered support is used in the mining so that much time is spent on
the mining.

PBIncSpan algorithm [4] constructs a prefix tree for a sequence database using a
similar method as the mining in PrefixSpan. A width-pruning and a depth-pruning strate-
gies are used to maintain the sequence tree after scanning the incremental part of the up-
dated database. By checking sequence ids in the projected database of a node p, the
width-pruning strategy shrinks the search space of a node p and its subtree. By checking
the intersection of the projected database of a node p and the incremental part of the up-
dated database, and then the intersection of the incremental element set (IES) of node p

MING-YEN LIN, SUE-CHEN HSUEH AND CHIH-CHEN CHAN

1334

and its sibling nodes, the depth-pruning shrinks the search space using the Apriori prop-
erty if the intersection is an empty set. However, the width-pruning needs to maintain the
set of sequence ids for projected databases. The existence checking of ids is time-con-
suming when the updated database is huge. Especially, when the prefix tree has a large
number of nodes, the depth-pruning might be inefficient with respect to the Apriori
property.

IncSP algorithm [12] is an incremental mining algorithm based on the GSP algo-
rithm [19], which is a multiple-pass candidate-generation-and-test algorithm. IncSP di-
vides the incremental mining into two parts: one is updating the sequential patterns in the
DB, and the other is the finding of the sequential patterns in the incremental database
(db). Then, the algorithm merges the two sets of patterns to generate new candidates. The
process is also time-consuming when the number of candidates is large.

CISpan algorithm [21] treats updating, appending, and modifications as steps of de-
leting old sequences and adding new ones. For example, the updating of sequence <abcd>
into <abbf> is handled by deleting one sequence <abcd> and inserting one new sequence
<abbf>. Nevertheless, appending itemsets to existing sequences may generate too many
sequences, which need to be processed. In the worst case, the entire mining process still
has to be performed.

4. BACKWARD MINING AND MAINTENANCE OF SEQUENTIAL
PATTERNS

The performance and result of mining sequential patterns in static databases using
either forward or backward approaches are the same. Nevertheless, mining sequential
patterns in incrementally updated databases using the backward approaches significantly
outperforms that using forward approaches. In this section, we present the backward
mining approaches for incremental discovery of sequential patterns. Section 4.1 de-
scribes the terminology used in the backward mining. Section 4.2 addresses the stable
sequence property for incremental mining using the backward mining methodology. Sec-
tion 4.3 presents the proposed backward mining approach within the pattern-growth
based framework. Section 4.4 describes the proposed backward mining approach within
the Apriori-based framework.

4.1 Terminology used in Backward Mining

The definitions of basic terms in backward mining are the same as those stated in

Section 2. The terms used particularly in the backward mining are defined as follows.
The items in an element and the elements in a sequence are defined in a reverse or-

der, as described in Section 2. The formation of a sequence is extended backward in
backward mining within both the Apriori-based and the pattern-growth based frame-
works. Thus, a sequence-extension with item x to a sequence s = <ewew-1…e2e1> forms s
= <(x)ewew-1…e2e1>. An itemset-extension with item x to a sequence s= <ewew-1…e2e1>
forms s = <(x)ewew-1…e2e1>. Both sequence-extension and itemset-extension are exten-
sions of s. For example, we extend sequence <ba> with an itemset <c> to form the se-

SEQUENTIAL PATTERNS: BACKWARD GENERATION FRAMEWORK 1335

quence <cba>; we extend sequence <ba> with item c to the itemset (b) in <ba> to form
the sequence <(c,b)a>.

The projection of a sequence s, denoted by s-pj, is the set of all data sequences con-
taining s in UD. The size of the projection, written as |s-pj|, is the total number of data
sequences in s-pj. The ending of a sequence s = <ewew-1… e2e1>, denoted by s-end, refers
to the element e1. The increment of a data sequence dsUD, denoted by dsUD-inc, is the set
of items in the corresponding dsdb. The increment-union of a set of data sequences is the
union of the increments of all the data sequences in the set. The end-projection of a se-
quence s, denoted by s-end-pj, is the set of data sequences in s-pj whose increment con-
tains the ending of s. The DB-projection of a sequence s, denoted by s-DB-pj, is the
set-theoretic difference of s-pj and s-end-pj, i.e. s-pj\s-end-pj. In short, projections, end-
projections, and DB-projections contain set of data sequences; endings, increments, and
increment-unions contain set of items.

Table 3. Some end-projections and DB-projections.
sequence end-projection DB-projection sequence end-projection DB-projection

<a> 
{ds1, ds2, ds3,

ds4, ds5}
<fb> {ds4, ds6} {ds3}

 {ds2, ds4, ds6,
 ds7, ds8, ds9}

{ds3} <(d,b)> {ds6, ds7, ds8} {ds3}

<ab> {ds2, ds4} {ds3} <(f,b)> {ds9} 
<bb> {ds2, ds6, ds9} {ds3} <bab> {ds2} 
<cb> {ds2, ds4}  <eab> {ds2} 
<db> {ds4}  <fab> {ds4} {ds3}
<eb> {ds2, ds6, ds9}  <(b,a)b> {ds2} {ds3}

For example, the projection of <d>, <d>-pj, is {ds1, ds3, ds4, ds6, ds7, ds8} and <fd>-
pj is {ds1, ds3, ds4, ds6} in Table 2. The ending of ds1 = <fad (f,e)> is {f, e}; <b(e,c)(b,a)e
b>-end (ds2-end) is {b} and <f(b,a)(d,b) f>-end (ds3-end) is {f}. The increment of ds1 is
{f, e}; ds2-inc is {e, b} and ds3-inc is {f}. The increment-union of UD is {b, d, e, f}. To
obtain the end-projection of <d>, we check the increment of each sequence in the projec-
tion of <d> (<d>-pj) to find out which contains the ending of <d>. The increment of ds1,
ds3, ds4, ds6, ds7, and ds8 is checked to see which contains {d}. Thus, we have <d>-
end-pj = {ds6, ds7, ds8}. Similarly, we find <fd>-end-pj to be {ds6}. The DB-projection
of <d>, <d>-DB-pj, is {ds1, ds3, ds4} and <fd>-DB-pj is {ds1, ds3, ds4}. Table 3 lists
some end-projections and DB-projections with respect to the UD in Table 2.

4.2 Stable Sequences in Backward Mining

A unique characteristic in the backward mining approaches is the identification of

the stable sequence. A sequence s is defined as stable if the end-projection of s is an
empty set. In other words, s is a stable sequence if s-end is not contained in the increment
of any data sequence within s-pj. One may find the projection of s first. For every data
sequence in the projection, if the increment of the data sequence does not contain s-end,
one may determine that s is stable. Take Tables 2 and 3 for example, <a>-end is {a} and
<a>-pj is {ds1, ds2, ds3, ds4, ds5}, whose increment-union is {b, e, f}. Sequence <a> is

MING-YEN LIN, SUE-CHEN HSUEH AND CHIH-CHEN CHAN

1336

stable since {a}  {b, e, f}. Considering <(b, a)>, which is an extension of <a>. <(b, a)>-
end is {a, b}, <(b, a)>-pj is {ds2, ds3}, whose increment-union is {b, e, f}. {a, b}  {b, e,
f} so that sequence <(b, a)> is stable. Sequences <a>, <(b, a)>, <ca>, <fa>, <c>, <ad>,
and so on are stable.

The stable sequence owns two important properties to be used in the backward
mining for the substantial improvements on incremental sequence mining.

Property 1: The support of a stable sequence in UD is the same as that in DB.

Proof: Let dsUD be a data sequence in the projection of s and the increment of dsUD be M,
which is the set of items in dsdb. Let the ending of s be N, which is the set of items in e1
of s. dsUD contains s since dsUD comes from s-pj. If M does not contain N then N must be
contained in dsDB. Because the increment of every data sequence in s-pj does not contain
the ending of s, the support counts of s in UD are “contributed” by all the corresponding
data sequences in DB. Therefore, the support count of a stable sequence s in UD and that
in DB are the same. 

Property 2: Any extensions of a stable sequence must be stable.

Proof: Let s be an extension of s. The s-end is the same as s-end since both itemset-ex-
tension and sequence-extension extend s backward. The s-pj is a subset of s-pj so that
s-end-pj is a subset of s-end-pj. The s-end-pj is an empty set if s is stable, by definition.
Thus, s is stable because s-end-pj, which is a subset of s-end-pj, is an empty set. 

Note that property 1 addresses that the support count of a stable sequence remains
the same in the updated database. Therefore, we may skip the support counting process
of stable sequences in backward mining approaches. Furthermore, property 2 identifies
the group of stable sequences, generated by the proposed backward extensions for su-
per-sequence formations. As a result, the stable sequences and all their extensions can be
eliminated from the support counting process within both the Apriori based and the pat-
tern-growth based framework.

The stable sequence property is utilized in the proposed approaches to speed up the
mining extensively. The experimental results in Section 5 indicate that a large number of
projected databases are eliminated in BSpan. Also, many candidate patterns in BSPinc
were pruned. More than 75% patterns were pruned, when both algorithms incrementally
mined the synthetic dataset C10-T2.5-S4-I1.25 with minimum support 0.001 and modi-
fication ratio 0.1.

4.3 BSpan: Backward PrefixSpan for Incremental Mining

In this section, we describe the proposed incremental sequential pattern mining al-

gorithm within the PrefixSpan framework using the backward mining methodology. The
algorithm is called BSpan (Backward Sequential PAtterN mining and updating). We de-
scribe the terms used particularly in the BSpan algorithm as follows.

A sequence s = <evev-1…e2e1> is a postfix of sequence s = <ew…e2e1> (v  w) if
and only if the following conditions all hold: (1) ej= ej for 1  j  v1; (2) evev; (3) 
item x  (ev \ ev) and y  ev, x is lexicographically after y. Sequence s = <ewew-1…

SEQUENTIAL PATTERNS: BACKWARD GENERATION FRAMEWORK 1337

ev+1ev> is called the prefix of s with respect to postfix s where ev = ev \ ev. For example,
<fa> is the prefix of <fa d(f,e)> with respect to postfix <d(f,e)>; <e(f,e_)> is the prefix
of <e(f,e,b)(d,b)> with respect to postfix <b(d,b)>. The (f,e_) means that it is an item-
set-extension of the postfix sequence. The projected database of a sequence s is the set
of prefixes of all the data sequences in UD with respect to postfix s, denoted by UD|s.
The increment-projected database of a sequence s, denoted by s-end-pj|s, is the set of
prefixes of all the data sequences in the end-projection of s (s-end-pj). The original-
projected database of a sequence s, denoted by s-DB-pj|s, is the set-theoretic difference
of the projected database and the increment-projected database. In short, projected da-
tabases, increment-projected databases, and original-projected databases contain set of
prefixes from the updated databases.

For example, given UD in Table 2, the projected database of <d>, UD|<d>, is the set
of prefixes from <d>-pj = {ds1, ds3, ds4, ds6, ds7, ds8}, i.e. UD|<d> = {<fa>, <f(b,a)>,
<fac>, e(f,e,b)} since the prefixes of both ds7 and ds8 are null. The increment-projected
database of <d>, <d>-end-pj|<d>, is {<e(f,e,b)>} and the original-projected database of
<d>, <d>-DB-pj|<d>, is {<fa>, <f(b,a)>, <fac>}. UD|<fd> is {<e>}, which is the prefix of
ds6. <fd>-end-pj|<fd> = {<e>}, and <fd>-DB-pj|<fd> is . Table 4 shows some projected
databases of the example updated database in Table 2.

We use PrefixSpan [18] as the fundamental mining framework, enhance it with
backward mining, and propose the BSpan algorithm for incremental sequence mining.
We modify the pseudo projection version of the PrefixSpan algorithm [18] by projecting
databases with respect to postfixes instead of prefixes. The BSpan algorithm, like Pre-
fixSpan, counts (k+1)-sequences from k-patterns’ projection. A projected database is
divided into the increment-projected database and the original-projected database. If the
increment-projected database of a sequence is an empty set, the sequence is stable and
can be eliminated from projection and counting. A sequence having non-empty incre-
ment-projected database is not stable and a projected database would be generated for
the subsequent mining process.

Table 4. Some increment-projected databases and original-projected databases.
sequence increment-projected database (s-end-pj|s) original-projected database (s-DB-pj|s)

<a>  {<f>,<b(e,c(b_)>,<f(b_)>, <f>, <c>}
 {<b(e,c)(b,a)e>, <facd>,<e(f,e,b)(d_)>,

<(d_)>, <(d_)>, <be(f_)>}
{<f(b,a)(d_)>}

<ab> {<b(e,c)(b_)>, <f>} {<f(b_)>}
<bb> {<b(e,c)>,<e(f,e_)>} {<f>}
<cb> {<b(e_)>, <fa>} 
<db> {<fac>} 
<eb> {<b(e,c)(b,a)>, <e(f,_)>, } 
<fb> {<e>} {}

<(d,b)> {<e(f,e,b) >} {<f(b,a)>}
<(f,b)> {<be>} 
<bab>  
<eab> {} 
<fab>  

<(b,a)b> {<b(e,c)>} {<f>}

MING-YEN LIN, SUE-CHEN HSUEH AND CHIH-CHEN CHAN

1338

Fig. 2 presents the BSpan algorithm and Fig. 3 shows the subroutine in the BSpan
algorithm. The BSpan algorithm first scans UD to get all the frequent items as 1-patterns
and obtains the increment-union of UD at the same time. If an item x of a 1-pattern is not
in the increment-union, clearly x appears in DB and the 1-pattern is a stable sequence.
The BSpan algorithm can skip the support counting step of stable sequences because the
support count of a stable sequence in UD is the same as that in DB. Such a skip-counting
technique is referred to as stable sequence pruning. Moreover, a unique property is in-
troduced by backward mining in Section 4.2: any extensions of a stable sequence must
be stable. Thus, once a stable sequence s is discovered, the support counting step of all
extensions of s can be skipped. The stable sequence pruning can significantly speed up
the incremental mining process. To determine whether a stable sequential pattern s is still
frequent after updating, we can simply check its support count, which is available with-
out any computations, against the new minimum support count in UD, i.e. minsup*|UD|.
When a 1-pattern exists in the increment-union, the BSpan algorithm generates its pro-
jected database as the increment-projected database and the original-projected database
for the subsequent mining.

Algorithm: BSpan
Input: DB (a sequence database before update), UD (a sequence database after update),
minsup (minimum support), PDB (previous sequential patterns in DB)
Output: PUD (sequential patterns in UD)
1. scan UD to get L1, the set of 1-patterns, and the increment-union of UD. PUD = L1.
2. for each 1-pattern <x> in L1 and item x  increment-union of UD do /* <x> is stable */
3. for each extension of <x>, s, do
4. get s.count from PDB, if s.count  minsup*|UD| then PUD = PUD  {s}.
5. endfor
6. endfor
7. for each 1-pattern <x> in L1 and item x  increment-union of UD do /* <x> is not stable */
8. generate <x>-DB-pj|<x> and <x>-end-pj|<x>
9. call Postfix_proj (<x>, <x>-end-pj|<x>, <x>-DB-pj|<x>).
10.endfor

Fig. 2. Algorithm BSpan.

The BSpan algorithm determines whether a k-sequence s (k > 1) is stable by check-
ing its increment-projected database, s-end-pj|s. If s-end-pj|s is an empty set, s is stable
so that s and all its extensions are eliminated from counting. Furthermore, the search
space is shrunk iteratively during mining because if s is an extension of s, UD|s is a
subset of UD|s and s-end-pj|s is a subset of s-end-pj|s. We may skip the checking of the
extensions of s once s-end-pj|s is an empty set.

Subroutine Postfix_proj is used for the support counting in increment-projected da-
tabases. It first verifies whether a sequence is stable. If a sequence is found to be stable,
its support count can be obtained from PDB (sequential pattern in DB) directly. Moreover,
all extensions of the stable sequences are stable so that we may immediately determine
whether its extensions are frequent from PDB. Consequently, no projected databases are
generated.

SEQUENTIAL PATTERNS: BACKWARD GENERATION FRAMEWORK 1339

Subroutine Postfix_proj (p, p-end-pj|p, p-DB-pj|p)
Input: p = <ek…e2e1>, p-end-pj|p is the increment-projected database of p, p-DB-pj|p is
the original-projected database of p
1. scan p-end-pj|p and p-DB-pj|p and find each item b, such that b can be used in a se-

quence-extension or an itemset-extension. /* .count  minsup*|UD| */
2. for each frequent item b do
3. extend p with b to form pattern p. PUD = PUD  p.
4. if the count of b in p-end-pj|p = 0 then /* p is a stable sequence */
5. for each sequence s, where s is an extension of p, s  PDB do
6. get s.count from PDB, if s.count  minsup*|UD| then PUD = PUD {s}.
7. endfor
8. else /* p is not a stable sequence */
9. generate p-DB-pj|<x> and p-end-pj|<x>
10. call Postfix_proj (p, p-end-pj|p, p-DB-pj|p).
11. endif
12. endfor

Fig. 3. Subroutine Postfix_proj.

We check the support count of a sequence s in increment-projected database: if this
value is 0 then s is stable. The support count in the increment-projected database of se-
quence s can be obtained from counting in the increment-projected database of s, where
s is the postfix of s. The support count of an unstable sequence is obtained from the
original-projected database of s. Postfix_proj performs support counting and stable se-
quence detection in the same time.

Note that the minimal support count changes because |UD| changes. Although the
support count of a stable sequence is the same, the pattern has to be validated against the
new minimum count. We generate original-projected databases for an unstable sequence
to get its support count. The final support count of an unstable sequence s is the sum of
|s-end-pj|s| and |s-DB-pj|s|.

When the database is incrementally updated, PrefixSpan has to re-mine the whole
database for the up-to-date patterns, while BSpan utilizes the stable sequence properties
and discovers the sequential patterns efficiently.

An illustrating example of running BSpan on the updated database UD (minsup =
1/3) in Table 2 is given below.

Running BSpan: scan UD once, we have the set of 1-patterns {<a>:5, :7, <c>:3,
<d>:6, <e>:5, <f>:5} and the increment-union {b, d, e, f}. Thus, sequences <a> and <c>
are stable. We can skip the support counting and database projection for sequences <a>
and <c>. In addition, we can determine whether any extensions of <a> and <c>, if they
exist in PDB, are frequent by validating their support counts in PDB. Sequence <ca> (also
<(b,a)>) is no longer frequent in UD since its support count is 2 but <fa> remains fre-
quent in UD. We also know that , <d>, <e>, and <f> are not stable. Therefore, the
following steps are performed on 1-patterns , <d>, <e>, and <f> subsequently. Algo-
rithm BSpan calls Postfix_proj on , i.e. Postfix_proj(, -end-pj |, -DB-
pj|), on <d>, on <e>, and on <f>. The operations of Postfix_proj(<d>, <d>-end-pj|<d>,
<d>-DB-pj|<d>) are described below.

MING-YEN LIN, SUE-CHEN HSUEH AND CHIH-CHEN CHAN

1340

Running Postfix_proj: we have <d>-end-pj|<d> = {<e(f,e,b)>} and <d>-DB-pj|<d> =
{<fa>,<f(b,a)>,<fac>}. After scanning <d>-end-pj|<d> and <d>-DB-pj|<d>, we have
{a:0+3, b:1+1, c:0+1, e:1+0, f:1+3}. The a:0+3 means the count of item a in <d>-end-pj
is 0 and that in <d>-DB-pj is 3. Sequential patterns <ad>:3 and <fd>:4 will be added to
PUD. Since the count of item a in <d>-end-pj is 0, <ad> is a stable sequence. Thus,
<fad> is also a stable sequence and we may add <fad> to pUD by obtaining its count of 3
directly from pDB without generating any projections for counting. We need to generate
<fd>-end-pj|<fd> and <fd>-DB-pj|<fd> for the recursive call of Pofix_proj on <fd>. It turns
out that no sequential patterns are generated from the extensions. Consequently, the se-
quential patterns generated by Postfix_proj(<d>, <d>-end-pj|<d>, <d>-DB-pj|<d>) are
{<ad>:3, <fad>:3, <fd>:4}.

Take Postfix_proj(, -end-pj|, -DB-pj|) for another example. We
have -end-pj| = {<b(e,c)(b,a)e>, <facd>, <e(f,e,b)(d_)>, <d_>,<d_>, <be(f_)>}
and -DB-pj| = {<f(b,a)(d_)>}. After scanning the two projections, we have {a:2+1,
b:3+1, c:2+0, d:1+0, e:3+0, f:2+1, d_:3+1, f_:1+0}. Sequential patterns <ab>:3, <bb>:4,
<eb>:3, <fb>:3, <(d,b)>:4 will be added to pUD and they will perform recursive exten-
sions by calling Postfix_proj each. All these calls return no patterns.

Finally, we have the sequential patterns in UD PUD = {<a>:5, :7, <c>:3, <d>:6,
<e>:5, <f>:5, <fa>:3, <ab>:3, <bb>:4, <eb>:3, <fb>:3, <ad>:3, <fd>:4, <fad>:3, <(d,b)>:
4, <be>:3}.

4.4 BSpan: Backward PrefixSpan for Incremental Mining

The proposed incremental mining algorithm, BSPinc (Backward SPAM for incre-
mental mining), is within the Aprioi framework using the backward mining methodology.
We adapt the SPAM algorithm [2] with the primary modification of extending candidate
patterns in a backward manner. When the database is incrementally updated, BSPinc
utilizes the stable sequence properties and discovers the sequential patterns efficiently.

The bitmapped representation in [2] is also used in the BSPinc algorithm. The set of
1-patterns are obtained after scanning UD once. Each 1-pattern is then extended to form
the candidate sequences for further testing. The BSPinc algorithm, like the SPAM algo-
rithm, generates candidate (k+1)-sequences from k-patterns. The candidate patterns are
then counted to determine whether they are frequent. Both sequence-extensions and
itemset-extensions in candidate generations are conducted in a backward manner. The
candidate generation-and-test, improved with our backward mining and stable sequence
pruning, is performed until no more candidate is generated. Fig. 4 shows an example of
candidate generation using items a and item b, up to the candidate 3-sequences.

Fig. 4. Backward candidate generation: using items a and b for example.

SEQUENTIAL PATTERNS: BACKWARD GENERATION FRAMEWORK 1341

For example in Table 2, we may scan <d>-end-pj, which is {ds6, ds7, ds8} to get
<ad>-end-pj, which is . Thus, <ad> and all its extensions are stable so that further
counting for these sequences are not required. For convenience, some end-projections
and DB-projections are listed in Table 3.

Fig. 5 outlines the BSPinc algorithm. The subroutine SS_pruning used in BSPinc
algorithm is shown in Fig. 6. BSPinc first scans UD to get all 1-patterns, their end-pro-
jections, and their DB-projections. The increment-union of UD is obtained in the same
time. All the 1-patterns whose item disappears in the increment-union are stable se-
quences. Except the stable sequences, the 1-patterns are to be backward extended, by the
proposed sequence-extensions and itemset-extensions, and recursively mined to deter-
mine whether the extensions are frequent in UD.

Algorithm: BSPinc
Input: DB (a sequence database before update), UD (a sequence database after update),
minsup (minimum support), PDB (previous sequential patterns in DB)
Output: PUD (sequential patterns in UD)
1. scan UD to get L1, the set of 1-patterns, DB-projections of L1, end-projections of L1,

and increment-union of UD. PUD = L1.
2. for each 1-pattern <x> in L1 and item x  increment-union of UD do /* <x> is stable */
3. for each sequence s, where s is an extension of <x> do
4. get s.count from PDB, if s.count  minsup*|UD| then PUD = PUD  {s}.
5. for each 1-pattern <x> in L1 and item x  increment-union of UD do /* <x> not

stable */
/* {y| y  x} is the set of items which are lexicographically before item x */

6. call SS_Pruning (<x>, L1, L1-{y| y  x}).
Fig. 5. Algorithm BSPinc.

Subroutine SS_pruning, abbreviated from stable sequence pruning, is used to verify
whether a candidate sequence is stable first. If a candidate is found to be stable, its sup-
port count can be obtained from PDB without further support counting in UD. Moreover,
any super sequence of the candidate is stable so that we may immediately determine
whether its super sequence is frequent from PDB. We check the end-projection of a can-
didate sequence s: if s-end-pj =  then s is stable. The s-end-pj can be obtained by
scanning s-end-pj, where s is the postfix of s. The support count of an unstable sequence
is obtained by scanning its DB-projection.

Table 5. Total execution time of dataset C10-T2.5-S4-I1.25, minsup=0.02.
Modification ratio IncSP BSpan BSPinc

10% 2.671(s) 0.031(s) 0.042(s)

20% 3.016(s) 0.034(s) 0.051(s)

40% 3.391(s) 0.041(s) 0.062(s)

MING-YEN LIN, SUE-CHEN HSUEH AND CHIH-CHEN CHAN

1342

Subroutine SS_Pruning (p, Sc, Ic)
Input: p = <ek…e2e1>, Sc = the set of candidate items to be used in sequence-extensions,
Ic = the set of candidate items to be used in itemset-extensions
/* Ssc = the set of stable candidate items in sequence-extensions */
/* Isc = the set of stable candidate items in itemset-extensions */
1. Sc = Ic = Ssc = Isc = .
2. for each item sq in Sc do /* sequence-extension */
3. s = <{sq} ek … e2e1>, scan p-end-pj to get s-end-pj.
4. if s-end-pj =  then /* s is stable */
5. Ssc = Ssc{sq}. /* SS_pruning is not required for item sq */
6. get s.count from PDB.
7. if s.count  minsup*|UD| then PUD = PUD  {s}; Sc = Sc{sq}.
8. for each extension s” of s do
9. get s.count from PDB, if s.count  minsup*|UD| then PUD = PUD {s}.
10. else /* s is not stable */
11. Sc = Sc{sq}. /* sq will be used for recursive sequence-extension */
12. scan p-DB-pj to get s-DB-pj,
13. if (|s-end-pj|+|s-DB-pj|)  minsup*|UD| then PUD = PUD  {s}.
14. endif
15. for each item cq  Sc and cq  Ssc
16. call SS_Pruning (<{cq} ek … e2 e1>, Sc, Sc-{y | y  cq}).
17. for each item iq in Ic do /* itemset-extension */
18. s = <{iq}  ekek-1 … e2e1>, scan p-end-pj to get s-end-pj.
19. if s-end-pj =  then /* s is stable */
20. Isc = Isc{iq}; /* SS_pruning is not required for item iq */
21. get s.count from PDB.
 /* if s is frequent, iq will be used for recursive itemset-extension */
22. if s.count  minsup*|UD| then PUD = PUD  {s}; Ic = Ic{iq}.
23. for each extension s of s do
24. get s.count from PDB, if s.count  minsup*|UD| then PUD = PUD  {s}.
25. else /* s is not stable */
26. Ic = Ic{iq}. /* iq will be used for recursive itemset-extension */
27. scan p-DB-pj to get s-DB-pj
28. if (|s-end-pj|+|s-DB-pj|)  minsup*|UD| then PUD = PUD  {s}.
29. for each item cq  Ic and cq  Isc
30. call SS_Pruning (<{cq}ekek-1…e2e1>, Ic, Ic-{y | y  cq})

Fig. 6. Subroutine SS_pruning of the BSPinc algorithm.

5. PERFORMANCE EVALUATION EXPERIMENTAL RESULTS

5.1 Setup of the Experiments

To assess the performance of the proposed algorithms, comprehensive experiments
using a 2GHz AMD Sempron PC with 1GB memory were conducted. Both synthetic
datasets and a real-world dataset were used in the experiments. The synthetic datasets
were generated using the IBM dataset generator [1]. Please refer to [1] for the detail of

SEQUENTIAL PATTERNS: BACKWARD GENERATION FRAMEWORK 1343

the parameters. The real-world dataset Gazelle contains click-stream data from Ga-
zelle.com and was processed into click sequences of customers [9]. In summary, there
were 29369 data sequences, the maximum sequence size was 628, the maximum session
size was 267, and the maximal session number in a data sequence was 140.

The total number of data sequences, i.e. |UD|, was determined and these synthetic
data sequences were generated. Some data sequences are then split into two parts to sim-
ulate their counterparts in the original database and the incremental database. We used
the open source from IncSpan [5] to cut the data sequences. The modification ratio is the
percentage of data sequences in UD that will be modified (to form DB and db). For the
modified data sequences, 10% more transactions of the original sequences are appended.

We implemented the SPAM algorithm and obtained the PrefixSpan from the Illimine
website (http://illimine.cs.uiuc.edu) as the basis of common sequence mining. SPAM took
20.39 seconds while PrefixSpan took 16.1 seconds on mining dataset C10-T2.5-S4-I1.25
with minsup 0.001. When the support was lowered to 0.0005, SPAM took 24 seconds
while PrefixSpan took 42 seconds.

5.2 Performance Comparison with IncSP

First, the proposed approaches were compared with the incremental mining algo-

rithm IncSP [12], a GSP based algorithm. IncSP is a multiple pass, candidate generation-
and-test algorithm for mining sequential patterns. Table 5 shows that both BSpan and
BSPinc outperformed IncSP in total execution time. The execution time gaps were so
large that IncSP was not compared in the rest of the experiments. The number of data
sequences in UD was 10000.

5.3 Performance Comparison with PBIncSpan

Second, the proposed approaches were compared with the PBIncSpan algorithm [4].
PBIncSpan first constructs a prefix tree, keeps the tree in memory, then maintains the
sequence tree by scanning the incremental part of the updated database. To enable the
width-pruning strategy, PBIncSpan needs to construct the sets of sequence ids for pro-
jected databases with respect to nodes. Thus, the required memory space is very huge for
PBIncSpan. In our implementation, PBIncSpan spent 1.58 seconds on mining dataset
C10-T2.5-S4-I1.25 and N=10000 with minsup 0.02, for modification-ratio of 10%. The
time increased to 2.87 seconds when the modification-ratio was increased into 20%.
PBIncSpan suffers from the huge memory required for storing the prefix tree and the
increment element sets (IES) of nodes for intersection. The peak memory requested by
PBIncSpan was up to 503 MB when the modification ratio was 20%. Datasets having
10000 items makes the prefix tree to have a large number of nodes so that the mining
cannot finish in a reasonable time for modification-ratio of 40%. BSpan outperformed
PBIncSpan for both incremental minings.

Next, the datasets were scaled up by increasing the number of data sequences to
100K. Unfortunately, PBIncSpan cannot successfully completed the mining with respect
to 100k sequences since the prefix tree for preserving the large database required a huge
memory. Maintaining the sequence ids for width-pruning and depth-pruning also used up
the memory with respect to the low supports. The experimental results are consistent

MING-YEN LIN, SUE-CHEN HSUEH AND CHIH-CHEN CHAN

1344

with the report in [4], which describes that PBIncSpan has similar performance as Pre-
fixSpan when the dataset is small, and that the depth-pruning might be inefficient with
respect to the Apriori property when the prefix tree has a large number of nodes. The
report in [16] also depicts that the existence checking of sequence ids is time-consuming
when the updated database is huge. The stability and scalability needs to be investigated,
as described in [4]. Therefore, PBIncSpan was not compared in the rest of the experi-
ments.

5.4 Performance Comparison with IncSpan

The IncSpan algorithm [5] is a well-known algorithm for incremental sequence

mining, based on a concept of semi-frequent patterns. Two optimizations including re-
verse pattern matching and shard projection are presented in IncSpan. The reverse pat-
tern matching is totally different from our proposed backward mining, which will be
discussed in Section 5.5. We compared the execution times of incremental mining using
IncSpan and our approaches. BSpan and BSPinc are four times faster than IncSpan for
all the modification ratios on mining dataset C10-T2.5-S4-I1.25, as shown in Fig. 7.
When the modification ratio increases, the number of stable sequences decreases so that
the total execution time increases. Fig. 8 depicts that the improvements of incremental
mining over re-mining. It shows that incremental mining algorithms IncSpan, BSpan and
BSPinc definitely outperform their re-mining based counterparts. BSpan and BSPinc
improve much more from backward mining than IncSpan. Fig. 9 shows that BSpan and
BSPinc consistently outperform IncSpan with respect to different minimum supports in
total execution time. The result of mining longer data sequences is consistent, as shown
in Fig. 10 on mining dataset C15-T5-S8-I2.5, |UD|=10000, |db|=1000, N=10000, min-
sup=0.5%.

C10-T2.5-S4-I1.25, |UD|=10K, db=50~4k,N=10000, minsup=0.1%

0

5

10

15

20

25

30

35

40

45

0.50% 1% 5% 10% 20% 40%

Modification ratio

T
o
ta

l e
x
ec

u
ti
on

 ti
m

e
(s

ec
.)

BSpan BSPinc IncSpan

C10-T2.5-S4-I1 .25, |UD|=10K, db=100~4k,N=10000, minsup=0.1%

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

1% 2% 5% 10% 20% 40%

Modification ratio

T
ot

al
 e

xe
cu

ti
o
n

tim
e

ra
ti
o

T(PrefixSpan)/T(BSpan) T(SPAM)/T(BSPinc) T(PrefixSpan)/T(IncSpan)

Fig. 7. Varying modification ratios. Fig. 8. Improved ratio.

0

5

10

15

20

25

30

35

40

0.14% 0.12% 0.10% 0.08% 0.06%

To
ta

l e
xe

cu
tio

n
tim

e

minsup

C10-T2.5-S4-I1.25, |UD|=10K, db=1k, N=10000, Modification ratio 10%

BSpan BSPinc IncSpan

C 15-T5 -S8 -I2 .5 , |U D |=10K , db=1k , N =10000 , m in sup=0 .5%

0

5

10

15

20

25

30

35

40

45

50

0 .50% 1% 2% 5% 10% 20% 40%

M od ifica tion ra tio

T
ot

al
 e

xe
cu

tio
n

tim
e

(s
ec

)

BSpan IncSpan

Fig. 9. Varying minimum supports. Fig. 10. Varying ratios on C15-T5-S8-I2.5.

The stable sequence property presented in this paper greatly eliminates many can-
didates from support counting. The total number of candidate sequences in SPAM for

SEQUENTIAL PATTERNS: BACKWARD GENERATION FRAMEWORK 1345

dataset C10-T2.5-S4-I1.25 and minsup 0.001 are 25.8 million. As shown in Fig. 11,
BSPinc reduced more than 10 million candidate sequences. When the modification ratio
is 0.5%, 25 million nodes (candidates) were pruned. Fig. 12 shows the number of pruned
candidates utilizing the stable sequence property. Based on the property, their support
counts in the projected database are the same as that in the original database so that many
projections and support counting are eliminated. It confirms that the stable pattern prun-
ing is very efficient in detecting patterns of unchanged support counts. When the modi-
fication ratio is 1%, almost 96% patterns were pruned. Even when the modification ratio
is raised to 40%, backward mining may still prune 45% patterns. Stable sequence prun-
ing benefits BSpan so that it outperforms the IncSpan algorithm for more than 4 times.
The other algorithms in the comparisons cannot benefit from the unique property so that
no numbers are shown in the figures.

C 1 0 -T 2 .5 -S 4 -I1 .2 5 , |U D |=1 0 K , d b =5 0 ~ 4 k ,N =1 0 0 0 0 , m in su p =0 .1 %

0

5 0 0 0

1 0 0 0 0

1 5 0 0 0

2 0 0 0 0

2 5 0 0 0

3 0 0 0 0

0 .5 0 % 1 % 5 % 1 0 % 2 0 % 4 0 %

M o d if ic a tio n ra tio

N
u
m

b
er

 o
f

p
ru

n
ed

 c
an

d
id

at
e

se
q
u
en

ce
s

(k
)

C10 -T2 .5 -S4 -I1 .25 , |U D |=10K , db=50~4k ,N=10000 , m insup=0 .1%

0

10000

20000

30000

40000

50000

60000

70000

80000

0 .50% 1% 5% 10% 20% 40%

M od ifica tio n ra tio

N
u
m

be
r

of
 p

ru
ne

d
no

de
s

Pru n ed p attern s, to ta l p a ttern s=76079

Fig. 11. Number of pruned candidates. Fig. 12. Number of pruned patterns.

Both SPAM and BSPinc may consume a considerable amount of memory. The
amount depends on the total number of data sequences, the total number of items, and
the lengths of data sequences. Given 10000 customers, 10000 items, and sequence length
of 32, it may use up to 10000*10000*32*4=400 Mbytes. The peak memory used by
SPAM was 458 MB for dataset C10-T2.5-S4-I1.25 with minsup 0.001. When the modifi-
cation ratio was 10%, the peak memory used by BSPinc was 469 MB. The memory used
by BSPinc is too large to be shown in the comparisons. Fig. 13 shows the memory usage
by BSpan and IncSpan. Only the previous patterns have to be stored and few projections
are generated so that the memory usage for BSpan is more efficient.

C10-T2.5-S4-I1.25 , |UD|=10K, db=1k, N=10000, m insup=0.1%

0

5

10

15

20

25

0 .50% 1% 5% 10% 20% 40%

Modification ratio

M
em

o
ry

 u
sa

ge
 (

M
B

)

BSpan IncSpan

C10-T2 .5 -S4 -I1 .25 , |U D |=100k~1000k , db=10k~100k , N =10000 , Mod ification ra tio 10% , m in sup=0 .5%

0

20

40

60

80

100

120

140

160

180

100k 200k 400k 600k 800k 1000k

N um ber o f sequences

T
o
ta

l
ex

ec
ut

io
n
 t
im

e

BSpan IncSpan

Fig. 13. Memory usage. Fig. 14. Scale-up of the dataset sizes.

Fig. 14 demonstrates the results of scale-up experiments. The number of data se-
quences was increased from 100K to 1000K. IncSpan needs to scan all the data se-
quences and discover the semi-frequent sequential patterns, using 0.8 * minsup as the
threshold, in DB. BSpan generates the projected databases only for the unstable se-
quences so that it outperforms IncSpan.

MING-YEN LIN, SUE-CHEN HSUEH AND CHIH-CHEN CHAN

1346

The Gazelle dataset contains many long data sequences and the maximum length of
the sequence is 628. The bitmap representation used in BSPinc cannot handle such long
sequences. Thus, only BSpan is compared with IncSpan. Fig. 15 shows the execution
time with respect to different modification ratios for minsup of 0.04%. BSpan is 10 times
faster than IncSpan. The long data sequences cannot be efficiently handled by IncSpan
since a great amount of sequences are generated due to database appending. Note that
when the ratio increased from 10% to 20%, unfortunately many new patterns were gen-
erated due to the appended items, so that the total mining had a large increase. The
mechanism of the lowered support (described in Section 3) in IncSpan was effective
when the ratio changed from 20% to 40%. Most of the semi-frequent patterns need no
re-mining so the total execution time drops. Table 6 lists the number of patterns pruned
by using the stable sequence property. BSpan pruned 73047/76079 = 96% of the patterns
for modification ratio of 1%. Fig. 16 indicates that both BSPinc and BSpan consistently
outperform IncSpan with respect to different minimum supports.

Real dataset Gazelle, minsup = 0.04%

0

10

20

30

40

50

60

70

0.50% 1% 2% 5% 10% 20% 40%

Modification ratio (%)

T
ot

al
 e

xe
cu

ti
on

 ti
m

e
(s

ec
)

BSpan IncSpan

Gazelle, modification ratio=10%

0

5

10

15

20

25

30

35

40

0.04% 0.05% 0.06% 0.07% 0.08%

minsup

T
ot

al
 e

xe
cu

ti
on

 ti
m

e
(s

ec
)

BSpan IncSpan PrefixSpan

Fig. 15. Varying modification ratio. Fig. 16. Varying minimum supports.

Table 6. The number of pruned patterns in mining the Gazelle dataset.

Pattern size Number of patterns
Number of pruned patterns, modification ratio =

1% 10% 40%
1 4126 3951 2984 1768
2 15778 15363 12633 8855
3 18004 17408 13609 9083
4 15445 14783 10981 6956
5 10780 10194 7062 4215
6 6493 6106 3775 2106
7 3382 3215 1658 870
8 1457 1417 563 274
9 484 480 132 55

10 113 113 18 5
11 16 16 1 0
12 1 1 0 0

5.5 Discussion: Difference Between BSpan and IncSpan

The proposed backward mining methodology might be misjudged as similar to the

reverse pattern matching technique in IncSpan at first glance. We present the fundamen-
tal differences between the two algorithms as follows.

SEQUENTIAL PATTERNS: BACKWARD GENERATION FRAMEWORK 1347

(1) Pattern mining order. IncSpan uses the traditional forward mining methodology to
mine and detect previous sequential patterns in DB. A brand new backward flow is used
in our methodology for the mining. The stable sequence property is uniquely held only in
the backward mining methodology. In addition, the backward methodology projects
fewer and smaller databases normally.

(2) Reversal pattern matching technique. Backward mining is totally different from the
reverse pattern matching technique. The reverse matching technique is only used for
checking support increase of a sequential pattern in DB by matching a pattern against a
sequence reversely. After the testing, the database projection and support counting pro-
cesses in PrefixSpan re-applied to the increased data sequences. The support-checking
step in fact is the overhead of incremental mining. Our backward mining algorithm per-
forms support counting and stable-sequence detection at the same time. After the item
counting in the increment-projected databases, all the stable sequences are identified.
Moreover, the subsequent counting and projections with respect to each stable sequence
and its extensions are eliminated. As confirmed by the experiments, most of the previous
patterns are stable and pruned. IncSpan needs to check not only all the previous patterns
but also all the previous semi-frequent patterns. This is the reason why our algorithms
are more efficient than IncSpan.

6. CONCLUSIONS

We have proposed a novel incremental mining methodology, called backward min-
ing, for incremental discovery of sequential patterns. Using backward mining, the stable
sequence property effectively improves the efficiency of sequence mining in incremental
databases. We have designed two algorithms, BSpan and BSPinc, based on the backward
mining methodology. The BSpan algorithm utilizes the stable sequence property to sys-
tematically eliminate a large number of unnecessary database projections. Using the
same property, the BSPinc algorithm also enhances SPAM and prunes a large number of
candidates. The experimental results show that both BSpan and BSPinc outperform the
well-known IncSpan algorithm and IncSP algorithm. Moreover, both algorithms are four
times faster than the IncSpan algorithm in execution time. We believe that the method-
ology can be used to enhance algorithms for applications requiring sequence merging
such as sequential pattern mining over data streams.

ACKNOWLEDGEMENTS

The authors are grateful for the helpful comments of the reviewers. The study is
supported partly by the Ministry of Science and Technology, Taiwan under grant MOST
106-2221-E-035-096.

REFERENCES

1. R. Agrawal and R. Srikant, “Mining sequential patterns,” in Proceedings of the 11th
International Conference on Data Engineering, 1995, pp. 3-14.

MING-YEN LIN, SUE-CHEN HSUEH AND CHIH-CHEN CHAN

1348

2. J. Ayres, J. Gehrke, T. Yiu, and J. Flannick, “Sequential pattern mining using a bit-
map representation,” in Proceedings of the 8th ACMSIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, 2002, pp. 429-435.

3. J. Chen, “An updown directed acyclic graph approach for sequential pattern min-
ing,” IEEE Transactions on Knowledge and Data Engineering, Vol. 22, 2010, pp.
913-928.

4. Y. Chen, J. Guo, Y. Wang, Y. Xiong, and Y. Zhu, “Incremental mining of sequential
patterns using prefix tree,” in Proceedings of the 11th International Conference on
Advances in Knowledge Discovery and Data Mining, 2007, pp. 433-440.

5. H. Cheng, X. Yan, and J. Han, “IncSpan: Incremental mining of sequential patterns
in large database,” in Proceedings of the 10th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, 2004, pp. 527-532.

6. J. K. Febrer-Hernández and J. H. Palancar, “Sequential pattern mining algorithms
review,” Intelligent Data Analysis, Vol. 16, 2012, pp. 451-466.

7. J. Huang, C. Y. Tseng, J. C. Ou, and M. S. Chen, “A general model for sequential
pattern mining with a progressive database,” IEEE Transactions on Knowledge and
Data Engineering, Vol. 20, 2008, pp. 1153-1167.

8. B. Kao, M. Zhang, C. L. Yip, D. W. Cheung, and U. M. Fayyad, “Efficient algo-
rithms for mining and incremental update of maximal frequent sequences,” Data
Mining and Knowledge Discovery, Vol. 10, 2005, pp. 87-116.

9. R. Kohavi, C. Brodley, B. Frasca, L. Mason, and Z. Zheng, “KDD-Cup 2000 organ-
izers’ report: Peeling the onion,” SIGKDD Explorations, Vol. 2, 2000, pp. 86-98.

10. G. Lee, Y. C. Chen, and K. C. Hung, “PTree: Mining sequential patterns efficiently
in multiple data streams environment,” Journal of Information Science and Engi-
neering, Vol. 29, 2013, pp. 1151-1169.

11. I. H. Li, J. Y. Huang, and I. Liao, “Mining sequential pattern changes,” Journal of
Information Science and Engineering, Vol. 30, 2014, pp. 973-990.

12. M. Y. Lin and S. Y. Lee, “Incremental update on sequential patterns in large data-
bases by implicit merging and efficient counting,” Information Systems, Vol. 29,
2004, pp. 385-404.

13. M. Y. Lin and S. Y. Lee, “Fast discovery of sequential patterns through memory
indexing and database partitioning,” Journal of Information Science and Engineer-
ing, Vol. 21, 2005, pp. 109-128.

14. M. Y. Lin, S. C. Hsueh, and C. W. Chang, “Mining closed sequential patterns with
time constraints,” Journal of Information Science and Engineering, Vol. 24, 2008,
pp. 33-46.

15. C. W. Lin, T. P. Hong, W. Gan, H. Y. Chen, and S. T. Li, “Incrementally updating
the discovered sequential patterns based on pre-large concept,” Intelligent Data
Analysis, Vol. 19, 2015, pp. 1071-1089.

16. J. Liu, S. Yan, Y. Wang, and J. Ren, “Incremental mining algorithm of sequential
patterns based on sequence tree,” Advances in Intelligent Systems, Vol. 138, 2012,
pp. 61-67.

17. F. Masseglia, P. Poncelet, and M. Teisseire, “Incremental mining of sequential pat-
terns in large databases,” Data and Knowledge Engineering, Vol. 46, 2003, pp. 97-
121.

18. J. Pei, J. Han, H. Pinto, Q. Chen, U. Dayal, and M. C. Hsu, “Mining sequential pat-

SEQUENTIAL PATTERNS: BACKWARD GENERATION FRAMEWORK 1349

terns by pattern-growth: The PrefixSpan approach,” IEEE Transactions on Know-
ledge and Data Engineering, Vol. 16, 2004, pp. 215-224.

19. R. Srikant and R. Agrawal, “Mining sequential patterns: Generalizations and per-
formance improvements,” in Proceedings of the 5th International Conference on
Extending Database Technology, 1996, pp. 3-17.

20. X. Yan, J. Han, and R. Afshar, “CloSpan: Mining closed sequential patterns in large
databases,” in Proceedings of the 3rd SIAM International Conference on Data Min-
ing, 2003, pp. 166-177.

21. D. Yuan, K. Lee, H. Cheng, G. Krishna, Z. Li, X. Ma, Y. Zhou, and J. Han, “CISpan:
Comprehensive incremental mining algorithms of closed sequential patterns for mul-
ti-versional software mining,” in Proceedings of SIAM International Conference on
Data Mining, 2008, pp. 84-95.

22. M. J. Zaki, “Efficient enumeration of frequent sequences,” in Proceedings of ACM
CIKM International Conference on Information and Knowledge Management, 1998,
pp. 68-75.

Ming-Yen Lin (林明言) received the Ph.D. degree in Depart-
ment of Information Engineering and Computer Science from Na-
tional Chiao Tung University, Taiwan. He is currently an Associate
Professor in Feng Chia University. His research interests include
pattern mining, skyline queries, and big data analytics.

Sue-Chen Hsueh (薛夙珍) received the Ph.D. degree in De-
partment of Information management from Chiao Tung University,
Taiwan. She is currently an Associate Professor in Chaoyang Uni-
versity of Technology. Her research interests include data mining,
information security, and electronic commerce.

Chih-Chen Chan (詹志勤) received his M.S. degree in Depart-
ment of Information Engineering and Computer Science from Feng
Chia University. He is currently a Senior Software Engineer in MStar
semiconductor, Inc. His research interests include data mining and
algorithm design.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

