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For compressing large-scale multidimensional datasets, out-of-core tensor decom-

position often consumes a lot of time. This article particularly presents a method based 
on two key ideas to improve its performance. First, cache-aware static scheduling 
schemes are employed to reduce the total number of disk accesses. Second, we take ad-
vantage of the massively parallel computing power and large memory size of modern 
GPUs to accelerate linear algebra operations of tensor decomposition. Our experiments 
demonstrate that the proposed method can achieve speedups of 11~16 over a naive im-
plementation and 2.5~5.3 over previous work [43] for practical data-driven rendering ap-
plications. 
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1. INTRODUCTION 

Recently, large-scale multidimensional datasets, such as bidirectional texture func-
tions (BTFs) [6], multispectral BTFs (MSBTFs) [32], time- and spatially-varying BRDFs 
[12], time-varying light fields [2], have caught a lot of attention in computer graphics. 
They provide an example-based approach that can synthesize higher quality 3D images 
than traditional analytic models. To reduce the enormous amount of datasets for efficient 
data-driven rendering/processing, various novel compression algorithms [10, 28, 37] 
have been proposed during the past decades. Among modern compression algorithms, 
tensor decomposition, specifically higher-order singular value decomposition (HOSVD) 
[7, 40, 43], has been proved flexible and effective for analyzing and compressing large- 
scale multidimensional datasets. 

When a tensor is too large to fit into host memory, out-of-core HOSVD can be em-
ployed for decomposition by exploiting external memory devices for data storage, such 
as hard disks and solid state drives. Nevertheless, it is often slow if the data amount is 
really huge. For a MSBTF dataset with a size of 48 GB, the algorithm of Wang et al. [43] 
may take several hours to decompose the MSBTF. As the data amount increases rapidly 
with time, constructing a database composed of various multidimensional datasets be-
comes time-consuming and impractical for real-world applications. 

In this article, we present a method to improve the performance of out-of-core 
HOSVD. The proposed algorithm is based on two key insights: 
 
 Careful Scheduling of Blockwise Operations: Out-of-core HOSVD often partitions a 

dataset into smaller blocks for efficient computation [43]. By carefully scheduling the 
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blockwise operations of HOSVD, not only the order of block accesses can be known in 
advance, but also the probability of reusing recently accessed blocks can be increased 
with a cache. 

 Heavy Linear Algebra Computations: HOSVD mainly consists of linear algebra 
computations, including matrix multiplication and eigen-decomposition, on large/me- 
dium-size matrices. 

 
The first insight suggests that the adopted block cache would operate similar to a 

simple first-in-first-out queue. After reexamining the algorithm flow of out-of-core 
HOSVD, we propose two forward and backward scheduling schemes to increase the hit 
rate of the block cache. The second insight indicates that the computation kernels of 
HOSVD are particularly suitable for GPU acceleration. By utilizing concurrent asyn-
chronous CPU/GPU executions, matrix computations can be offloaded from CPUs to 
GPUs and overlapped with block accesses to hide related latencies and increase parallel-
ism. Moreover, the two insights together imply that GPU memory can be regarded as an 
extra cache level on top of host memory. To store more in-core blocks (namely in host/ 
GPU memory), we apply the exclusive caching technique, so that a block is constrained 
to reside in either the host or the GPU block cache, but not both. 

In brief, this article makes following contributions: 
 

 Propose two cache-aware static scheduling schemes to reduce the total number of disk 
accesses for out-of-core tensor decomposition. 

 Introduce an efficient GPU-based out-of-core tensor decomposition framework. 
 Apply the proposed method to decompose BTFs and MSBTFs for efficient rendering. 

2. RELATED WORK 

2.1 Tensor Decomposition 

Tensor decomposition [7, 16], also called multilinear models or multiway analysis, 
was reported successful in compressing multidimensional datasets in computer graphics 
[40]. Its intrinsically multiway and flexible characteristics particularly allow high-quality 
data-driven rendering/processing. An out-of-core algorithm [43] was soon introduced to 
improve its performance for large-scale datasets. After that, various extensions have 
been proposed [31, 34-36, 38, 39, 45] to overcome the drawbacks of traditional methods. 
Interested readers may refer to the tensor survey/tutorial [2, 24] and references therein. 
Ballester-Ripoll et al. [1] also reviewed modern tensor models and conducted a detailed 
analysis on their decomposition and reconstruction performance. 

Nevertheless, previous tensor models have focused on decomposition quality, re-
construction time, and/or compression ratios. Very few articles have addressed decom-
position time for huge multidimensional datasets. For example, Wang et al. [43] pro-
posed to partition a tensor into smaller blocks for efficient computation and employ an 
acceleration technique for reducing disk access time, which is conceptually similar to 
chunk-based matricization [12] and memory-efficient tensor mode products [25]. In this 
article, we further apply cache-aware static scheduling schemes and GPUs to substan-
tially improve the performance of out-of-core HOSVD. 
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Moreover, GPUTensor [46], which also implements tensor decomposition on GPUs, 
is perhaps the most relevant to our work. Nevertheless, it is only suitable for sparse ten-
sors and does not exploit host and GPU memory to cache tensor blocks. By contrast, our 
approach can handle both dense and sparse tensors and schedule blockwise operations to 
further reduce disk access time that usually dominates total decomposition time. 

2.2 Out-of-Core Computation 

Nowadays, a dataset is often very large such that it cannot fit into host memory and 
must be stored on the disk. To reduce disk access time, scheduling techniques are often 
employed to increase the probabilities of data reuse and sequential accesses [41]. A 
comprehensive survey on out-of-core computation is beyond the scope of this article. In 
the following paragraphs, we only briefly discuss out-of-core algorithms in linear algebra 
and computer graphics. 

Marqués et al. [20] utilized GPUs to solve out-of-core linear systems, and suggested 
to employ a software cache and overlap computation with I/O transfers. Recently, Quin-
tana-Ortí et al. [27] argued that it may not be necessary to find an optimal I/O schedule 
by tracking task dependencies. They also claimed that near-optimal performance would 
be achieved if data associated to a task could be prefetched while executing other tasks. 
This concept inspired us that cache-aware static scheduling, instead of more complex 
dynamic scheduling, may be adequate to our goal. 

In computer graphics, the PantaRay system [26] was developed to efficiently per-
form GPU-based ray tracing on massive scenes with hierarchical acceleration structures. 
Wang et al. [44] demonstrated an out-of-core many-lights framework for rendering 
global illumination on GPUs, where data management was reformulated as a graph tra-
versal problem for efficient processing. Günther and Grosch [13] presented a stochastic 
progressive photon mapping algorithm on CPUs and/or GPUs for out-of-core scenes by 
subdividing scenes and distributing workloads with coalesced tracing jobs across com-
puters in a cluster. Nevertheless, most previous out-of-core algorithms in computer 
graphics tackle a specific application. We instead focus on general-purpose out-of-core 
computation on GPUs in this article. 

2.3 Scheduling Techniques 

Scheduling plays an important role not only in out-of-core algorithms but also in 
many other topics, such as databases [5], compilers [8], operating systems [21, 29], and 
distributed/cloud computing [4, 46]. Ceri et al. [5] improved the performance of de-
tached rule scheduling for active database systems by employing dedicated threads to 
periodically execute detached rules. They also developed a performance model to adap-
tively determine the optimal number of threads and execution frequency at runtime. 
Eriksson and Kessler [8] integrated three code generation phases, including instruction 
selection (with cluster assignment), instruction scheduling, and register allocation, for 
clustered very long instruction word architectures. By formulating the problem into an 
integer linear programming model, one can explore more optimization opportunities for 
acyclic code and modulo scheduled loops. 

Merkel et al. [21] proposed a resource-conscious operating system scheduler to im-
prove both performance and energy efficiency for multicore processors by combining 
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tasks that can result in less resource contention. Ramaprasad and Mueller [29] analyzed 
the performance of data caches in a multi-task preemptive environment and derived tight 
upper bounds for real-time tasks. The estimated bounds thus can be utilized by a static or 
dynamic scheduler to significantly reduce the number of preemptions, the worse-case 
execution time, and the response time of a task. For distributed computing, Cao et al. [4] 
presented a heuristic scheduling technique for the directed acyclic graph workflow job in 
a Grid environment. They combined static task mapping and runtime dependable execu-
tion to achieve efficient performance and high resource utilization rates, while also 
providing fault tolerance. Recently, Zhou and He [46] introduced a flexible cloud com-
puting framework for different offerings, workflows, and user requirements by identify-
ing six basic transformation operations and effectively estimating their monetary costs 
and execution times for workflow optimization. 

In this article, we focus on scheduling techniques for reducing the disk accesses 
time of out-of-core tensor decomposition. Our key idea is to employ a software data 
cache and schedule out-of-core operations in order to increase the cache hit rate. Since 
all out-of-core operations are known in advance before decomposition, it is adequate to 
just apply static scheduling from our experience. 

2.4 General-Purpose GPU Computing 

The massively parallel computing power of GPUs has driven a trend towards 
broader applications beyond computer graphics [22, 23]. For general-purpose computing, 
a GPU is regarded as a high-performance many-core processor. Through specialized 
programming languages, such as CUDA and OpenCL, single or multiple GPUs can be 
utilized to accelerate a wide variety of algorithms. This concept has been applied to solve 
many scientific/engineering problems. Due to length limitation, we only review previous 
work on linear/multilinear algebra operations, especially matrix multiplication and eig- 
en-decomposition. 

Krüger and Westermann [18] introduced a GPU-based linear algebra framework to 
provide a foundation for complex numerical algorithms. Fatahalian et al. [9] investigated 
that the slow performance of dense matrix multiplication on GPUs at that time was due 
to the inefficient use of GPU caches. Volkov and Demmel [42] proposed to improve the 
performance of dense matrix multiplication/factorization by matrix blocking and hetero-
geneous computing on CPUs and GPUs. Lahabar and Narayanan [19] presented a GPU- 
based implementation of singular value decomposition for dense matrices. Suter et al. 
[34] employed GPUs to accelerate multiscale tensor reconstruction and perform volume 
ray casting in realtime. Haidar et al. [14] developed a high-performance multi-GPU eig-
en-solver by reducing synchronization and data transfers among GPUs, at the expense of 
more compute-intensive tasks. Note that most previous GPU-based linear algebra meth-
ods only consider in-core operations, but this article further addresses out-of-core com-
putation. 

3. BACKGROUND 

3.1 Notations 

The transpose of a matrix URIJ is denoted by UT. The entry in row i and column j  
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of a matrix U is written as (U)i,j; similarly, the entry of an Nth order tensor ARI1…IN as 
(A )i1,…,iN. For a matrix U partitioned into uniform blocks with a size of IJ, the subma-
trix U(i,j) denotes the block (i, j) of U, whose entries are 

(U(i,j))k,l = (U)(i-1)I+k,(j-1)J+l. (1) 

The symbol A, B  is the scalar product of two Nth order tensors A, BRI1…IN. 
The Frobenius norm of an Nth order tensor A is written as AAA ,F

. Let ufn(A ) 
RIn(In+1…INI1…In-1) denote the mode-n unfolded matrix of A, which is derived by retaining the 
nth mode of A and flattening the others [40, Fig. 2]. Namely, ufn(A ) contains (A )i1,…,iN 
in its row in and column jn, where 

    1

1 1 1 21 1 2

11

1 1 1 12 1 1
1 1 .

nN n

n n n n n n n N nn n n n
I I Ij i i I i I



      
         (2) 

Refolding ufn(A ) back into A is written as ufn
-1(ufn(A )). The mode-n product between a 

tensor A and a matrix URJnIn is represented by B
 
= AnU, where BRI1…In-1JnIn+1 …IN 

is an Nth order tensor whose entries are 

(A)i1,…,in-1,jn,in+1,…,iN = in(A)i1,…,iN(U)jn,in. (3) 

The mode-n product also can be rewritten in the matrix form as ufn(B ) = U  ufn(A ). 

3.2 Out-of-Core HOSVD 

HOSVD [7] decomposes an Nth order tensor A into an Nth order core tensor Z and 
a set of N basis matrices. Specifically, it can be formulated as the following constrained 
least-squares optimization problem: 

   nN

nn

R
T
nnF

T
NN

T n IUUUU
U




,  t.s.,min
2

11
,

  
1

ZA
Z

, (4) 

where RnZ+ is the mode-n reduced rank, UnRRnIn specifies the mode-n basis matrix, 
ZRR1…RN denotes the decomposed core tensor, and IRnRRnRn represents the identity 
matrix of size RnRn. When R1, …, RN are sufficiently small, Z and {Un}

N
n=1 will give a 

compact representation for A. A locally optimal solution to Eq. (4) can be derived by an 
iterative alternating least-squares algorithm, whose pseudocode is shown in Algorithm 1. 
To improve performance for a huge tensor stored on the disk, out-of-core HOSVD often 
partitions the tensor into smaller blocks [43], so that each block can fit into host memory. 
Thus, the original HOSVD operations on out-of-core tensors (A, An, and Z in Algorithm 
1) must be performed blockwise. Since the size of the Gram matrix An is usually not 
large, the eigen-decomposition of An (line 8 in Algorithm 1) can be computed in core, 
leaving tensor unfolding/refolding and matrix multiplication (lines 6, 7, 11) as the most 
critical out-of-core operations. Note that as described in Section 3.1, the mode-n prod-
ucts in lines 6 and 11 are computed in the matrix form. 

Similar to many out-of-core algorithms, out-of-core HOSVD also suffers from long 
disk access latencies that may take up to 40% of total decomposition time from our ex-
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periments. Carefully-designed scheduling and parallel/heterogeneous computing are 
common techniques to solve this problem and hide latencies. We thus employ a block 
cache, schedule block accesses for matrix multiplication with special forward and back-
ward orders to increase the cache hit rate, and utilize concurrent asynchronous CPU/ 
GPU executions to hide block access latencies as many as possible. Sections 4 and 5 will 
respectively present our key ideas of scheduling and GPU acceleration in detail. 
 

Algorithm 1: The HOSVD Algorithm 
Input: A, {Rn}

N
n=1, initial guess for {Z, {Un}

N
n=1}, and convergence threshold . 

Output: Z and {Un}
N
n=1. 

1. repeat 
2.      z||Z||2F 
3.      for n1 to N do  // Update basis matrices 
4.          AnA 
5.          for n1 to N, n  n do 
6.              Anufn

-


1(Un  ufn(An))// Mode-n' product 

7.          Anufn(An)  ufn(An)
T  // Compute Gram matrix 

8.          Update Un with the Rn dominant eigenvectors of An 
9.      Z A 
10.     for n1 to N do  // Update core tensor 
11.         Zufn

-


1(Un  ufn(Z ))  // Mode-n product 

12. until 

2

2

F

F z

A

Z
 

 

20

19

24

23

28

27

32

31

18

17

22

21

26

25

30

29

4

3

8

7

2

1

6

5

12

11

16

15

10

9

14

13

M
od

e 
1

Mode 2

 13

9

5

1

29

25

21

17

14

10

6

2

30

26

22

18

15

11

7

3

31

27

23

19

16

12

8

4

32

28

24

20

 10

9

14

13

2

1

6

5

26

25

30

29

18

17

22

21

12

11

16

15

28

27

32

31

4

3

8

7

20

19

24

23

 13 14

9 10

5 6

1 2

29

25

30

26

21 22

17 18

15

11

16

12

7

3

8

4

31

27

32

28

23

19

24

20

 
     (a)                (b)                   (c)                   (d) 
Fig. 1. True and false mode-2 unfolding for a third order tensor; (a) The tensor is partitioned into 

eight blocks, each of which is highlighted by a bold solid line cube; (b) True mode-2 un-
folding reorganizes tensor entries regardless of blocks; (c) False mode-2 unfolding instead 
first reorganizes individual blocks; (d) It then only unfolds entries within each block. 

 

3.3 False Unfolding and Refolding 
 
To reduce disk access time, Wang et al. [43] proposed an acceleration technique 

that we called false unfolding/refolding. It is conceptually similar to chunk-based matri-
cization [15] and memory-efficient tensor mode products [30]. As illustrated in Fig. 1, 
false unfolding regards each block in the tensor as a big tensor entry, then unfolds these 
big entries (Fig. 1 (c)), and only unfolds entries within each block (Fig. 1 (d)). Since un-
folding big tensor entries is equivalent to reorganizing individual blocks (namely chang-
ing their indices), each block is guaranteed to be accessed only once and unnecessary 
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block reads/writes are avoided. Moreover, false refolding can be similarly implemented 
by reversing the process of false unfolding. Note that we also formally prove that false 
unfolding can lead to the same result of a mode-n product or the Gram matrix in the ap-
pendix, while the equivalence proof was not presented in previous work [43]. 

4. CACHE-AWARE STATIC SCHEDULING 

The disk access time for blockwise operations (lines 6, 7, 11 in Algorithm 1) is of-
ten the most significant bottleneck in out-of-core HOSVD. Although dynamic schedul-
ing can be applied to reduce the number of disk accesses, we have found that static 
scheduling is adequate. In general, static scheduling is much easier to implement. If an 
optimal schedule is unnecessary, the complex implementation of dynamic scheduling 
may incur too much runtime overhead [27]. We thus propose two static scheduling 
schemes for different types of multiplications. One scheme is designed for the mode-n 
product (Section 4.1) and the other for Gram matrix computation (Section 4.2). The two 
schemes are cache-aware due to the forward and backward orders for block accesses, 
which will be explained in detail in the following subsections. 

4.1 Mode-n Product 

In our implementation, a mode-n product ufn(C ) = U  ufn(D ) (in the matrix form, 
such as lines 6 and 11 in Algorithm 1) is performed on an in-core basis matrix U and an 
out-of-core unfolded matrix ufn(D ) to obtain an out-of-core unfolded matrix ufn(C ). We 
propose two scheduling sequences for different cases of the mode-n product. Sequence I 
reads each block in ufn(D ) only once, but may read/write each block in ufn(C ) multiple 
times (Section 4.1.1). Sequence II may read each block in ufn(D ) multiple times, but 
instead writes each block in ufn(C ) only once (Section 4.1.2). Each time before execut-
ing a mode-n product, an appropriate sequence is automatically determined (Section 
4.1.3). Note that all basis matrices are stored in core, since their sizes are usually small. 

4.1.1 Sequence I 

In Sequence I, each block in the input ufn(D ) is read only once and streamed for 
multiplication with blocks in U. The multiplied results are then accumulated with associ-
ated blocks in the output ufn(C ). Specifically, blocks in ufn(C ) are computed by 

i, j, ufn(C )(i,j) = kufn(C )
 (

(

k

i,

)

j), (5) 

ufn(C )
 (

(

k

i,

)

j) = U(i,k)  ufn(D )(k, j),    (6) 

where ufn(C )
 (

(

k

i,

)

j) denotes the kth partial multiplied result of ufn(C )(i, j). In practice, we iter-
ate the index j to obtain blocks ufn(C )(1,j), …, ufn(C )(BCn, j) at each iteration, where BC

n is the 
number of blocks along the nth mode of C, and Fig. 2 illustrates Sequence I with the 
special forward and backward orders when j = 1. At the jth iteration, the block ufn(D)(1, j) 
is first read from the disk and multiplied with U(1,1), …, U(BCn, 1) (Fig. 2 (a)). The first par-
tial results ufn(C )

 (

(

1

1

)

, j), …, ufn(C )
 (

(

1

B

)
Cn, j) are then written to associated blocks in ufn(C ) in the 
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(forward) order of ufn(C )(1,j), …, ufn(C ) (BCn, j). After that, the next block ufn(D )(2,j) is read for 
multiplication with U(1,2), …, U(BCn, 2), and the second partial results ufn(C )

(

(

2

1

)

, j), …, ufn(C )
(

(

2

B

)
Cn, j) 

are accumulated in the (backward) order of ufn(C )(BCn, j), …, ufn(C )(1,j) (Fig. 2 (b)). Again, 
blocks ufn(C )(1,j), …, ufn(C )(BCn, j) are updated forward, backward, and so on, until their 
final results are obtained. This scheduling technique could immediately reuse recently 
accessed blocks in ufn(C ) when switching from forward to backward, and vice versa, 
and the cache hit rate would be effectively increased. If the employed cache can hold at 
most E blocks in ufn(C ), there will be only BC

n  E misses when accessing blocks in the 
backward order as Fig. 2 (b). 
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(a) Forward order (b) Backward order 
Fig. 2. Sequence I for a mode-n product. Each arrow shows the order of block accesses. Cyan 

blocks are first read from the disk (if needed), updated, and then written to the disk. Green 
blocks indicate that they are read from the disk, and gray ones are read from memory. Sol-
id line blocks are valid ones stored in memory or on the disk, while dotted line blocks are 
invalid ones that have not been generated. 
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(a) Forward order (b) Backward order 
Fig. 3. Sequence II for a mode-n product; Yellow blocks indicate that they are written to the disk. 

Refer to Fig. 2 for the meanings of other objects and colors. 

 
4.1.2 Sequence II 

In this sequence, each block in the output ufn(C ) is respectively computed by read-
ing associated blocks in the input ufn(D ) for multiplication with blocks in U and then 
written to the disk only once. Similar to Sequence I, Sequence II also switches between 
the forward and backward block access orders, but only blocks in ufn(D ) are cached 
instead. Formally, blocks in ufn(C ) are computed by 

i, j, ufn(C )(i,j) = kU(i,k)  ufn(D )(k,j). (7) 

Sequence II iterates the index j to obtain blocks in ufn(C ), and Fig. 3 shows how it works 
on an example when j = 1. At the jth iteration, the block ufn(C )(i,j) is first derived by 
reading associated blocks in ufn(D ) in the (forward) order of ufn(D )(1,j), …, ufn(D )(BDn, j), 
where BD

n is the number of blocks along nth mode of D, and multiplying them respec-
tively with U(1,1), …, U(1,BDn). The next block ufn(C )(i+1,j) is then obtained by reading blocks 
in the (backward) order of ufn(D )(BDn, j), …, ufn(D )(1,j) and multiplying them with U(2,1), …, 
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U(2,BDn) (Fig. 3 (b)). After that, Sequence II turns back to the forward order again for 
computing ufn(C )(i+2,j), and switches between forward and backward orders for reading 
ufn(D )(1,j), …, ufn(D )(BDn, j) until ufn(C )(BCn, j) is derived. The recently accessed blocks in 
ufn(D ) thus could be immediately reused when the reading order changes. 

4.1.3 Automatic sequence selection 

With static scheduling, we can mathematically analyze the total numbers of required 
block accesses for both sequences (as listed in Table 1) and automatically select an ap-
propriate one that would access blocks less frequently. Specifically, each time before 
executing a mode-n product, the numbers of block reads and writes are computed for 
each sequence. We then select the sequence with the smallest value of the metric: Ls+ 
Ws, where Ls and Ws respectively denote the number of block reads and writes for a 
sequence s, and  is a constant that accounts for the average time ratio of a block write 
over a block read. The value of  may vary from system to system and can be determin- 
ed offline by conducting some experiments. Note that we ignore hardware caching and 
memory latency issues for sequence selection, since disk access time is more dominant. 
 

Table 1. Number of block accesses for a mode-n product. The scalars BC
j and BD

j denote 
the numbers of blocks along the jth mode of C and D, respectively. The scalar 
E represents the number of maximal blocks in the cache. The output of the 
function max0(a) is the maximum of the scalar a and 0. 

Sequence Operation Matrix Number of block accesses 

I 
Read 

ufn(C ) (BD
n1)max0(B

C
j  E)jnB

D
j  

ufn(D ) jB
D
j 

Write ufn(C ) ((BD
n1)max0(B

C
n  E) + BC

n)jnB
D
j 

II 
Read ufn(D )  ((BC

n1)max0(B
D
n  E) + BD

n)jnB
D
j 

Write ufn(C ) BC
njnB

D
j 

 

=

(1,1)

(2,1)

(3,1) (3,3)

(4,1) (4,3) (4,4)

(2,2)

(3,2)

(4,2)

...(1,1)

(2,1)

(3,1)

...

...

(4,1) ...

...

(1,4)(1,3)(1,2)

......

(1,1)

...

 

=

(1,1)

(2,1)

(3,1) (3,3)

(4,1) (4,3) (4,4)

(2,2)

(3,2)

(4,2)

...(1,1)

(2,1)

(3,1)

...

...

(4,1) ...

...

(1,4)(1,3)(1,2)

......

(1,1)

...

 
An ufn(An) ufn(An)

T An ufn(An) ufn(An)
T 

(a) First round (forward order) (b) Second round (backward order) 

=

(1,1)

(2,1)

(3,1) (3,3)

(4,1) (4,3) (4,4)

(2,2)

(3,2)

(4,2)

...(1,1)

(2,1)

(3,1)

...

...

(4,1) ...

...

(1,4)(1,3)(1,2)

......

(1,1)

...

 

=

(1,1)

(2,1)

(3,1) (3,3)

(4,1) (4,3) (4,4)

(2,2)

(3,2)

(4,2)

...(1,1)

(2,1)

(3,1)

...

...

(4,1) ...

...

(1,4)(1,3)(1,2)

......

(1,1)

...

 
An ufn(An) ufn(An)

T An ufn(An) ufn(An)
T 

(a) First round (forward order) (b) Second round (backward order) 
Fig. 4. The proposed scheduling scheme for Gram matrix computation. Magenta blocks are first 

read from memory (if needed), updated, and then written to memory. Refer to Fig. 2 for the 
meanings of other objects and colors. 
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Sequence I is generally suitable when the number of rows in ufn(C ) is smaller than 
that in ufn(D ), since the employed cache is more likely to hold the required blocks in 
ufn(C ). By contrast, Sequence II is suitable for the opposite case. It is worth noting that 
both sequences are respectively related to the GEBP and GEPDOT operations that are 
the building kernels of matrix multiplication in GotoBLAS [11]. Nevertheless, Goto-
BLAS only considers in-core matrix multiplication, while out-of-core multiplication is 
encountered in our case. 

4.2 Gram Matrix Computation 

Computing the Gram matrix (line 7 in Algorithm 1) is one of the critical operations 
in out-of-core HOSVD, where there are N total computations at each repeat iteration in 
Algorithm 1. For the nth mode, Gram matrix computation corresponds to the matrix mul-
tiplication between an out-of-core unfolded matrix ufn(An) and its transpose ufn(An)

T to 
obtain an in-core Gram matrix An (whose size is usually not large). The proposed sched-
uling scheme for computing An also employs the forward and backward orders to read 
blocks in ufn(An). Since An is a symmetric matrix, we can only compute its lower trian-
gular part to further reduce the number of block accesses. Specifically, the lower trian-
gular blocks in An are computed by 

     
 

k
k

jinjiniji ,,,, AA , (8) 

  
        jk

T
nnkinn

k
jin ufuf ,,, AA A , (9) 

where (An)
(

(

k

i,

)

j) specifies the kth partial multiplied result of (An)(i,j). In this scheme, we iterate 
the index k to accumulate the lower triangular blocks in An, and Fig. 4 demonstrates an 
example of the proposed scheme when k = 1. At the kth iteration, blocks (An)(1,1), …, 
(An)(B

A
n

 n,1), where BA
n

n is the number of blocks along nth mode of An, are first updated by 
reading associated blocks in ufn(An) in the forward order of ufn(An)(1,k), …, ufn(An)(B

A
n
 n,k) 

and multiplying them with (ufn(An)
T)(k,1) (Fig. 4 (a)). Next, blocks ufn(An)(2,k), …, ufn  

(An)(B
A
n

 n,k), without ufn(An)(1,k) at this time, are read in the backward order and multiplied 
with (ufn(An)

T)(k, B
A
n

 n) to update associated blocks in An, namely (An)(B
A
n
 n,2), …, (An)(B

A
n
 n, B

A
n
 n) 

(Fig. 4 (b)). Then, the above process is similarly applied until all lower triangular blocks 
in An are updated (Figs. 4 (c) and (d)). Note that each time when switching the reading 
order, one block in ufn(An) is not needed henceforth, and the required block in ufn(An)

T 
is already in the cache. This style of reading blocks in ufn(An) is analogous to a under-
damped spring/oscillator. The total number of block reads for ufn(An) can be estimated 
by 

     
 




 

nj j
EBEB

n
n

n
n

n
nn BB AA AA

2
1maxmax 00 , (10) 

where we use the same notation as in Table 1. 

5. GPU ACCELERATION 

From Section 3.2 and Algorithm 1, one can easily find out that most operations in 
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out-of-core HOSVD are linear algebra computations on large/medium-size matrices, 
including matrix multiplication (lines 6, 7, 11) and eigen-decomposition (line 8), which 
are particularly suitable for GPU acceleration. Our implementation thus employs asyn-
chronous GPU executions to overlap operations on CPUs and GPUs. Specifically, we 
only computes blockwise submatrix multiplication and eigen-decomposition asynchro-
nously on GPUs and utilizes CPUs to handle other tasks, such as program flow control, 
disk accesses, and block cache management. To further increase GPU parallelism, con-
current data transfers and GPU kernel executions are enabled by batch processing [25]. 
Namely, operations are divided into batches, each of which includes the data transfers of 
different submatrices between host and GPU memory and the corresponding submatrix 
multiplications, such as Eq. (6) for Sequence I, each term of the summation in Eq. (7) for 
Sequence II, and Eq. (9) for Gram matrix computation. Note that synchronization among 
different batches/GPUs must be carefully coordinated to avoid data corruption. Fig. 5 
illustrates the concept of concurrent asynchronous CPU/GPU executions and batch pro-
cessing in our system. 

Moreover, modern GPUs are equipped with a large amount of memory. Since 
blockwise operations often consume just a portion of GPU memory, we can regard un-
used GPU memory as an extra cache level of the memory hierarchy to reduce unneces-
sary data transfers between host and GPU memory. In our implementation, cache blocks 
in GPU memory are different from those in host memory, namely exclusive contents in 
the two caches. This allows more cache blocks in the memory hierarchy and improves 
overall decomposition performance, since disk accesses are much more time-consuming 
than data transfers between host and GPU memory. 

 

Block Read

H2G

Batch 1
MO

G2H

Batch S

Disk Read

H2G

MO

G2H

Block Write

Block Write

...

Time  
Fig. 5. We employ asynchronous GPU executions to overlap CPU/GPU operations and divide 

them into multiple batches to maximize the throughput of our system. Gray rectangles are 
tasks handled by CPUs, while red ones are executed on GPUs. “H2G” stands for data 
transfer from host to GPU memory, “G2H” for transfer from GPU to host, and “MO” spec-
ifies (blockwise) matrix operations, such as multiplication and/or eigen-decomposition. 
Block reads/writes are handled by CPUs and implicitly include cache/disk accesses. 

6. EXPERIMENTAL RESULTS 

This section shows the experimental results of the proposed method on BTFs (Sec-
tion 6.1) and MSBTFs (Section 6.2), which are two common types of large-scale multi-
dimensional datasets in computer graphics. The following parameters were adopted in 



YU-TING TSAI, WEI-JHIH WANG AND TZU-YUAN KAO 

 

1394

 

our experiments unless otherwise specified. An input tensor was partitioned along vari-
ous modes into multiple blocks, each with a size of 60.75 MB. For GPU acceleration, the 
number of batches was set to 3. For cache-aware scheduling, the total number of maxi-
mal blocks in the cache was set to 9 (6 in host memory and 3 in GPU memory), leading 
to a memory footprint of around 1 GB (60.75MB9cache blocks = 546.75MB, plus 
about 400 MB temporary data, where each GPU batch needs 2 additional blocks, one in 
host memory and the other in GPU memory, for concurrent data transfers and CPU/GPU 
asynchronous executions). Decomposition quality is evaluated by the signal-to-noise 
ratio (SNR). Timings were measured on a workstation with an Intel Core i7-4930K CPU, 
an NVIDIA GeForce GTX TITAN graphics card (with 6 GB GPU memory), and 16 GB 
host memory. The raw and decomposed data were stored using 32-bit and 16-bit floating 
point numbers, respectively. 

6.1 Bidirectional Texture Functions 

A BTF [6] is a 6D function that describes the reflectance of a planar surface point 
when lit by an incident ray in the illumination direction ωl and reflected in the view di-
rection ωv, where the surface point is usually represented as a texel t with 2D spatial co-
ordinates (x, y). HOSVD was proved as an efficient and flexible BTF compression 
method [40, 43]. Although it may not be the most efficient one, the flexibility of indi-
vidually reducing each mode is the main reason that we use it. Nevertheless, out-of-core 
HOSVD may consume substantial time for decomposition. 

 
Experimental settings  A BTF is organized as a fourth order tensor ARIlIvIxIy for 
decomposition. To achieve fast rendering performance, we only decompose its illumina-
tion and view modes. This allows texture filtering for the x and y modes on GPUs and 
also reflects the real memory usage at runtime. The utilized BTF datasets were collected 
from the UBO2003 Datasets [33] in BTF Database Bonn (http://cg.cs.uni-bonn.de/pro- 
jects/btfdbb/download/ubo2003/) and the Volumetric Surface Texture Database [17] 
(http://vision.ucsd.edu/kriegman-grp/research/vst/). 
 
Results: Table 2 shows the statistics of BTF decomposition using five methods. Readers 
may refer to our accompanying video and supplemental materials for the reconstruct-
ed/rendered results. The performance of the proposed method can be reduced up to al-
most 71% when compared with Wang et al. [43]. For a BTF, the SNRs of CPU- and 
GPU-based methods should be theoretically identical, but are slightly different due to 
adopted eigen-solvers and numerical issues, with almost equivalent rendering rates, the 
same amount of decomposed data, and indisquinshable visual quality of reconstructed/ 
rendered images (please refer to our supplemental materials). For eigen-decomposition, 
we currently employ “culaDeviceSsyev” in CULA (http://www.culatools.com/) for GPU- 
based methods and “eig” in MATLAB for others. Fig. 6 compares the speedups over 
Wang et al. [43] among different configurations of the proposed method. For the BTF 
“Lego”, we changed the mode-ωl or mode-ωv reduced rank from 8 to 88 and conducted 
total 121 experiments for different combinations of the two parameters. The speedup 
generally changes a lot with the increase in the mode-ωv reduced rank Rv, but first raises 
and then decreases with the increase in the mode-ωl reduced rank Rl. 
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Table 2. Statistics of BTF decomposition using five methods, including the naive block-
wise implementation with true unfolding/refolding (N), Wang et al. [43] (with 
false unfolding/refolding), cache-aware scheduling with false unfolding/refold- 
ing (C), GPU acceleration with false unfolding/refolding (G), and all the pro-
posed acceleration techniques (C+G). The rendering rates were measured un-
der 3 directional lights with a screen resolution of 800600. 

BTF 

Object model 

Corduroy 

Armadillo 

Impalla 

Room 

Lego 

Teapot 

Proposte 

Dragon 

yx IIII
vl

   

Raw data (GB) 

81  81  256  256 

4.81 

81  81  256  256 

4.81 

120  90  256  256 

7.91 

81  81  256  256 

4.81 

vl
RR    

Decomposed data (MB)

Frames per second 

24  32 

96.02 

~50.37 

32  36 

144.02 

~14.29 

32  48 

192.03 

~35.87 

24  40 

120.02 

~33.27 

Method 

SNR (dB) 

Performance (min.) 

Speedup over N 

Speedup over [43] 

N 

19.37 

10.27 

- 

0.34 

[43] 

19.37 

3.53 

2.91 

- 

C 

19.37 

2.32 

4.43 

1.53 

G 

19.31 

1.12 

9.19 

3.16 

C+G

19.31

0.78

13.11

4.51

N

18.91

30.02

- 

0.35

[43]

18.91

10.53

2.85

- 

C

18.91

6.75

4.45

1.56

G

18.85

3.1

9.68

3.4

C+G

18.85

2.05

14.64

5.14

N

17.25

30.85

- 

0.32

[43]

17.25

9.93

3.11

- 

C

17.25

6.15

5.02

1.62

G

17.24

3.92

7.88

2.54

C+G

17.24

3.08

10.01

3.22

N

23.69

33.35

- 

0.36

[43] 

23.69 

12.05 

2.77 

- 

C 

23.69 

7.47 

4.47 

1.61 

G 

23.33 

3.35 

9.96 

3.6 

C+G 

23.33 

2.28 

14.61 

5.28 

 

BTF 

Object model 

Pulli 

Horse 

Sponge 

Bunny 

Wool 

Cloth 

yx IIII
vl

   

Raw data (GB) 

81  81  256  256 

4.81 

120  90  256  256 

7.91 

120  90  256  256 

4.81 

vl
RR    

Decomposed data (MB) 

Frames per second 

24  48 

144.02 

~26.73 

20  24 

60.02 

~86.29 

24  28 

84.02 

~38.23 

Method 

SNR (dB) 

Performance (min.) 

Speedup over N 

Speedup over [43] 

N 

20.21 

8.63 

 

0.39 

[43]

20.21

3.33

2.59

 

C

20.21

2.07

4.18

1.61

G

20.15

1.05

8.22

3.17

C+G

20.15

0.75

11.51

4.44

N

25.72

19.08


0.25

[43]

25.72

4.73

4.03



C

25.72

3.15

6.06

1.5

G

25.23

1.83

10.41

2.58

C+G

25.23

1.47

13.01

3.23

N

20.65

31.42


0.33

[43]

20.65

10.32

3.05



C

20.65

6.42

4.9

1.61

G 

20.55 

3.05 

10.3 

3.38 

C+G 

20.55 

2.0 

15.71 

5.16 

 

 
Fig. 6. Speedups over Wang et al. [43] for the BTF “Lego” based on different configurations of 

the proposed method (C+G). 

6.2 Multispectral Bidirectional Texture Functions 

A MSBTF [32] is a generalization of the BTF with multispectral responses. It is a 
7D function of the illumination direction ωl, the view direction ωv, the wavelength , and 
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the 2D spatial coordinates (x, y) of a texel t. The additional dependency on wavelengths 
further increases the required amount of each raw MSBTF dataset to tens of GB. It is 
thus time-consuming to compress such a huge dataset using out-of-core HOSVD. 
 
Experimental settings  A MSBTF is organized as a fifth order tensor ARIl

Iv
IIxIy, 

and we only decompose its illumination, view, and wavelength modes. The adopted 
MSBTF datasets were collected from the Spectral Datasets [32] in BTF Database Bonn 
(http://cg.cs.uni-bonn.de/projects/btfdbb/download/spectral/). 
 
Rendering process  The MSBTF rendering process is similar to BTF, except that we 
should additionally reconstruct the wavelength mode and apply a color matching func-
tion C() to convert the spectral power distribution into RGB color values. Specifically, 
we obtain the reflected RGB values from a MSBTF texel t by 

( ) ( )
1,* ,*[ ( ( ) )... ( ( ) )] ( ( ) ),

l l v v

T T i T T
i i Ri

C C uf
         tl U l U u u  Z  (11) 

where liRI is the incident spectral power distribution from the ith light source, the 
symbol  denotes the Hadamard (entrywise) product, (U)j,* specifies the jth row vector 
of U, u

(


i)

l
RRl and uvRRv are respectively sampled from Ul and Uv according to the 

ith illumination and current view directions, and ZRRlRvR is the associated entries of 
t in Z. 

To increase runtime rendering rates, we precompute {C(li  (U)
T

j,*)}
R

j

=1 for each light 

source and store the results in a texture. This may also reduce memory requirements as 
long as the number of lights is small (2 in our experiments). Nevertheless, the texture 
needs to be updated each time when the spectral emissive power distribution of a light 
source changes. 

 
Table 3. Statistics of MSBTF decomposition using five methods (please refer to Table 2 

for abbreviations). The rendering rates were measured under 2 directional 
lights with a screen resolution of 640480. 

MSBTF 

Object model 

Colorchecker 

Plane 

Lego Bricks 

Cloth 

Red Fabric 

Bunny 

Wallpaper 

Teapot 

Il  Iv  I  Ix  Iy  
Raw data (GB) 

81  81  30  256  256

48.05 

81  81  30  256  256

48.05 

81  81  30  256  256

48.05 

81  81  29  256  256 

46.45 

 RRR
vl
  

Decomposed data (MB)

Frames per second 

44  52  3 

858.02 

~8.2 

36  56  3 

756.01 

~7.83 

28  48  3 

504.01 

~15.03 

40  48  3 

720.01 

~11.84 

Method 

SNR (dB) 

Performance (hr.) 

Speedup over N 

Speedup over [43] 

N 

12.12 

24.86 

 

0.23 

[43] 

12.12 

5.81 

4.28 

 

C 

12.12 

4.93 

5.04 

1.18 

G 

12.12 

2.67 

9.3 

2.17 

C+G

12.12

2.27

10.93

2.56

N

11.62

9.79


0.23

[43]

11.62

2.3

4.27



C

11.62

1.69

5.78

1.36

G

11.62

1.07

9.14

2.14

C+G

11.62

0.87

11.21

2.63

N

15.47

10.99


0.22

[43]

15.26

2.43

4.53



C

15.26

1.81

6.06

1.34

G

15.4

1.18

9.35

2.07

C+G

15.4

0.94

11.68

2.58

N

17.78

9.6


0.23

[43] 

17.67 

2.25 

4.26 

 

C 

17.67 

1.87 

5.13 

1.2 

G 

17.72 

1.05 

9.11 

2.14 

C+G 

17.72 

0.86 

11.13 

2.61 

 

Results  Table 3 lists the statistics of MSBTF decomposition, where we also compare 
five methods. The reconstructed/rendered images can be found in our accompanying 
video and supplemental materials. GPU acceleration typically achieves a higher speedup 
than cache-aware scheduling, but the performance gains of cache-aware scheduling still 
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cannot be ignored. Fig. 7 plots the speedup over Wang et al. [43] of the proposed meth-
od versus the block size. It shows that the proposed method can achieve a considerable 
speedup regardless of the block size. Although increasing the block size (while being 
less than 200 MB) would reduce the processing time of Wang et al. [43], it usually does 
not have a strong effect on the proposed method. Note that increasing the block size also 
reduces the total number of blocks in the input tensor, resulting in fewer number of disk 
accesses but longer access time for each block. The limited amount of host/GPU memory 
usually prevents users from employing a too large block size. 
 

 
Fig. 7. Speedups over Wang et al. [43] for the MSBTF “Wallpaper” based on different block sizes 

of the proposed method. 
 

Table 4. Statistics of decomposing the MSBTF “Wallpaper” with various numbers of 
maximal cache blocks. 

Method 
Block size (MB) 

[43] 
60.75

C+G 
60.75 

Blocks in host cache
Blocks in GPU cache
Performance (min.) 

Speedup 

 
 

135.12


3 
3 

51.82
2.61 

6 
3 

51.77
2.61 

6 
6 

50.7 
2.67 

9 
3 

51.7 
2.61 

 

Table 4 lists the statistics with various numbers of maximal cache blocks for the 
proposed method. Increasing the cache block number often improves performance, but 
when the total block number in both caches exceeds necessity, the overhead of main-
taining redundant cache blocks may instead reduce performance (as the last case in Table 
4). Raising the block number in the GPU cache also provides more performance gains 
than increasing that in the host cache. Regarding unused GPU memory as an extra cache 
level indeed unleashes additional performance due to less data transfers between host 
and GPU memory. Table 5 shows the statistics with similar memory footprints. For each 
configuration, we adjust the block size and the number of maximal blocks in the host/ 
GPU cache to have a memory footprint of about 1 GB. The performance of different 
configurations generally improves with the increase in the block size, but their differ-  
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Table 5. Statistics of decomposing the MSBTF “Wallpaper” with similar memory foot-
prints. 

Method 
Block size (MB) 

[43] 
48 

C+G
48 

[43] 
60.75

C+G
60.75

[43] 
75 

C+G 
75 

Blocks in host cache 
Blocks in GPU cache 
Performance (min.) 

Speedup 

 
 

159.03


9 
5 

55.03
2.89 

 
 

135.12


6 
3 

51.77
2.61 

 
 

148.2


3 
3 

51.35 
2.89 

 

Table 6. Statistics of decomposing the MSBTF “Red Fabric” with different numbers of 
GPU batches. 
Method 

Number of batches 
[43] 
 

C 
1 

C+G
1 

C 
2 

C+G
2 

C 
3 

C+G 
3 

Performance (min.) 
Speedup 

145.68
 

78.17
1.86 

64.95
2.24 

71.28
2.04 

60.4 
2.41 

70.53 
2.07 

56.45 
2.58 

 

ences are rather small. This implies that the influence of parameter settings is insignifi-
cant with fixed and limited memory usage. Table 6 compares the results with different 
numbers of GPU batches. A large batch number usually increases performance, but also 
consumes more memory space. 

6.3 Discussions 

The proposed method can achieve a considerable performance gain over Wang et al. 
[43] for BTF and MSBTF decomposition. Cache-aware scheduling provides a speedup 
of 1.2~1.6, GPU acceleration gives 2.1~3.6, and the two techniques can be seamlessly 
integrated to achieve 2.5~5.3. For cache-aware scheduling, the proposed forward and 
backward schemes are likely to reuse recently accessed blocks. A significant number of 
disk accesses thus could be avoided. Nevertheless, the speedup for a MSBTF is usually 
lower than that for a BTF. Since the data amount of a MSBTF is much larger, disk access 
time becomes the dominant bottleneck over other operations. The numbers of compul-
sory and capacity misses of the block cache also rapidly increase, leading to poorer cache 
efficiency and a lower speedup (including GPU acceleration). Although raising the 
number of maximal cache blocks would alleviate this issue, compulsory misses still have 
a great performance impact. 

It is worth noting that the scheduling scheme for the mode-n product in Wang et al. 
[43] is actually close to Sequence II (Section 4.1.2) by writing each block in the output 
tensor only once, but without the host/GPU block cache and the special forward and 
backward orders for block accesses. By contrast, our system further employs two cache- 
aware scheduling sequences to avoid unnecessary disk accesses and can automatically 
select an appropriate sequence at runtime. According to our experience, Sequence I 
sometimes can lead to less disk accesses than Sequence II. With automatic sequence se-
lection, our system is more likely to find a better scheduling sequence for the mode-n 
product. Moreover, our GPU-based computations and the extra GPU block cache also 
have a great impact on the speedup over Wang et al. [43]. 
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We currently rely on concurrent asynchronous CPU/GPU executions and exclusive 
CPU/GPU block caches to balance disk accesses and data transfers between host and 
GPU memory. By applying asynchronous CPU/GPU executions, matrix computations 
can be overlapped with block accesses to hide related latencies. Exclusive block caching 
also effectively utilizes the capacity of host/GPU memory and the bandwidth between 
them. Our experiments in Table 4 further shows that by changing the numbers of maxi-
mal blocks in the host and GPU caches, one may find a good balance of disk accesses 
and data transfers between host and GPU memory. When the total block number in both 
caches does not exceed necessity, raising the block number in the GPU cache often pro-
vides more performance gains than increasing that in the host cache. This implies that the 
latencies of disk accesses can be well hidden by asynchronous CPU/GPU executions. 

7. CONCLUSIONS 

This article presents a novel method to improve the performance of out-of-core 
tensor decomposition. Our key ideas include cache-aware scheduling and a GPU-based 
decomposition framework. The proposed scheduling schemes significantly reduce the 
total number of disk accesses for computing the mode-n product or the Gram matrix. 
Various linear algebra operations of tensor decomposition also can be effectively accel-
erated on GPUs. For BTF and MSBTF decomposition, the proposed method can achieve 
speedups of 11~16 over a naive implementation and 2.5~5.3 over previous work [43]. 

This article is just an initial step in addressing the scalability issue of multilinear 
models for massive multidimensional datasets. In the future, we are interested in extend-
ing the proposed method to accelerate advanced multilinear models, such as MK-CTA 
[36]. We would also like to investigate the performance challenge of multilinear models 
for big data analysis, including CPU-GPU heterogeneous computing and efficient dis-
tributed algorithms. 

APPEXNDIX 

This appendix proves that false unfolding/refolding (Section 3.3) can lead to the 
same result of a mode-n product with true unfolding/refolding. The proof for Gram ma-
trix computation is omitted, since it can be similarly derived. 

A mode-n product can be written in the matrix form as ufn(A nU) = U  ufn(A ) 
(Section 3.1). From the definition of true mode-n unfolding in Eq. (2) and Fig. 1, it is 
easy to find out that false mode-n unfolding can be regarded as permuting the columns of 
ufn(A ). Let Pn denote such permutation matrix. We have 

U  ufn(A ) = U  ufn(A )  P
T
nPn = U  ufn(A )  Pn, (12) 

where we use the identity Pn

-1
 = PT

n, and ufn(A ) represents the false mode-n unfolded matrix 
of A. Eq. (12) implies that the same result of the mode-n product can be obtained by per-
muting the columns of U  ufn(A ) back in the order as those of ufn(A ) and then applying 
true mode-n refolding. In fact, this operation is equivalent to false mode-n refolding. 
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