
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 34, 1383-1403 (2018)
DOI: 10.6688/JISE.201811_34(6).0003

1383

Cache-Aware Out-of-Core Tensor Decomposition on GPUs

YU-TING TSAI, WEI-JHIH WANG AND TZU-YUAN KAO

Department of Computer Science and Engineering
Yuan Ze University

Taoyuan, 320 Taiwan
E-mail: hieicis91@hotmail.com; {plok00125; s815l7za}@gmail.com

For compressing large-scale multidimensional datasets, out-of-core tensor decom-

position often consumes a lot of time. This article particularly presents a method based
on two key ideas to improve its performance. First, cache-aware static scheduling
schemes are employed to reduce the total number of disk accesses. Second, we take ad-
vantage of the massively parallel computing power and large memory size of modern
GPUs to accelerate linear algebra operations of tensor decomposition. Our experiments
demonstrate that the proposed method can achieve speedups of 11~16 over a naive im-
plementation and 2.5~5.3 over previous work [43] for practical data-driven rendering ap-
plications.

Keywords: data-driven photorealistic rendering, multidimensional data analysis, tensor
decomposition, out-of-core computation, general-purpose GPU computing

1. INTRODUCTION

Recently, large-scale multidimensional datasets, such as bidirectional texture func-
tions (BTFs) [6], multispectral BTFs (MSBTFs) [32], time- and spatially-varying BRDFs
[12], time-varying light fields [2], have caught a lot of attention in computer graphics.
They provide an example-based approach that can synthesize higher quality 3D images
than traditional analytic models. To reduce the enormous amount of datasets for efficient
data-driven rendering/processing, various novel compression algorithms [10, 28, 37]
have been proposed during the past decades. Among modern compression algorithms,
tensor decomposition, specifically higher-order singular value decomposition (HOSVD)
[7, 40, 43], has been proved flexible and effective for analyzing and compressing large-
scale multidimensional datasets.

When a tensor is too large to fit into host memory, out-of-core HOSVD can be em-
ployed for decomposition by exploiting external memory devices for data storage, such
as hard disks and solid state drives. Nevertheless, it is often slow if the data amount is
really huge. For a MSBTF dataset with a size of 48 GB, the algorithm of Wang et al. [43]
may take several hours to decompose the MSBTF. As the data amount increases rapidly
with time, constructing a database composed of various multidimensional datasets be-
comes time-consuming and impractical for real-world applications.

In this article, we present a method to improve the performance of out-of-core
HOSVD. The proposed algorithm is based on two key insights:

 Careful Scheduling of Blockwise Operations: Out-of-core HOSVD often partitions a

dataset into smaller blocks for efficient computation [43]. By carefully scheduling the

Received April 12, 2017; revised October 28, 2017; accepted December 18, 2017.
Communicated by Yung-Yu Chuang.

YU-TING TSAI, WEI-JHIH WANG AND TZU-YUAN KAO

1384

blockwise operations of HOSVD, not only the order of block accesses can be known in
advance, but also the probability of reusing recently accessed blocks can be increased
with a cache.

 Heavy Linear Algebra Computations: HOSVD mainly consists of linear algebra
computations, including matrix multiplication and eigen-decomposition, on large/me-
dium-size matrices.

The first insight suggests that the adopted block cache would operate similar to a

simple first-in-first-out queue. After reexamining the algorithm flow of out-of-core
HOSVD, we propose two forward and backward scheduling schemes to increase the hit
rate of the block cache. The second insight indicates that the computation kernels of
HOSVD are particularly suitable for GPU acceleration. By utilizing concurrent asyn-
chronous CPU/GPU executions, matrix computations can be offloaded from CPUs to
GPUs and overlapped with block accesses to hide related latencies and increase parallel-
ism. Moreover, the two insights together imply that GPU memory can be regarded as an
extra cache level on top of host memory. To store more in-core blocks (namely in host/
GPU memory), we apply the exclusive caching technique, so that a block is constrained
to reside in either the host or the GPU block cache, but not both.

In brief, this article makes following contributions:

 Propose two cache-aware static scheduling schemes to reduce the total number of disk
accesses for out-of-core tensor decomposition.

 Introduce an efficient GPU-based out-of-core tensor decomposition framework.
 Apply the proposed method to decompose BTFs and MSBTFs for efficient rendering.

2. RELATED WORK

2.1 Tensor Decomposition

Tensor decomposition [7, 16], also called multilinear models or multiway analysis,
was reported successful in compressing multidimensional datasets in computer graphics
[40]. Its intrinsically multiway and flexible characteristics particularly allow high-quality
data-driven rendering/processing. An out-of-core algorithm [43] was soon introduced to
improve its performance for large-scale datasets. After that, various extensions have
been proposed [31, 34-36, 38, 39, 45] to overcome the drawbacks of traditional methods.
Interested readers may refer to the tensor survey/tutorial [2, 24] and references therein.
Ballester-Ripoll et al. [1] also reviewed modern tensor models and conducted a detailed
analysis on their decomposition and reconstruction performance.

Nevertheless, previous tensor models have focused on decomposition quality, re-
construction time, and/or compression ratios. Very few articles have addressed decom-
position time for huge multidimensional datasets. For example, Wang et al. [43] pro-
posed to partition a tensor into smaller blocks for efficient computation and employ an
acceleration technique for reducing disk access time, which is conceptually similar to
chunk-based matricization [12] and memory-efficient tensor mode products [25]. In this
article, we further apply cache-aware static scheduling schemes and GPUs to substan-
tially improve the performance of out-of-core HOSVD.

CACHE-AWARE OUT-OF-CORE TENSOR DECOMPOSITION ON GPUS 1385

Moreover, GPUTensor [46], which also implements tensor decomposition on GPUs,
is perhaps the most relevant to our work. Nevertheless, it is only suitable for sparse ten-
sors and does not exploit host and GPU memory to cache tensor blocks. By contrast, our
approach can handle both dense and sparse tensors and schedule blockwise operations to
further reduce disk access time that usually dominates total decomposition time.

2.2 Out-of-Core Computation

Nowadays, a dataset is often very large such that it cannot fit into host memory and
must be stored on the disk. To reduce disk access time, scheduling techniques are often
employed to increase the probabilities of data reuse and sequential accesses [41]. A
comprehensive survey on out-of-core computation is beyond the scope of this article. In
the following paragraphs, we only briefly discuss out-of-core algorithms in linear algebra
and computer graphics.

Marqués et al. [20] utilized GPUs to solve out-of-core linear systems, and suggested
to employ a software cache and overlap computation with I/O transfers. Recently, Quin-
tana-Ortí et al. [27] argued that it may not be necessary to find an optimal I/O schedule
by tracking task dependencies. They also claimed that near-optimal performance would
be achieved if data associated to a task could be prefetched while executing other tasks.
This concept inspired us that cache-aware static scheduling, instead of more complex
dynamic scheduling, may be adequate to our goal.

In computer graphics, the PantaRay system [26] was developed to efficiently per-
form GPU-based ray tracing on massive scenes with hierarchical acceleration structures.
Wang et al. [44] demonstrated an out-of-core many-lights framework for rendering
global illumination on GPUs, where data management was reformulated as a graph tra-
versal problem for efficient processing. Günther and Grosch [13] presented a stochastic
progressive photon mapping algorithm on CPUs and/or GPUs for out-of-core scenes by
subdividing scenes and distributing workloads with coalesced tracing jobs across com-
puters in a cluster. Nevertheless, most previous out-of-core algorithms in computer
graphics tackle a specific application. We instead focus on general-purpose out-of-core
computation on GPUs in this article.

2.3 Scheduling Techniques

Scheduling plays an important role not only in out-of-core algorithms but also in
many other topics, such as databases [5], compilers [8], operating systems [21, 29], and
distributed/cloud computing [4, 46]. Ceri et al. [5] improved the performance of de-
tached rule scheduling for active database systems by employing dedicated threads to
periodically execute detached rules. They also developed a performance model to adap-
tively determine the optimal number of threads and execution frequency at runtime.
Eriksson and Kessler [8] integrated three code generation phases, including instruction
selection (with cluster assignment), instruction scheduling, and register allocation, for
clustered very long instruction word architectures. By formulating the problem into an
integer linear programming model, one can explore more optimization opportunities for
acyclic code and modulo scheduled loops.

Merkel et al. [21] proposed a resource-conscious operating system scheduler to im-
prove both performance and energy efficiency for multicore processors by combining

YU-TING TSAI, WEI-JHIH WANG AND TZU-YUAN KAO

1386

tasks that can result in less resource contention. Ramaprasad and Mueller [29] analyzed
the performance of data caches in a multi-task preemptive environment and derived tight
upper bounds for real-time tasks. The estimated bounds thus can be utilized by a static or
dynamic scheduler to significantly reduce the number of preemptions, the worse-case
execution time, and the response time of a task. For distributed computing, Cao et al. [4]
presented a heuristic scheduling technique for the directed acyclic graph workflow job in
a Grid environment. They combined static task mapping and runtime dependable execu-
tion to achieve efficient performance and high resource utilization rates, while also
providing fault tolerance. Recently, Zhou and He [46] introduced a flexible cloud com-
puting framework for different offerings, workflows, and user requirements by identify-
ing six basic transformation operations and effectively estimating their monetary costs
and execution times for workflow optimization.

In this article, we focus on scheduling techniques for reducing the disk accesses
time of out-of-core tensor decomposition. Our key idea is to employ a software data
cache and schedule out-of-core operations in order to increase the cache hit rate. Since
all out-of-core operations are known in advance before decomposition, it is adequate to
just apply static scheduling from our experience.

2.4 General-Purpose GPU Computing

The massively parallel computing power of GPUs has driven a trend towards
broader applications beyond computer graphics [22, 23]. For general-purpose computing,
a GPU is regarded as a high-performance many-core processor. Through specialized
programming languages, such as CUDA and OpenCL, single or multiple GPUs can be
utilized to accelerate a wide variety of algorithms. This concept has been applied to solve
many scientific/engineering problems. Due to length limitation, we only review previous
work on linear/multilinear algebra operations, especially matrix multiplication and eig-
en-decomposition.

Krüger and Westermann [18] introduced a GPU-based linear algebra framework to
provide a foundation for complex numerical algorithms. Fatahalian et al. [9] investigated
that the slow performance of dense matrix multiplication on GPUs at that time was due
to the inefficient use of GPU caches. Volkov and Demmel [42] proposed to improve the
performance of dense matrix multiplication/factorization by matrix blocking and hetero-
geneous computing on CPUs and GPUs. Lahabar and Narayanan [19] presented a GPU-
based implementation of singular value decomposition for dense matrices. Suter et al.
[34] employed GPUs to accelerate multiscale tensor reconstruction and perform volume
ray casting in realtime. Haidar et al. [14] developed a high-performance multi-GPU eig-
en-solver by reducing synchronization and data transfers among GPUs, at the expense of
more compute-intensive tasks. Note that most previous GPU-based linear algebra meth-
ods only consider in-core operations, but this article further addresses out-of-core com-
putation.

3. BACKGROUND

3.1 Notations

The transpose of a matrix URIJ is denoted by UT. The entry in row i and column j

CACHE-AWARE OUT-OF-CORE TENSOR DECOMPOSITION ON GPUS 1387

of a matrix U is written as (U)i,j; similarly, the entry of an Nth order tensor ARI1…IN as
(A)i1,…,iN. For a matrix U partitioned into uniform blocks with a size of IJ, the subma-
trix U(i,j) denotes the block (i, j) of U, whose entries are

(U(i,j))k,l = (U)(i-1)I+k,(j-1)J+l. (1)

The symbol A, B  is the scalar product of two Nth order tensors A, BRI1…IN.
The Frobenius norm of an Nth order tensor A is written as AAA ,F

. Let ufn(A)
RIn(In+1…INI1…In-1) denote the mode-n unfolded matrix of A, which is derived by retaining the
nth mode of A and flattening the others [40, Fig. 2]. Namely, ufn(A) contains (A)i1,…,iN
in its row in and column jn, where

    1

1 1 1 21 1 2

11

1 1 1 12 1 1
1 1 .

nN n

n n n n n n n N nn n n n
I I Ij i i I i I



      
        (2)

Refolding ufn(A) back into A is written as ufn
-1(ufn(A)). The mode-n product between a

tensor A and a matrix URJnIn is represented by B

= AnU, where BRI1…In-1JnIn+1 …IN

is an Nth order tensor whose entries are

(A)i1,…,in-1,jn,in+1,…,iN = in(A)i1,…,iN(U)jn,in. (3)

The mode-n product also can be rewritten in the matrix form as ufn(B) = U  ufn(A).

3.2 Out-of-Core HOSVD

HOSVD [7] decomposes an Nth order tensor A into an Nth order core tensor Z and
a set of N basis matrices. Specifically, it can be formulated as the following constrained
least-squares optimization problem:

   nN

nn

R
T
nnF

T
NN

T n IUUUU
U




, t.s.,min
2

11
,

1

ZA
Z

, (4)

where RnZ+ is the mode-n reduced rank, UnRRnIn specifies the mode-n basis matrix,
ZRR1…RN denotes the decomposed core tensor, and IRnRRnRn represents the identity
matrix of size RnRn. When R1, …, RN are sufficiently small, Z and {Un}

N
n=1 will give a

compact representation for A. A locally optimal solution to Eq. (4) can be derived by an
iterative alternating least-squares algorithm, whose pseudocode is shown in Algorithm 1.
To improve performance for a huge tensor stored on the disk, out-of-core HOSVD often
partitions the tensor into smaller blocks [43], so that each block can fit into host memory.
Thus, the original HOSVD operations on out-of-core tensors (A, An, and Z in Algorithm
1) must be performed blockwise. Since the size of the Gram matrix An is usually not
large, the eigen-decomposition of An (line 8 in Algorithm 1) can be computed in core,
leaving tensor unfolding/refolding and matrix multiplication (lines 6, 7, 11) as the most
critical out-of-core operations. Note that as described in Section 3.1, the mode-n prod-
ucts in lines 6 and 11 are computed in the matrix form.

Similar to many out-of-core algorithms, out-of-core HOSVD also suffers from long
disk access latencies that may take up to 40% of total decomposition time from our ex-

YU-TING TSAI, WEI-JHIH WANG AND TZU-YUAN KAO

1388

periments. Carefully-designed scheduling and parallel/heterogeneous computing are
common techniques to solve this problem and hide latencies. We thus employ a block
cache, schedule block accesses for matrix multiplication with special forward and back-
ward orders to increase the cache hit rate, and utilize concurrent asynchronous CPU/
GPU executions to hide block access latencies as many as possible. Sections 4 and 5 will
respectively present our key ideas of scheduling and GPU acceleration in detail.

Algorithm 1: The HOSVD Algorithm
Input: A, {Rn}

N
n=1, initial guess for {Z, {Un}

N
n=1}, and convergence threshold .

Output: Z and {Un}
N
n=1.

1. repeat
2. z||Z||2F
3. for n1 to N do // Update basis matrices
4. AnA
5. for n1 to N, n  n do
6. Anufn

-


1(Un  ufn(An))// Mode-n' product

7. Anufn(An)  ufn(An)
T // Compute Gram matrix

8. Update Un with the Rn dominant eigenvectors of An
9. Z A
10. for n1 to N do // Update core tensor
11. Zufn

-


1(Un  ufn(Z)) // Mode-n product

12. until 

2

2

F

F z

A

Z

20

19

24

23

28

27

32

31

18

17

22

21

26

25

30

29

4

3

8

7

2

1

6

5

12

11

16

15

10

9

14

13

M
od

e
1

Mode 2

 13

9

5

1

29

25

21

17

14

10

6

2

30

26

22

18

15

11

7

3

31

27

23

19

16

12

8

4

32

28

24

20

 10

9

14

13

2

1

6

5

26

25

30

29

18

17

22

21

12

11

16

15

28

27

32

31

4

3

8

7

20

19

24

23

 13 14

9 10

5 6

1 2

29

25

30

26

21 22

17 18

15

11

16

12

7

3

8

4

31

27

32

28

23

19

24

20

 (a) (b) (c) (d)
Fig. 1. True and false mode-2 unfolding for a third order tensor; (a) The tensor is partitioned into

eight blocks, each of which is highlighted by a bold solid line cube; (b) True mode-2 un-
folding reorganizes tensor entries regardless of blocks; (c) False mode-2 unfolding instead
first reorganizes individual blocks; (d) It then only unfolds entries within each block.

3.3 False Unfolding and Refolding

To reduce disk access time, Wang et al. [43] proposed an acceleration technique

that we called false unfolding/refolding. It is conceptually similar to chunk-based matri-
cization [15] and memory-efficient tensor mode products [30]. As illustrated in Fig. 1,
false unfolding regards each block in the tensor as a big tensor entry, then unfolds these
big entries (Fig. 1 (c)), and only unfolds entries within each block (Fig. 1 (d)). Since un-
folding big tensor entries is equivalent to reorganizing individual blocks (namely chang-
ing their indices), each block is guaranteed to be accessed only once and unnecessary

CACHE-AWARE OUT-OF-CORE TENSOR DECOMPOSITION ON GPUS 1389

block reads/writes are avoided. Moreover, false refolding can be similarly implemented
by reversing the process of false unfolding. Note that we also formally prove that false
unfolding can lead to the same result of a mode-n product or the Gram matrix in the ap-
pendix, while the equivalence proof was not presented in previous work [43].

4. CACHE-AWARE STATIC SCHEDULING

The disk access time for blockwise operations (lines 6, 7, 11 in Algorithm 1) is of-
ten the most significant bottleneck in out-of-core HOSVD. Although dynamic schedul-
ing can be applied to reduce the number of disk accesses, we have found that static
scheduling is adequate. In general, static scheduling is much easier to implement. If an
optimal schedule is unnecessary, the complex implementation of dynamic scheduling
may incur too much runtime overhead [27]. We thus propose two static scheduling
schemes for different types of multiplications. One scheme is designed for the mode-n
product (Section 4.1) and the other for Gram matrix computation (Section 4.2). The two
schemes are cache-aware due to the forward and backward orders for block accesses,
which will be explained in detail in the following subsections.

4.1 Mode-n Product

In our implementation, a mode-n product ufn(C) = U  ufn(D) (in the matrix form,
such as lines 6 and 11 in Algorithm 1) is performed on an in-core basis matrix U and an
out-of-core unfolded matrix ufn(D) to obtain an out-of-core unfolded matrix ufn(C). We
propose two scheduling sequences for different cases of the mode-n product. Sequence I
reads each block in ufn(D) only once, but may read/write each block in ufn(C) multiple
times (Section 4.1.1). Sequence II may read each block in ufn(D) multiple times, but
instead writes each block in ufn(C) only once (Section 4.1.2). Each time before execut-
ing a mode-n product, an appropriate sequence is automatically determined (Section
4.1.3). Note that all basis matrices are stored in core, since their sizes are usually small.

4.1.1 Sequence I

In Sequence I, each block in the input ufn(D) is read only once and streamed for
multiplication with blocks in U. The multiplied results are then accumulated with associ-
ated blocks in the output ufn(C). Specifically, blocks in ufn(C) are computed by

i, j, ufn(C)(i,j) = kufn(C)
 (

(

k

i,

)

j), (5)

ufn(C)
 (

(

k

i,

)

j) = U(i,k)  ufn(D)(k, j), (6)

where ufn(C)
 (

(

k

i,

)

j) denotes the kth partial multiplied result of ufn(C)(i, j). In practice, we iter-
ate the index j to obtain blocks ufn(C)(1,j), …, ufn(C)(BCn, j) at each iteration, where BC

n is the
number of blocks along the nth mode of C, and Fig. 2 illustrates Sequence I with the
special forward and backward orders when j = 1. At the jth iteration, the block ufn(D)(1, j)
is first read from the disk and multiplied with U(1,1), …, U(BCn, 1) (Fig. 2 (a)). The first par-
tial results ufn(C)

 (

(

1

1

)

, j), …, ufn(C)
 (

(

1

B

)
Cn, j) are then written to associated blocks in ufn(C) in the

YU-TING TSAI, WEI-JHIH WANG AND TZU-YUAN KAO

1390

(forward) order of ufn(C)(1,j), …, ufn(C) (BCn, j). After that, the next block ufn(D)(2,j) is read for
multiplication with U(1,2), …, U(BCn, 2), and the second partial results ufn(C)

(

(

2

1

)

, j), …, ufn(C)
(

(

2

B

)
Cn, j)

are accumulated in the (backward) order of ufn(C)(BCn, j), …, ufn(C)(1,j) (Fig. 2 (b)). Again,
blocks ufn(C)(1,j), …, ufn(C)(BCn, j) are updated forward, backward, and so on, until their
final results are obtained. This scheduling technique could immediately reuse recently
accessed blocks in ufn(C) when switching from forward to backward, and vice versa,
and the cache hit rate would be effectively increased. If the employed cache can hold at
most E blocks in ufn(C), there will be only BC

n  E misses when accessing blocks in the
backward order as Fig. 2 (b).

(1,1)

(2,1)

(3,1)

(1,3)

(2,3)

(3,3)

(1,4)

(2,4)

(3,4)

(1,2)

(2,2)

(3,2)

=

(1,1)

(2,1)

(3,1)

...

...

...

(4,1) ...

...

...

...

(1,1)

(2,1)

(3,1)

(1,1)

(2,1)

(3,1)

(1,3)

(2,3)

(3,3)

(1,4)

(2,4)

(3,4)

(1,2)

(2,2)

(3,2)

=

(1,1)

(2,1)

(3,1)

...

...

...

(4,1) ...

...

...

...

(1,1)

(2,1)

(3,1)

ufn(C) U ufn(D) ufn(C) U ufn(D)

(a) Forward order (b) Backward order
Fig. 2. Sequence I for a mode-n product. Each arrow shows the order of block accesses. Cyan

blocks are first read from the disk (if needed), updated, and then written to the disk. Green
blocks indicate that they are read from the disk, and gray ones are read from memory. Sol-
id line blocks are valid ones stored in memory or on the disk, while dotted line blocks are
invalid ones that have not been generated.

...(1,1)

(2,1)

(3,1)

...

...

(4,1) ...

(1,1)

(2,1)

(3,1)

(1,3)

(2,3)

(3,3)

(1,4)

(2,4)

(3,4)

(1,2)

(2,2)

(3,2)

=
(1,1)

(2,1)

(3,1)

...

...

...

...

(1,1)

(2,1)

(3,1)

...

...

...

(4,1)

(1,1)

(2,1)

(3,1)

(1,3)

(2,3)

(3,3)

(1,4)

(2,4)

(3,4)

(1,2)

(2,2)

(3,2)

=
(1,1)

(2,1)

(3,1)

...

...

...

ufn(C) U ufn(D) ufn(C) U ufn(D)

(a) Forward order (b) Backward order
Fig. 3. Sequence II for a mode-n product; Yellow blocks indicate that they are written to the disk.

Refer to Fig. 2 for the meanings of other objects and colors.

4.1.2 Sequence II

In this sequence, each block in the output ufn(C) is respectively computed by read-
ing associated blocks in the input ufn(D) for multiplication with blocks in U and then
written to the disk only once. Similar to Sequence I, Sequence II also switches between
the forward and backward block access orders, but only blocks in ufn(D) are cached
instead. Formally, blocks in ufn(C) are computed by

i, j, ufn(C)(i,j) = kU(i,k)  ufn(D)(k,j). (7)

Sequence II iterates the index j to obtain blocks in ufn(C), and Fig. 3 shows how it works
on an example when j = 1. At the jth iteration, the block ufn(C)(i,j) is first derived by
reading associated blocks in ufn(D) in the (forward) order of ufn(D)(1,j), …, ufn(D)(BDn, j),
where BD

n is the number of blocks along nth mode of D, and multiplying them respec-
tively with U(1,1), …, U(1,BDn). The next block ufn(C)(i+1,j) is then obtained by reading blocks
in the (backward) order of ufn(D)(BDn, j), …, ufn(D)(1,j) and multiplying them with U(2,1), …,

CACHE-AWARE OUT-OF-CORE TENSOR DECOMPOSITION ON GPUS 1391

U(2,BDn) (Fig. 3 (b)). After that, Sequence II turns back to the forward order again for
computing ufn(C)(i+2,j), and switches between forward and backward orders for reading
ufn(D)(1,j), …, ufn(D)(BDn, j) until ufn(C)(BCn, j) is derived. The recently accessed blocks in
ufn(D) thus could be immediately reused when the reading order changes.

4.1.3 Automatic sequence selection

With static scheduling, we can mathematically analyze the total numbers of required
block accesses for both sequences (as listed in Table 1) and automatically select an ap-
propriate one that would access blocks less frequently. Specifically, each time before
executing a mode-n product, the numbers of block reads and writes are computed for
each sequence. We then select the sequence with the smallest value of the metric: Ls+
Ws, where Ls and Ws respectively denote the number of block reads and writes for a
sequence s, and  is a constant that accounts for the average time ratio of a block write
over a block read. The value of  may vary from system to system and can be determin-
ed offline by conducting some experiments. Note that we ignore hardware caching and
memory latency issues for sequence selection, since disk access time is more dominant.

Table 1. Number of block accesses for a mode-n product. The scalars BC
j and BD

j denote
the numbers of blocks along the jth mode of C and D, respectively. The scalar
E represents the number of maximal blocks in the cache. The output of the
function max0(a) is the maximum of the scalar a and 0.

Sequence Operation Matrix Number of block accesses

I
Read

ufn(C) (BD
n1)max0(B

C
j  E)jnB

D
j

ufn(D) jB
D
j

Write ufn(C) ((BD
n1)max0(B

C
n  E) + BC

n)jnB
D
j

II
Read ufn(D) ((BC

n1)max0(B
D
n  E) + BD

n)jnB
D
j

Write ufn(C) BC
njnB

D
j

=

(1,1)

(2,1)

(3,1) (3,3)

(4,1) (4,3) (4,4)

(2,2)

(3,2)

(4,2)

...(1,1)

(2,1)

(3,1)

...

...

(4,1) ...

...

(1,4)(1,3)(1,2)

......

(1,1)

...

=

(1,1)

(2,1)

(3,1) (3,3)

(4,1) (4,3) (4,4)

(2,2)

(3,2)

(4,2)

...(1,1)

(2,1)

(3,1)

...

...

(4,1) ...

...

(1,4)(1,3)(1,2)

......

(1,1)

...

An ufn(An) ufn(An)

T An ufn(An) ufn(An)
T

(a) First round (forward order) (b) Second round (backward order)

=

(1,1)

(2,1)

(3,1) (3,3)

(4,1) (4,3) (4,4)

(2,2)

(3,2)

(4,2)

...(1,1)

(2,1)

(3,1)

...

...

(4,1) ...

...

(1,4)(1,3)(1,2)

......

(1,1)

...

=

(1,1)

(2,1)

(3,1) (3,3)

(4,1) (4,3) (4,4)

(2,2)

(3,2)

(4,2)

...(1,1)

(2,1)

(3,1)

...

...

(4,1) ...

...

(1,4)(1,3)(1,2)

......

(1,1)

...

An ufn(An) ufn(An)

T An ufn(An) ufn(An)
T

(a) First round (forward order) (b) Second round (backward order)
Fig. 4. The proposed scheduling scheme for Gram matrix computation. Magenta blocks are first

read from memory (if needed), updated, and then written to memory. Refer to Fig. 2 for the
meanings of other objects and colors.

YU-TING TSAI, WEI-JHIH WANG AND TZU-YUAN KAO

1392

Sequence I is generally suitable when the number of rows in ufn(C) is smaller than
that in ufn(D), since the employed cache is more likely to hold the required blocks in
ufn(C). By contrast, Sequence II is suitable for the opposite case. It is worth noting that
both sequences are respectively related to the GEBP and GEPDOT operations that are
the building kernels of matrix multiplication in GotoBLAS [11]. Nevertheless, Goto-
BLAS only considers in-core matrix multiplication, while out-of-core multiplication is
encountered in our case.

4.2 Gram Matrix Computation

Computing the Gram matrix (line 7 in Algorithm 1) is one of the critical operations
in out-of-core HOSVD, where there are N total computations at each repeat iteration in
Algorithm 1. For the nth mode, Gram matrix computation corresponds to the matrix mul-
tiplication between an out-of-core unfolded matrix ufn(An) and its transpose ufn(An)

T to
obtain an in-core Gram matrix An (whose size is usually not large). The proposed sched-
uling scheme for computing An also employs the forward and backward orders to read
blocks in ufn(An). Since An is a symmetric matrix, we can only compute its lower trian-
gular part to further reduce the number of block accesses. Specifically, the lower trian-
gular blocks in An are computed by

     
 

k
k

jinjiniji ,,,, AA , (8)

  
        jk

T
nnkinn

k
jin ufuf ,,, AA A , (9)

where (An)
(

(

k

i,

)

j) specifies the kth partial multiplied result of (An)(i,j). In this scheme, we iterate
the index k to accumulate the lower triangular blocks in An, and Fig. 4 demonstrates an
example of the proposed scheme when k = 1. At the kth iteration, blocks (An)(1,1), …,
(An)(B

A
n

 n,1), where BA
n

n is the number of blocks along nth mode of An, are first updated by
reading associated blocks in ufn(An) in the forward order of ufn(An)(1,k), …, ufn(An)(B

A
n
 n,k)

and multiplying them with (ufn(An)
T)(k,1) (Fig. 4 (a)). Next, blocks ufn(An)(2,k), …, ufn

(An)(B
A
n

 n,k), without ufn(An)(1,k) at this time, are read in the backward order and multiplied
with (ufn(An)

T)(k, B
A
n

 n) to update associated blocks in An, namely (An)(B
A
n
 n,2), …, (An)(B

A
n
 n, B

A
n
 n)

(Fig. 4 (b)). Then, the above process is similarly applied until all lower triangular blocks
in An are updated (Figs. 4 (c) and (d)). Note that each time when switching the reading
order, one block in ufn(An) is not needed henceforth, and the required block in ufn(An)

T
is already in the cache. This style of reading blocks in ufn(An) is analogous to a under-
damped spring/oscillator. The total number of block reads for ufn(An) can be estimated
by

     
 




 

nj j
EBEB

n
n

n
n

n
nn BB AA AA

2
1maxmax 00 , (10)

where we use the same notation as in Table 1.

5. GPU ACCELERATION

From Section 3.2 and Algorithm 1, one can easily find out that most operations in

CACHE-AWARE OUT-OF-CORE TENSOR DECOMPOSITION ON GPUS 1393

out-of-core HOSVD are linear algebra computations on large/medium-size matrices,
including matrix multiplication (lines 6, 7, 11) and eigen-decomposition (line 8), which
are particularly suitable for GPU acceleration. Our implementation thus employs asyn-
chronous GPU executions to overlap operations on CPUs and GPUs. Specifically, we
only computes blockwise submatrix multiplication and eigen-decomposition asynchro-
nously on GPUs and utilizes CPUs to handle other tasks, such as program flow control,
disk accesses, and block cache management. To further increase GPU parallelism, con-
current data transfers and GPU kernel executions are enabled by batch processing [25].
Namely, operations are divided into batches, each of which includes the data transfers of
different submatrices between host and GPU memory and the corresponding submatrix
multiplications, such as Eq. (6) for Sequence I, each term of the summation in Eq. (7) for
Sequence II, and Eq. (9) for Gram matrix computation. Note that synchronization among
different batches/GPUs must be carefully coordinated to avoid data corruption. Fig. 5
illustrates the concept of concurrent asynchronous CPU/GPU executions and batch pro-
cessing in our system.

Moreover, modern GPUs are equipped with a large amount of memory. Since
blockwise operations often consume just a portion of GPU memory, we can regard un-
used GPU memory as an extra cache level of the memory hierarchy to reduce unneces-
sary data transfers between host and GPU memory. In our implementation, cache blocks
in GPU memory are different from those in host memory, namely exclusive contents in
the two caches. This allows more cache blocks in the memory hierarchy and improves
overall decomposition performance, since disk accesses are much more time-consuming
than data transfers between host and GPU memory.

Block Read

H2G

Batch 1
MO

G2H

Batch S

Disk Read

H2G

MO

G2H

Block Write

Block Write

...

Time
Fig. 5. We employ asynchronous GPU executions to overlap CPU/GPU operations and divide

them into multiple batches to maximize the throughput of our system. Gray rectangles are
tasks handled by CPUs, while red ones are executed on GPUs. “H2G” stands for data
transfer from host to GPU memory, “G2H” for transfer from GPU to host, and “MO” spec-
ifies (blockwise) matrix operations, such as multiplication and/or eigen-decomposition.
Block reads/writes are handled by CPUs and implicitly include cache/disk accesses.

6. EXPERIMENTAL RESULTS

This section shows the experimental results of the proposed method on BTFs (Sec-
tion 6.1) and MSBTFs (Section 6.2), which are two common types of large-scale multi-
dimensional datasets in computer graphics. The following parameters were adopted in

YU-TING TSAI, WEI-JHIH WANG AND TZU-YUAN KAO

1394

our experiments unless otherwise specified. An input tensor was partitioned along vari-
ous modes into multiple blocks, each with a size of 60.75 MB. For GPU acceleration, the
number of batches was set to 3. For cache-aware scheduling, the total number of maxi-
mal blocks in the cache was set to 9 (6 in host memory and 3 in GPU memory), leading
to a memory footprint of around 1 GB (60.75MB9cache blocks = 546.75MB, plus
about 400 MB temporary data, where each GPU batch needs 2 additional blocks, one in
host memory and the other in GPU memory, for concurrent data transfers and CPU/GPU
asynchronous executions). Decomposition quality is evaluated by the signal-to-noise
ratio (SNR). Timings were measured on a workstation with an Intel Core i7-4930K CPU,
an NVIDIA GeForce GTX TITAN graphics card (with 6 GB GPU memory), and 16 GB
host memory. The raw and decomposed data were stored using 32-bit and 16-bit floating
point numbers, respectively.

6.1 Bidirectional Texture Functions

A BTF [6] is a 6D function that describes the reflectance of a planar surface point
when lit by an incident ray in the illumination direction ωl and reflected in the view di-
rection ωv, where the surface point is usually represented as a texel t with 2D spatial co-
ordinates (x, y). HOSVD was proved as an efficient and flexible BTF compression
method [40, 43]. Although it may not be the most efficient one, the flexibility of indi-
vidually reducing each mode is the main reason that we use it. Nevertheless, out-of-core
HOSVD may consume substantial time for decomposition.

Experimental settings A BTF is organized as a fourth order tensor ARIlIvIxIy for
decomposition. To achieve fast rendering performance, we only decompose its illumina-
tion and view modes. This allows texture filtering for the x and y modes on GPUs and
also reflects the real memory usage at runtime. The utilized BTF datasets were collected
from the UBO2003 Datasets [33] in BTF Database Bonn (http://cg.cs.uni-bonn.de/pro-
jects/btfdbb/download/ubo2003/) and the Volumetric Surface Texture Database [17]
(http://vision.ucsd.edu/kriegman-grp/research/vst/).

Results: Table 2 shows the statistics of BTF decomposition using five methods. Readers
may refer to our accompanying video and supplemental materials for the reconstruct-
ed/rendered results. The performance of the proposed method can be reduced up to al-
most 71% when compared with Wang et al. [43]. For a BTF, the SNRs of CPU- and
GPU-based methods should be theoretically identical, but are slightly different due to
adopted eigen-solvers and numerical issues, with almost equivalent rendering rates, the
same amount of decomposed data, and indisquinshable visual quality of reconstructed/
rendered images (please refer to our supplemental materials). For eigen-decomposition,
we currently employ “culaDeviceSsyev” in CULA (http://www.culatools.com/) for GPU-
based methods and “eig” in MATLAB for others. Fig. 6 compares the speedups over
Wang et al. [43] among different configurations of the proposed method. For the BTF
“Lego”, we changed the mode-ωl or mode-ωv reduced rank from 8 to 88 and conducted
total 121 experiments for different combinations of the two parameters. The speedup
generally changes a lot with the increase in the mode-ωv reduced rank Rv, but first raises
and then decreases with the increase in the mode-ωl reduced rank Rl.

CACHE-AWARE OUT-OF-CORE TENSOR DECOMPOSITION ON GPUS 1395

Table 2. Statistics of BTF decomposition using five methods, including the naive block-
wise implementation with true unfolding/refolding (N), Wang et al. [43] (with
false unfolding/refolding), cache-aware scheduling with false unfolding/refold-
ing (C), GPU acceleration with false unfolding/refolding (G), and all the pro-
posed acceleration techniques (C+G). The rendering rates were measured un-
der 3 directional lights with a screen resolution of 800600.

BTF

Object model

Corduroy

Armadillo

Impalla

Room

Lego

Teapot

Proposte

Dragon

yx IIII
vl

 

Raw data (GB)

81  81  256  256

4.81

81  81  256  256

4.81

120  90  256  256

7.91

81  81  256  256

4.81

vl
RR  

Decomposed data (MB)

Frames per second

24  32

96.02

~50.37

32  36

144.02

~14.29

32  48

192.03

~35.87

24  40

120.02

~33.27

Method

SNR (dB)

Performance (min.)

Speedup over N

Speedup over [43]

N

19.37

10.27

-

0.34

[43]

19.37

3.53

2.91

-

C

19.37

2.32

4.43

1.53

G

19.31

1.12

9.19

3.16

C+G

19.31

0.78

13.11

4.51

N

18.91

30.02

-

0.35

[43]

18.91

10.53

2.85

-

C

18.91

6.75

4.45

1.56

G

18.85

3.1

9.68

3.4

C+G

18.85

2.05

14.64

5.14

N

17.25

30.85

-

0.32

[43]

17.25

9.93

3.11

-

C

17.25

6.15

5.02

1.62

G

17.24

3.92

7.88

2.54

C+G

17.24

3.08

10.01

3.22

N

23.69

33.35

-

0.36

[43]

23.69

12.05

2.77

-

C

23.69

7.47

4.47

1.61

G

23.33

3.35

9.96

3.6

C+G

23.33

2.28

14.61

5.28

BTF

Object model

Pulli

Horse

Sponge

Bunny

Wool

Cloth

yx IIII
vl

 

Raw data (GB)

81  81  256  256

4.81

120  90  256  256

7.91

120  90  256  256

4.81

vl
RR  

Decomposed data (MB)

Frames per second

24  48

144.02

~26.73

20  24

60.02

~86.29

24  28

84.02

~38.23

Method

SNR (dB)

Performance (min.)

Speedup over N

Speedup over [43]

N

20.21

8.63



0.39

[43]

20.21

3.33

2.59



C

20.21

2.07

4.18

1.61

G

20.15

1.05

8.22

3.17

C+G

20.15

0.75

11.51

4.44

N

25.72

19.08


0.25

[43]

25.72

4.73

4.03



C

25.72

3.15

6.06

1.5

G

25.23

1.83

10.41

2.58

C+G

25.23

1.47

13.01

3.23

N

20.65

31.42


0.33

[43]

20.65

10.32

3.05



C

20.65

6.42

4.9

1.61

G

20.55

3.05

10.3

3.38

C+G

20.55

2.0

15.71

5.16

Fig. 6. Speedups over Wang et al. [43] for the BTF “Lego” based on different configurations of

the proposed method (C+G).

6.2 Multispectral Bidirectional Texture Functions

A MSBTF [32] is a generalization of the BTF with multispectral responses. It is a
7D function of the illumination direction ωl, the view direction ωv, the wavelength , and

YU-TING TSAI, WEI-JHIH WANG AND TZU-YUAN KAO

1396

the 2D spatial coordinates (x, y) of a texel t. The additional dependency on wavelengths
further increases the required amount of each raw MSBTF dataset to tens of GB. It is
thus time-consuming to compress such a huge dataset using out-of-core HOSVD.

Experimental settings A MSBTF is organized as a fifth order tensor ARIl

Iv
IIxIy,

and we only decompose its illumination, view, and wavelength modes. The adopted
MSBTF datasets were collected from the Spectral Datasets [32] in BTF Database Bonn
(http://cg.cs.uni-bonn.de/projects/btfdbb/download/spectral/).

Rendering process The MSBTF rendering process is similar to BTF, except that we
should additionally reconstruct the wavelength mode and apply a color matching func-
tion C() to convert the spectral power distribution into RGB color values. Specifically,
we obtain the reflected RGB values from a MSBTF texel t by

() ()
1,* ,*[(())... (())] (()),

l l v v

T T i T T
i i Ri

C C uf
         tl U l U u u  Z (11)

where liRI is the incident spectral power distribution from the ith light source, the
symbol  denotes the Hadamard (entrywise) product, (U)j,* specifies the jth row vector
of U, u

(


i)

l
RRl and uvRRv are respectively sampled from Ul and Uv according to the

ith illumination and current view directions, and ZRRlRvR is the associated entries of
t in Z.

To increase runtime rendering rates, we precompute {C(li  (U)
T

j,*)}
R

j

=1 for each light

source and store the results in a texture. This may also reduce memory requirements as
long as the number of lights is small (2 in our experiments). Nevertheless, the texture
needs to be updated each time when the spectral emissive power distribution of a light
source changes.

Table 3. Statistics of MSBTF decomposition using five methods (please refer to Table 2

for abbreviations). The rendering rates were measured under 2 directional
lights with a screen resolution of 640480.

MSBTF

Object model

Colorchecker

Plane

Lego Bricks

Cloth

Red Fabric

Bunny

Wallpaper

Teapot

Il  Iv  I  Ix  Iy
Raw data (GB)

81  81  30  256  256

48.05

81  81  30  256  256

48.05

81  81  30  256  256

48.05

81  81  29  256  256

46.45

 RRR
vl


Decomposed data (MB)

Frames per second

44  52  3

858.02

~8.2

36  56  3

756.01

~7.83

28  48  3

504.01

~15.03

40  48  3

720.01

~11.84

Method

SNR (dB)

Performance (hr.)

Speedup over N

Speedup over [43]

N

12.12

24.86



0.23

[43]

12.12

5.81

4.28



C

12.12

4.93

5.04

1.18

G

12.12

2.67

9.3

2.17

C+G

12.12

2.27

10.93

2.56

N

11.62

9.79


0.23

[43]

11.62

2.3

4.27



C

11.62

1.69

5.78

1.36

G

11.62

1.07

9.14

2.14

C+G

11.62

0.87

11.21

2.63

N

15.47

10.99


0.22

[43]

15.26

2.43

4.53



C

15.26

1.81

6.06

1.34

G

15.4

1.18

9.35

2.07

C+G

15.4

0.94

11.68

2.58

N

17.78

9.6


0.23

[43]

17.67

2.25

4.26



C

17.67

1.87

5.13

1.2

G

17.72

1.05

9.11

2.14

C+G

17.72

0.86

11.13

2.61

Results Table 3 lists the statistics of MSBTF decomposition, where we also compare
five methods. The reconstructed/rendered images can be found in our accompanying
video and supplemental materials. GPU acceleration typically achieves a higher speedup
than cache-aware scheduling, but the performance gains of cache-aware scheduling still

CACHE-AWARE OUT-OF-CORE TENSOR DECOMPOSITION ON GPUS 1397

cannot be ignored. Fig. 7 plots the speedup over Wang et al. [43] of the proposed meth-
od versus the block size. It shows that the proposed method can achieve a considerable
speedup regardless of the block size. Although increasing the block size (while being
less than 200 MB) would reduce the processing time of Wang et al. [43], it usually does
not have a strong effect on the proposed method. Note that increasing the block size also
reduces the total number of blocks in the input tensor, resulting in fewer number of disk
accesses but longer access time for each block. The limited amount of host/GPU memory
usually prevents users from employing a too large block size.

Fig. 7. Speedups over Wang et al. [43] for the MSBTF “Wallpaper” based on different block sizes

of the proposed method.

Table 4. Statistics of decomposing the MSBTF “Wallpaper” with various numbers of
maximal cache blocks.

Method
Block size (MB)

[43]
60.75

C+G
60.75

Blocks in host cache
Blocks in GPU cache
Performance (min.)

Speedup




135.12


3
3

51.82
2.61

6
3

51.77
2.61

6
6

50.7
2.67

9
3

51.7
2.61

Table 4 lists the statistics with various numbers of maximal cache blocks for the
proposed method. Increasing the cache block number often improves performance, but
when the total block number in both caches exceeds necessity, the overhead of main-
taining redundant cache blocks may instead reduce performance (as the last case in Table
4). Raising the block number in the GPU cache also provides more performance gains
than increasing that in the host cache. Regarding unused GPU memory as an extra cache
level indeed unleashes additional performance due to less data transfers between host
and GPU memory. Table 5 shows the statistics with similar memory footprints. For each
configuration, we adjust the block size and the number of maximal blocks in the host/
GPU cache to have a memory footprint of about 1 GB. The performance of different
configurations generally improves with the increase in the block size, but their differ-

YU-TING TSAI, WEI-JHIH WANG AND TZU-YUAN KAO

1398

Table 5. Statistics of decomposing the MSBTF “Wallpaper” with similar memory foot-
prints.

Method
Block size (MB)

[43]
48

C+G
48

[43]
60.75

C+G
60.75

[43]
75

C+G
75

Blocks in host cache
Blocks in GPU cache
Performance (min.)

Speedup




159.03


9
5

55.03
2.89




135.12


6
3

51.77
2.61




148.2


3
3

51.35
2.89

Table 6. Statistics of decomposing the MSBTF “Red Fabric” with different numbers of
GPU batches.
Method

Number of batches
[43]


C
1

C+G
1

C
2

C+G
2

C
3

C+G
3

Performance (min.)
Speedup

145.68


78.17
1.86

64.95
2.24

71.28
2.04

60.4
2.41

70.53
2.07

56.45
2.58

ences are rather small. This implies that the influence of parameter settings is insignifi-
cant with fixed and limited memory usage. Table 6 compares the results with different
numbers of GPU batches. A large batch number usually increases performance, but also
consumes more memory space.

6.3 Discussions

The proposed method can achieve a considerable performance gain over Wang et al.
[43] for BTF and MSBTF decomposition. Cache-aware scheduling provides a speedup
of 1.2~1.6, GPU acceleration gives 2.1~3.6, and the two techniques can be seamlessly
integrated to achieve 2.5~5.3. For cache-aware scheduling, the proposed forward and
backward schemes are likely to reuse recently accessed blocks. A significant number of
disk accesses thus could be avoided. Nevertheless, the speedup for a MSBTF is usually
lower than that for a BTF. Since the data amount of a MSBTF is much larger, disk access
time becomes the dominant bottleneck over other operations. The numbers of compul-
sory and capacity misses of the block cache also rapidly increase, leading to poorer cache
efficiency and a lower speedup (including GPU acceleration). Although raising the
number of maximal cache blocks would alleviate this issue, compulsory misses still have
a great performance impact.

It is worth noting that the scheduling scheme for the mode-n product in Wang et al.
[43] is actually close to Sequence II (Section 4.1.2) by writing each block in the output
tensor only once, but without the host/GPU block cache and the special forward and
backward orders for block accesses. By contrast, our system further employs two cache-
aware scheduling sequences to avoid unnecessary disk accesses and can automatically
select an appropriate sequence at runtime. According to our experience, Sequence I
sometimes can lead to less disk accesses than Sequence II. With automatic sequence se-
lection, our system is more likely to find a better scheduling sequence for the mode-n
product. Moreover, our GPU-based computations and the extra GPU block cache also
have a great impact on the speedup over Wang et al. [43].

CACHE-AWARE OUT-OF-CORE TENSOR DECOMPOSITION ON GPUS 1399

We currently rely on concurrent asynchronous CPU/GPU executions and exclusive
CPU/GPU block caches to balance disk accesses and data transfers between host and
GPU memory. By applying asynchronous CPU/GPU executions, matrix computations
can be overlapped with block accesses to hide related latencies. Exclusive block caching
also effectively utilizes the capacity of host/GPU memory and the bandwidth between
them. Our experiments in Table 4 further shows that by changing the numbers of maxi-
mal blocks in the host and GPU caches, one may find a good balance of disk accesses
and data transfers between host and GPU memory. When the total block number in both
caches does not exceed necessity, raising the block number in the GPU cache often pro-
vides more performance gains than increasing that in the host cache. This implies that the
latencies of disk accesses can be well hidden by asynchronous CPU/GPU executions.

7. CONCLUSIONS

This article presents a novel method to improve the performance of out-of-core
tensor decomposition. Our key ideas include cache-aware scheduling and a GPU-based
decomposition framework. The proposed scheduling schemes significantly reduce the
total number of disk accesses for computing the mode-n product or the Gram matrix.
Various linear algebra operations of tensor decomposition also can be effectively accel-
erated on GPUs. For BTF and MSBTF decomposition, the proposed method can achieve
speedups of 11~16 over a naive implementation and 2.5~5.3 over previous work [43].

This article is just an initial step in addressing the scalability issue of multilinear
models for massive multidimensional datasets. In the future, we are interested in extend-
ing the proposed method to accelerate advanced multilinear models, such as MK-CTA
[36]. We would also like to investigate the performance challenge of multilinear models
for big data analysis, including CPU-GPU heterogeneous computing and efficient dis-
tributed algorithms.

APPEXNDIX

This appendix proves that false unfolding/refolding (Section 3.3) can lead to the
same result of a mode-n product with true unfolding/refolding. The proof for Gram ma-
trix computation is omitted, since it can be similarly derived.

A mode-n product can be written in the matrix form as ufn(A nU) = U  ufn(A)
(Section 3.1). From the definition of true mode-n unfolding in Eq. (2) and Fig. 1, it is
easy to find out that false mode-n unfolding can be regarded as permuting the columns of
ufn(A). Let Pn denote such permutation matrix. We have

U  ufn(A) = U  ufn(A)  P
T
nPn = U  ufn(A)  Pn, (12)

where we use the identity Pn

-1
 = PT

n, and ufn(A) represents the false mode-n unfolded matrix
of A. Eq. (12) implies that the same result of the mode-n product can be obtained by per-
muting the columns of U  ufn(A) back in the order as those of ufn(A) and then applying
true mode-n refolding. In fact, this operation is equivalent to false mode-n refolding.

YU-TING TSAI, WEI-JHIH WANG AND TZU-YUAN KAO

1400

ACKNOWLEDGEMENT

This work was supported in part by the Ministry of Science and Technology of
Taiwan under Grant Numbers NSC101-2221-E-155-065, MOST103-2221-E-155-031,
and MOST106-2221-E-155-058.

REFERENCES

1. R. Ballester-Ripoll, S. K. Suter, and R. B. Pajarola, “Analysis of tensor approxima-
tion for compression-domain volume visualization,” Computers and Graphics, Vol.
47, 2015, pp. 34-47.

2. M. Balsa Rodríguez, E. Gobbetti, J. A. Iglesias Guitián, M. Makhinya, F. Marton, R.
B. Pajarola, and S. K. Suter, “State-of-the-art in compressed GPU-based direct vol-
ume rendering,” Computer Graphics Forum, Vol. 33, 2014, pp. 77-100.

3. Y. Bando, H. Holtzman, and R. Raskar, “Near-invariant blur for depth and 2D mo-
tion via time-varying light field analysis,” ACM Transactions on Graphics, Vol. 32,
2013, pp. 13:1-13:15.

4. H. Cao, H. Jin, X. Wu, S. Wu, and X. Shi, “DAGMap: Efficient and dependable
scheduling of DAG workflow job in grid,” The Journal of Supercomputing, Vol. 51,
2010, pp. 201-223.

5. S. Ceri, C. Gennaro, S. Paraboschi, and G. Serazzi, “Effective scheduling of de-
tached rules in active databases,” IEEE Transactions on Knowledge and Data Engi-
neering, Vol. 15, 2003, pp. 2-13.

6. K. J. Dana, B. Van Ginneken, S. K. Nayar, and J. J. Koenderink, “Reflectance and
texture of real-world Surfaces,” ACM Transactions on Graphics, Vol. 18, 1999, pp.
1-34.

7. L. de Lathauwer, B. de Moor, and J. Vandewalle, “On the best rank-1 and rank-(R1,
R2, …, Rn) approximation of higher-order tensors,” SIAM Journal on Matrix Analy-
sis and Applications, Vol. 21, 2000, pp. 1324-1342.

8. M. Eriksson and C. Kessler, “Integrated code generation for loops,” ACM Transac-
tions on Embedded Computing Systems, Vol. 11S, 2012, pp. 19:1-19:24.

9. K. Fatahalian, J. Sugerman, and P. Hanrahan, “Understanding the efficiency of GPU
algorithms for matrix-matrix multiplication,” in Proceedings of Graphics Hardware,
2004, pp. 133-137.

10. J. Filip and M. Haindl, “Bidirectional texture function modeling: A state of the art
survey,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 31,
2009, pp. 1921-1940.

11. K. Goto and R. A. van de Geijn, “Anatomy of high-performance matrix multiplica-
tion,” ACM Transactions on Mathematical Software, Vol. 34, 2008, pp. 12:1-12:25.

12. J. Gu, C. I. Tu, R. Ramamoorthi, P. N. Belhumeur, W. Matusik, and S. K. Nayar,
“Time-varying surface appearance: Acquisition, modeling and rendering,” ACM
Transactions on Graphics, Vol. 25, 2006, pp. 762-771.

13. T. Günther and T. Grosch, “Distributed out-of-core stochastic progressive photon map-
ping,” in Proceedings of Computer Graphics Forum, Vol. 33, 2014, pp. 154-166.

CACHE-AWARE OUT-OF-CORE TENSOR DECOMPOSITION ON GPUS 1401

14. A. Haidar, M. Gates, S. Z. Tomov, and J. J. Dongarra, “Toward a scalable multi-
GPU eigensolver via compute-intensive kernels and efficient communication,” in
Proceedings of the 27th ACM International Conference on International Conference
on supercomputing, 2013, pp. 223-232.

15. M. Kim and K. S. Candan, “Efficient static and dynamic in-database tensor decom-
positions on chunk-based array stores,” in Proceedings of ACM International Con-
ference on Information and Knowledge Management, 2014, pp. 969-978.

16. T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,” SIAM Re-
view, Vol. 51, 2009, pp. 455-500.

17. M. L. Koudelka, S. Magda, P. N. Belhumeur, and D. J. Kriegman, “Acquisition,
compression, and synthesis of bidirectional texture functions,” in Proceedings of the
3rd International Workshop on Texture Analysis and Synthesis, 2003, pp. 59-64.

18. J. Krüger and R. Westermann, “Linear algebra operators for GPU implementation of
numerical algorithms,” ACM Transactions on Graphics, Vol. 22, 2003, pp. 908-916.

19. S. Lahabar and P. J. Narayanan, “Singular value decomposition on GPU using CUDA,”
in Proceedings of IEEE International Symposium on Parallel Distributed Pro-
cessing, 2009, pp. 1-10.

20. M. Marqués, G. Quintana-Ortí, E. S. Quintana-Ortí, and R. A. van de Geijn, “Using
graphics processors to accelerate the solution of out-of-core linear systems,” in Pro-
ceedings of International Symposium on Parallel Distributed Processing, 2009, pp.
168-176.

21. A. Merkel, J. Stoess, and F. Bellosa, “Resource-conscious scheduling for energy
efficiency on multicore processors,” in Proceedings of EuroSys, 2010, pp. 153-166.

22. J. R. Nickolls and W. J. Dally, “The GPU computing era,” IEEE Micro, Vol. 30,
2010, pp. 56-69.

23. J. D. Owens, D. P. Luebke, N. K. Govindaraju, M. J. Harris, J. Krüger, A. E. Lefohn,
and T. J. Purcell, “A survey of general-purpose computation on graphics hardware,”
Computer Graphics Forum, Vol. 26, 2007, pp. 80-113.

24. R. B. Pajarola, S. K. Suter, and R. Ruiters, “Tensor approximation in visualization
and computer graphics,” in Proceedings of Eurographics  Tutorials, 2013, T6.

25. A. Pajot, L. Barthe, M. Paulin, and P. Poulin, “Combinatorial bidirectional path-tra-
cing for efficient hybrid CPU/GPU rendering,” Computer Graphics Forum, Vol. 30,
2011, pp. 315-324.

26. J. Pantaleoni, L. Fascione, M. Hill, and T. Aila, “PantaRay: Fast ray-traced occlu-
sion caching of massive scenes,” ACM Transactions on Graphics, Vol. 29, 2010, pp.
37:1-37:10.

27. G. Quintana-Ortí, F. D. Igual, M. Marqués, E. S. Quintana-Ortí, and R. A. van de
Geijn, “A runtime system for programming out-of-core matrix algorithms-by-tiles on
multithreaded architectures,” ACM Transactions on Mathematical Software, Vol. 38,
2012, pp. 25:1-25:25.

28. R. Ramamoorthi, “Precomputation-based rendering,” Foundations and Trends in
Computer Graphics and Vision, Vol. 3, 2009, pp. 281-369.

29. H. Ramaprasad and F. Mueller, “Tightening the bounds on feasible preemptions,”
ACM Transactions on Embedded Computing Systems, Vol. 10, 2010, pp. 27:1-27:34.

30. N. Ravindran, N. D. Sidiropoulos, S. Smith, and G. Karypis, “Memory-efficient par-
allel computation of tensor and matrix products for big tensor decomposition,” in

YU-TING TSAI, WEI-JHIH WANG AND TZU-YUAN KAO

1402

Proceedings of Asilomar Conference on Signals, Systems, and Computers, 2014, pp.
581-585.

31. R. Ruiters and R. Klein, “BTF compression via sparse tensor decomposition,” in
Proceedings of Computer Graphics Forum, Vol. 28, 2009, pp. 1181-1188.

32. M. Rump, R. Sarlette, and R. Klein, “Groundtruth data for multispectral bidirection-
al texture functions,” in Proceedings of International Conference on Computer,
Graphics, Imaging, and Visualization, 2010, pp. 326-331.

33. M. Sattler, R. Sarlette, and R. Klein, “Efficient and realistic visualization of cloth,”
in Proceedings of Eurographics Workshop on Rendering, 2003, pp. 167-178.

34. S. K. Suter, J. A. Iglesias Guitián, F. Marton, M. Agus, A. Elsener, C. P. E. Zolli-
kofer, M. Gopi, E. Gobbetti, and R. B. Pajarola, “Interactive multiscale tensor re-
construction for multiresolution volume visualization,” IEEE Transactions on Visu-
alization and Computer Graphics, Vol. 17, 2011, pp. 2135-2143.

35. S. K. Suter, M. Makhynia, and R. B. Pajarola, “TAMRESH  Tensor approximation
multiresolution hierarchy for interactive volume visualization,” in Proceedings of
Computer Graphics Forum, Vol. 32, 2013, pp. 151-160.

36. Y. T. Tsai, “Multiway K-clustered tensor approximation: Toward high-performance
photorealistic data-driven rendering,” ACM Transactions on Graphics, Vol. 34,
2015, pp. 157:1-157:15.

37. Y. T. Tsai, K. L. Fang, W. C. Lin, and Z. C. Shih, “Modeling bidirectional texture
functions with multivariate spherical radial basis functions,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol. 33, 2011, pp. 1356-1369.

38. Y. T. Tsai and Z. C. Shih, “All-frequency precomputed radiance transfer using spheri-
al radial basis functions and clustered tensor approximation,” ACM Transactions on
Graphics, Vol. 25, 2006, pp. 967-976.

39. Y. T. Tsai and Z. C. Shih, “K-clustered tensor approximation: A sparse multilinear
model for real-time rendering,” ACM Transactions on Graphics, Vol. 31, 2012, pp.
19:1-19:17.

40. M. A. O. Vasilescu and D. Terzopoulos, “TensorTextures: Multilinear image-based
rendering,” ACM Transactions on Graphics, Vol. 23, 2004, pp. 336-342.

41. J. S. Vitter, “External memory algorithms and data structures: Dealing with massive
data,” ACM Computing Surveys, Vol. 33, 2001, pp. 209-271.

42. V. Volkov and J. W. Demmel, “Benchmarking GPUs to tune dense linear algebra,”
in Proceedings of ACM/IEEE Conference on Supercomputing, 2008, pp. 1-11.

43. H. Wang, Q. Wu, L. Shi, Y. Yu, and N. Ahuja, “Out-of-core tensor approximation
of multidimensional matrices of visual data,” ACM Transactions on Graphics, Vol.
24, 2005, pp. 527-535.

44. R. Wang, Y. Huo, Y. Yuan, K. Zhou, W. Hua, and H. Bao, “GPU-based out-of-core
many-lights rendering,” ACM Transactions on Graphics, Vol. 32, 2013, pp. 210:1-
210:10.

45. Q. Wu, T. Xia, C. Chen, H. Y. S. Lin, H. Wang, and Y. Yu, “Hierarchical tensor
approximation of multidimensional visual data,” IEEE Transactions on Visualization
and Computer Graphics, Vol. 14, 2008, pp. 186-199.

46. A. C. Zhou and B. He, “Transformation-based monetary cost optimizations for
workflows in the cloud,” IEEE Transactions on Cloud Computing, Vol. 2, 2014, pp.
85-98.

CACHE-AWARE OUT-OF-CORE TENSOR DECOMPOSITION ON GPUS 1403

47. B. Zou, C. Li, L. Tan, and H. Chen, “GPUTENSOR: Efficient tensor factorization
for context-aware recommendations,” Information Sciences, Vol. 299, 2014, pp.
159-177.

Yu-Ting Tsai (蔡侑庭) received the B.S. and M.S. degrees in
Electronics Engineering from National Chiao Tung University,
Taiwan, in 2000 and 2002, respectively, and the Ph.D. degree in
Computer Science from National Chiao Tung University, Taiwan,
in 2009. Currently, he is an Assistant Professor in the Department
of Computer Science and Engineering at Yuan Ze University. His
research interests include computer graphics, computer vision,
machine learning, and signal processing.

Wei-Jhih Wang (王暐智) received the B.S. degree in Com-

puter Science from National Tsing Hua University, Taiwan. Cur-
rently, he is a Master student in the Department of Computer Sci-
ence and Engineering at Yuan Ze University. His research interests
include computer graphics and interactive games.

Tzu-Yuan Kao (高梓淵) received the B.S. degree in Com-
puter Science and Engineering from Yuan Ze University, Taiwan.
His research interests include computer graphics and interactive
games.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

