
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 39, 1117-1128 (2023)

DOI: 10.6688/JISE.202309_39(5).0007

1117

Microservices-based DevSecOps Platform

using Pipeline and Open Source Software*

WEN-TIN LEE+ AND ZHUN-WEI LIU

Department of Software Engineering and Management

National Kaohsiung Normal University

Kaohsiung, 80201 Taiwan

E-mail: {wtlee; 611077104}@mail.nknu.edu.tw

Continuous integration and continuous deployment (CI/CD) are best practices for au-

tomating the software development process. People leverage them to ensure rapid iteration

and delivery of product development. The rapid lifecycle makes traditional security man-

agement vulnerable to its lack of agility, exposing the urgent need to put security into

DevOps processes. Development, security, and operation, quoted as DevSec Ops, advo-

cates shift-left security, promotes people to implant security best practices into all DevOps

stages, and builds continuous security analysis, testing, and management with automation.

Based on CI/CD, this study defines continuous security practices and applies appli-

cation security processes on a DevSecOps pipeline to implement shift-left security. The

CodeHawk platform, based on the proposed secure pipeline and open source software, is

developed to free the development team from testing manually, enable them to focus on

development, gain the corresponding security assurance, and lower the operating costs.

Experiments show that our DevSecOps pipeline design significantly improves the effi-

ciency of the DevSecOps process.

Keywords: DevOps, DevSecOps, continuous integration, continuous delivery, security tes-

ting, open-source software

1. INTRODUCTION

Continuous integration and continuous deployment (CI/CD) are best practices of

DevOps to fill the communication gap between the development and operation teams. Peo-

ple used to take advantage of testing automation and version release to ensure fast delivery

and bring DevOps culture to development teams. Implementing the DevOps process with

the premise of automation can increase delivery speed and product quality. This workload

and transformation in the software lifecycle expose the shortcomings of traditional security

management. Especially when security awareness increases, so does the importance of au-

tomating security testing to be integrated with the DevOps process. Kurmar [1] categorizes

the DevOps process into five parts: continuous planning, continuous development, contin-

uous integration, continuous delivery, and continuous opera tion. With the growth of var-

ious open-source software (OSS), more and more programming languages are supported,

making them easier to be integrated into the DevOps pro cess.

Containerized platforms allow users to pack applications into images that can be ex-

ecuted independently, improving the convenience of deployment. Since containers are in-

dependent and stand-alone, the logs within containers become harder to collect, so con-

Received November 1, 2022; revised December 7, 2022; accepted February 9, 2023.

Communicated by Lok Ka Man.
* This research was sponsored by Ministry of Science and Technology in Taiwan under grants MOST 110-2221-
E-017-001-.

WEN-TIN LEE AND ZHUN-WEI LIU

1118

tinuous monitoring in the DevOps process will become problematic. Additionally, con-

tainer orchestration is required if multiple containers are to be manipulated. Kubernetes is

a centrally managed container orchestration application that can schedule or repair con-

tainers automatically. By applying the orchestration mechanism of Kubernetes, automation

with high availability and expandability is realized. Containerized applications can then be

managed in clusters for easier control during automated deployments.

This study investigates how security and test automation can be applied to CI/CD

pipelines through the following four automated security activities: third-party software

vulnerability scanning, static and dynamic application security testing, encrypted authen-

tication during transmission, and security management. According to the designed DevSec

Ops pipeline, we build a DevSecOps platform called CodeHawk using microservice archi-

tecture, OSS, and container technologies. The CodeHawk maintains the current working

state of the pipeline in the event of a failure so that the development team can continue

testing after revisions. It also detects incorrect settings and stops deployment jobs promptly

to prevent time consumption caused by worthless deployments. QA engineers can then

review all test results stored in the artifacts volume.

The remainder of this paper is organized as follows: Section 2 presents background

knowledge and related work. Section 3 introduces security requirements and the design of

the DevSecOps pipeline. Section 4 describes CodeHawk DevSecOps platform design and

implementation. Section 5 conducts performance evaluations and explains the results. Fi-

nally, Section 6 concludes this study with future works.

2. RELATED WORK

This section introduces background information that significantly impacts this work,

especially the research on DevOps, DevSecOps, continuous integration, continuous deliv-

ery, continuous testing maturity model [2], and security process automation.

According to IEEE Standard for DevOps [3], development and operation is a set of

principles and practices which can offer methods and solutions to communicate and coop-

erate with stakeholders. It enables the project team to communicate efficiently with their

clients and continuously improve in all aspects. As an extension of DevOps, the practices

of DevSecOps adds security controls and advocates security shift-left, system design based

on security concerns, and automated continuous security testing.

Continuous integration is when developers frequently push their work into the main

branch [3], and all these changes will be built and tested automatically. Hence, operation

and development engineers can cooperate and discover integration errors early, thus apply-

ing shift-left security to the project [4]. The goal of continuous delivery is that the entire

project can have a stable version that can be deployed and ready for production at any time.

The project should pass the required tests and push the tested code onto repositories. De-

ployment actions of when or which version to be published should be done manually by

those authorized operation persons [4].

Certificate management is also essential when adopting open-source software. Anger-

meir et al. [5] pointed out that once projects have achieved automation and have lower cov-

erage of security regulation, it is rare to see those projects integrate open-source software

and do not value sensitive data management in their automated process. Roshan [6], Dupont

MICROSERVICES-BASED DEVSECOPS PLATFORM USING PIPELINE AND OSS 1119

[7], Preira-Vale [8], Rahman [9] and their teams proposed 12 secret management imple-

mentations and mechanisms. Developers could establish authority management outside

open-source software quickly and at a lower cost. Raza [10] mentioned the pros and cons

of various cloud computing environments, pointing out that the private cloud has high se-

curity, privacy, stability, and controllability.

Throner [11] proposed a model-based DevOps environment upon the basis of Kuber-

netes, making use of the YAML configuration file to achieve fast deployment and version

release, offering YAML configuration file reference for various deployment environments

to lower the gitlab-runner workload. According to Silkin’s [2] statement and evaluation, the

continuous testing maturity model can be defined using three aspects, namely risks, quality,

and cost. This maturity model implies an automated testing pipeline should at least include

continuous unit testing, API testing, and dynamic testing. The test server for this study uses

docker and Kubernetes to containerize the test services for better performance and load bal-

ancing, with communication between pipelines and machines via SSH.

NIST provided guidance for implementing DevSecOps primitives such as CI/CD

pipelines for a reference platform hosting microservices-based applications with service

mesh. The source code involved in the application environment is classified into five types:

application code, application services code, infrastructure as code, policy as code, and ob-

servability as code. Their study describes what it takes to implement DevSecOps primitives

for five types of source code. Conversely, our work focuses on developing a microservices-

based DevSecOps platform by integrating various open-source software. This study de-

scribes in detail the security requirements, pipeline design, architectural design, implemen-

tation, and benefits of the CodeHawk DevSecOps platform.

3. DEVSECOPS SECURITY REQUIREMENTS AND PIPELINE DESIGN

 Based on Kurmar’s work [1], we analyze the challenges encountered in adopting open-

source software as DevSecOps tools and collect security requirements for designing a

DevSecOps pipeline. Table 1 shows the identified security requirements and the corre-

sponding stages, which can also serve as a reference table for achieving the goals of con-

tinuous delivery and deployment in different stages. We increase the security level based

on the security requirements during the build, test, release, deployment, and operation

stages.

Table 1. Security requirements and its corresponding pipeline stages.

ID Security Requirements Stages

SR01 Security Requirement Analysis Plan

SR02 Threat Modeling Plan

SR03 Adaptive Security Architecture Decision Code

SR04 Adaptive Security Architecture Design Plan

SR05 Security use, misuse, abuse Test Cases Plan

SR06 Code Review & Security Guidelines Linting Code

SR07 Software Inventory Management Build, Test

SR08 Version Control Security Code, Build, Test, Release

SR09 Unit testing and Integration Testing Security Test

WEN-TIN LEE AND ZHUN-WEI LIU

1120

SR10 Container Analysis and Infrastructure as Code Test, Release

SR11 User Acceptance & Security Testing Deploy, Operate

SR12 Artifact Repository Security Management Build, Test, Release

SR13 Secret Management Code, Build, Test, Release, Deploy

SR14 Infrastructure Provisioning and Orchestration Release, Deploy

SR15 Application, System Logging Operate, Monitor

SR16 Continuous Monitoring Operate, Monitor

SR17 Security Incident Management Monitor

SR18 Security Metric Measurement & Analysis Operate, Monitor

SR19 Security Audit and Compliance Operate, Monitor

SR20 Penetration Testing Test, Operate

SR21 Static Application Security Testing Test

SR22 Dynamic Application Security Testing Test

SR23 Interactive Application Security Testing Test

SR24 Continuous Vulnerability Scanning Test, Operate

SR25 Security Patch Application Build, Test, Operate

SR26 Infrastructure Hardening & Security Testing Test, Deploy, Operate

SR27 Security Governance ALL

SR28 Security Policy Enforcement ALL

SR29 Access and Privilege Management ALL

SR30 Integrated Minimal Common Processes, Methods, and Tools ALL

SR31 Integrated Project Planning, Execution, and Monitoring ALL

 Continuous integration runs through the build and testing stages. The earlier an in-

tegration error is detected, the higher the integration success rate of a project. Fig. 1 shows

the pipeline steps designed from integration with open-source software. The entire

DevSecOps testing pipeline can be divided into three phases: the testing phase, the stage

phase, and the production phase. During the testing phase, an automatic integration pipeline

is triggered after a commit is merged into the master branch of the project’s git repository.

The stage phase performs container security scanning and continuous testing. The pipeline

will conduct image vulnerability scanning using Trivy [12]. For the production phase, the

pipeline will trigger the production server to start its deployment. The software quality is

enhanced by applying dynamic application testing in all three phases.

 The pipeline utilizes Gitlab [13] and its work stage configuration through YAML

files to integrate SonarQube [14] as the static code analysis tool. After passing the quality

gate of static code analysis, the DevSecOps pipeline can enter the continuous deployment

stage. The project will be deployed on the test server to conduct dynamic, dependency,

unit, and API tests. Once this stage is passed, the latest committed code complies with

security requirements. The pipeline will pack the code into an image, upload it to the Sona-

type nexus repository [15], and trigger the stage server to work. As the Continuous Test

Maturity Model recommends, the project’s current version will be deployed on the nexus

repository to complete container security checks and API testing. Once the image server

testing process is complete, the final artifact will be pulled to the production server for

deployment.

MICROSERVICES-BASED DEVSECOPS PLATFORM USING PIPELINE AND OSS 1121

CI/CD workflow is the most critical element in DevOps. Hence the pipeline architec-

ture design focuses on security and testing. The job should only enter the next stage when

the required security activities are accomplished. In our architecture, the open-source tools

are all deployed independently on containers, which can isolate the tools’ execution envi-

ronment. All jobs and data transactions run through an internal network to secure all hosts

by insulating internal and external networks. In addition, OWASP Zap [16] is used for

dynamic security testing and is deployed separately for continuous testing.

Fig. 1. CodeHawk DevSecOps pipeline design.

Authentication, authorization, and sensitive data control policies are easily over-

looked during pipeline automation. To integrate secrets management into the DevSecOps

pipeline, Codehawk integrates Hashicorp Vault [17] secrets database with Gitlab. During

the initial infrastructure configuration, the SSH connection keys for the three servers and

the Gitlab host are issued by Vault. The secret key and connection mechanism are secured,

and the Vault server is isolated from all the other hosts.

4. CODEHAWK DEVSECOPS PLATFORM DESIGN

AND IMPLEMENTATION

The Codehawk DevSecOps platform separates front-end and back-end and integrates

RESTful API to implement a microservices architecture. Keycloak [18] is integrated as an

authorization system for single sign-on and permissions policy management services. Fig.

2 shows the software architecture of the CodeHawk DevSecOps platform. There are three

kinds of users: developers, project managers, and quality assurance engineers. When using

WEN-TIN LEE AND ZHUN-WEI LIU

1122

our portal website, users can access it from a single sign-in webpage, and CodeHawk will

render the authorized content to their browser according to the corresponding authority.

CodeHawk DevSecOps platform can strengthen code quality and security by integrating

several open-source software, including Kanban software WeKan [19], Gitlab, SonarQube,

OWASP Zap, Docker [20], Kubernetes [21], Sonatype, and ELK Stack [22].

Fig. 2. Software architecture of CodeHawk DevSecOps platform.

After the user logs in, it will respond to the authorization content through the API Ser-

vice and communicate with various system services through the Service Adapter. The com-

ponent User Interface integrates all project information. The API Service component is

connected to the KeyCloak system [18], which will direct authorized users to the project

web page; the Service Adapter component uses multiple Restful APIs to link external Open

source software. Since the information from different platforms is inconsistent, we use

Anser, a microservices orchestration library, to integrate the data passed from the back-

end DevOps open-source software, extract useful Meaning Data, and then respond to the

front-end interface. The main task of the Service Maintainer component is to collect con-

tainer information executed by Docker and Kubernetes and send it back to the front end.

It is connected to ELK so the data can be more conveniently integrated into the user inter-

face. Container Management uses Docker and Kubernetes as deployment and orchestration

tools. The Container handler deploys the packaged image of the project as a Docker con-

tainer, adds the container information to Kubernetes, and then uses Kubectl’s features to

improve the high availability of the entire system.

Fig. 3 shows the user interface of the CodeHawk Portal. It includes the login screen

provided by KeyCloak after the user enters the CodeHawk platform; the overview of the

orderService project; the project screen of Wekan; the Gitlab screen of the project and the

execution results of the pipeline; static code analysis results of orderService project.

The users can sign in to the system, select or create a project, and set the connections

with the required open-source software services, such as git repository Gitlab, Wekan, So-

narQube, etc. The static code analysis results can then be generated each time the code is

merged into the git repository.

MICROSERVICES-BASED DEVSECOPS PLATFORM USING PIPELINE AND OSS 1123

Fig. 3. CodeHawk portal user interface.

5. EVALUATION RESULTS

CodeHawk integrates open-source software, including Gitlab, SonarQube, OWASP

Dependency-Check [23], Postman [24], Sideex, Zap, and Unit Test tools, in the CodeHawk

platform to enable shift-left testing, and increase successful integration rates. CodeHawk

uses static code analysis to filter unworthy commits through a strict quality gate configura-

tion for shift-left security and continuous testing. This study uses continuous testing ma-

turity model [2] to assess CodeHawk’s automated testing.

WEN-TIN LEE AND ZHUN-WEI LIU

1124

Fig. 4. Open-source software corresponds to continuous testing maturity model [2].

Fig. 4 shows the correspondence between the proposed pipeline design and the contin-

uous test maturity model. Automated testing is classified into basic, effective, and continu-

ous testing; For source code management, Gitlab is used for version control of source code,

and Gitlab-CI integrates and automates SonarQube for automatic static code testing. Envi-

ronment and infrastructure refer to where the software itself is placed and executed. In the

basic test, the test environment is divided into three parts, the test, the staged, and the pro-

duction environment. Virtualization technology allows users to execute desired tests in an

environment with minimal resources. Since emerging attack methods and dependent pack-

age vulnerabilities are unpredictable risks, testing tool versioning and containerization are

recommended for test environment management and rapid deployment.

The corresponding open-source software includes Gitlab, Wekan, unit test tool, and

Postman API testing tools for software bugs, test management, functional tests, and auto-

mated tests. We recommend testing with OWASP Dependency-Check and Zap to secure

dependency packages and software to find more software bugs and security issues. For the

test management according to the design of the CodeHawk security-first pipeline, test man-

agement can be more efficient and automated. For functional automation testing, in addition

to the inspection of traditional test cases, it is also recommended to add automated script

testing tools such as Selenium or Sideex, so that the project can conduct simulated user

testing in an earlier development cycle.

The performance test uses the full scanning of the Zap test tool to test the performance

of the software application. Further, it is recommended to use JMeter for automated perfor-

mance testing to analyze software performance under stress or load testing. For building a

reliable automated security testing script or pipeline, we have integrated Vault’s dynamic

MICROSERVICES-BASED DEVSECOPS PLATFORM USING PIPELINE AND OSS 1125

SSH key function to make the communication between servers more secure. It is also rec-

ommended to add Zap and Dependency-Check in the security testing process to eliminate

security vulnerabilities of third-party software. Finally, for usability testing, automated test-

ing tools such as Selenium and Sideex can significantly reduce testing costs through script

writing and recording.

Fig. 5 shows the failed execution result of the designed pipeline. The pipeline will stop

automatically to prevent unworthy deploys and halt the recent job. After correction, devel-

opers can continue this testing pipeline and press the play button next to the stage name to

continue execution. Not only can the test results affect the job’s status, but wrong commands

can also cause the pipeline to stop. As shown in Fig. 6, a failed deployment configuration

command triggers the pipeline to pause zap testing in the production server and warns de-

velopers to make changes.

Fig. 7 shows the successful execution of the entire pipeline. The pipeline design im-

proves code quality and security by integrating automated unit testing, API testing, and

penetration testing.

Fig. 5. Failed pipeline execution result.

Fig. 6. Failed deployment configuration.

Fig. 7. The pipeline execution results.

WEN-TIN LEE AND ZHUN-WEI LIU

1126

The testing results and artifacts are automatically put into a directory for developers to

access. This study conducts the experiment by comparing the performance between the pro-

posed pipeline and manual testing. Both test cases use the same project and run on a host

with the same specs. Fig. 8 shows each step’s time comparison between manual testing and

the CodeHawk pipeline. Traditional testing methods require all other tools to be pre-in-

stalled and checked. The proposed pipeline can reduce time costs and ensure system security.

Steps Manual Testing CodeHawk Pipeline

Static analysis 2 min 5 sec 47 sec

testServer_deploy 7 min 37 sec 37 sec

Unit test 1 min 24 sec 1 min 46 sec

API test (Testing Server) 1 min 40 sec 29 sec

Dynamic test (Testing Server) 2 min 34 sec 43 sec

Container Vulnerability Scanning 5 min 58 sec 37 sec

API test (Image Server) 48 sec 23 sec

Dynamic test (Image Server) 1 min 35 sec 44 sec

ProdServer_deploy 5 min 20 sec 40 sec

Dynamic test (Production Server) 1 min 44 sec 42 sec

Fig. 8. Time comparison between manual testing and CodeHawk pipeline.

0 50 100 150 200 250 300 350 400 450 500

Static analysis

testServer_deploy

Unit test

API test (Testing Server)

Dynamic test (Testing Server)

Container Vulnerability Scanning

API test (Image Server)

Dynamic test (Image Server)

ProdServer_deploy

Dynamic test (Production Server)

Time spent in each step (seconds)

CodeHawk Pipeline Manual Testing

0 5 10 15 20 25 30 35

Manual Testing

CodeHawk Pipeline

Total Time (minutes)

MICROSERVICES-BASED DEVSECOPS PLATFORM USING PIPELINE AND OSS 1127

6. CONCLUSION

DevSecOps is an extension of DevOps that aims to automate security management,

integrate security into the testing process, make the rapid development iteration more ro-

bust, and make automation no longer criticized for security issues.

This study develops a microservices-based DevSecOps platform called CodeHawk

by integrating various open-source software. The security requirements, pipeline design,

architectural design, implementation, and benefits of the CodeHawk. The proposed

CodeHawk pipeline and platform allow testing throughout the project’s lifecycle in differ-

ent stages and environments by adding secret management, unit testing, API testing, static

analysis, and dynamic testing to continuous testing, continuous delivery, and continuous

deployment. Only grant commits with the required code quality can advance to the next

stage. It also can detect and halt unworthy deployment. Moreover, testing results will be

collected into a unique project directory for users to access. Experiment results show that

the proposed pipeline shortens the testing time compared to manual testing. Compared to

the maturity model proposed by Silkin [6], the proposed DevSecOps pipeline has achieved

an advanced level which is valuable for researchers or engineers working on establishing

DevSecOps infrastructure. Since the tools utilized by the CodeHawk platform are not load-

balanced, future work would delve into performance issues by applying container orches-

tration mechanisms.

REFERENCES

1. R. Kumar and R. Goyal, “Modeling continuous security: A conceptual model for au-

tomated DevSecOps using open-source software over cloud (ADOC),” Computers &

Security, Vol. 97, 2020, p. 101967.

2. G. Silkin, O. Bodrov, G. Ovechkin, I. Bodrova, and S. Baranova, “Continuous testing

maturity model,” in Proceedings of the 10th Mediterranean Conference on Embedded

Computing, 2021, pp. 1-4.

3. “IEEE standard for DevOps: Building reliable and secure systems including applica-

tion build, package, and deployment,” IEEE Std 2675-2021, 2021, pp. 1-91.

4. T. Rangnau, R. Buijtenen, F. Fransen, and F. Turkmen, “Continuous security testing:

A case study on integrating dynamic security testing tools in CI/CD pipelines,” in

Proceedings of IEEE 24th International Enterprise Distributed Object Computing

Conference, 2020, pp. 145-154.

5. F. Angermeir, M. Voggenreiter, F. Moyón, and D. Méndez, “Enterprise-driven open

source software: A case study on security automation,” in Proceedings of IEEE/ACM

43rd International Conference on Software Engineering: Software Engineering in

Practice, 2021, pp. 278-287.

6. R. N. Rajapakse, M. Zahedi, M. A. Babar, and H. Shen, “Challenges and solutions

when adopting DevSecOps: A systematic review,” Information and Software Tech-

nology, Vol. 141, 2022, p. 106700.

7. S. Dupont et al., “Incremental common criteria certification processes using DevSec

Ops practices,” in Proceedings of IEEE European Symposium on Security and Privacy

Workshops, 2021, pp. 12-23.

8. A. Pereira-Vale, G. Márquez, H. Astudillo, and E. B. Fernandez, “Security mecha-

nisms used in microservices-based systems: A systematic mapping,” in Proceedings

WEN-TIN LEE AND ZHUN-WEI LIU

1128

of XLV Latin American Computing Conference, 2019, pp. 01-10.

9. A. Rahman, F. L. Barsha, and P. Morrison, “Shhh!: 12 practices for secret manage-

ment in infrastructure as code,” in Proceedings of IEEE Secure Development Confer-

ence, 2021, pp. 56-62.

10. M. Raza, “Public vs private vs hybrid: Cloud differences explained,” BMC Blogs V,

2023.

11. S. Throner et al., “An advanced DevOps environment for microservice-based applica-

tions,” in Proceedings of IEEE International Conference on Service-Oriented System

Engineering, 2021, pp. 134-143.

12. Aqua Security, “Trivy,” https://github.com/aquasecurity/trivy, 2023.

13. GitLab BV., “GitLab,” https://gitlab.com/gitlab-org/gitlab, 2023.

14. Sonar Source, “SonarQube,” https://www.sonarsource.com/products/sonarqube/, 2023.

15. Sonartype, “Sonatype nexus repository,” https://www.sonatype.com/new/products/

nexus-repository, 2023.

16. ZAP Dev Team, “OWASP zed attack proxy (ZAP),” https://www.zaproxy.org/, 2023.

17. Hashicorp, “Hashicorp vault,” https://www.vaultproject.io/, 2023.

18. RedHat, “Keycloak,” https://www.keycloak.org/, 2023.

19. WeKan Team, “WeKan − Open source Kanban,” https://wekan.github.io/, 2023.

20. D. Merkel, “Docker: Lightweight Linux containers for consistent development and

deployment,” Linux Journal, Vol. 2014, 2014, No. 239.

21. The Kubernetes Authors, “Kubernetes,” https://kubernetes.io/, 2023.

22. Elasticsearch B.V., “ELK stack,” https://www.elastic.co/what-is/elk-stack, 2023.

23. The OWASP Foundation, “OWASP dependency-check,” https://owasp.org/www-pro

ject-dependency-check/, 2023.

24. Postman, Inc., “Postman,” https://www.postman.com/, 2023.

Wen-Tin Lee (李文廷) received his Ph.D. degree in Computer

Science and Information Engineering from National Central Univer-

sity, Taiwan, in 2008. Lee is currently an Associate Professor and

Chair in the Department of Software Engineering and Management

at National Kaohsiung Normal University. His research interests in-

clude software engineering, service-oriented computing, and deep

learning.

Zhun-Wei Liu (劉峻維) is currently a master student in the

Department of Software Engineering and Management at National

Kaohsiung Normal University, Taiwan. His research interests inc-

lude software engineering, microservice architecture, DevOps, web

programming, and container technology.

https://github.com/aquasecurity/trivy
https://gitlab.com/gitlab-org/gitlab
https://www.sonarsource.com/products/sonarqube/
https://www.sonatype.com/new/products/%20nexus-repository
https://www.sonatype.com/new/products/%20nexus-repository
https://www.zaproxy.org/
https://www.vaultproject.io/
https://www.keycloak.org/
https://wekan.github.io/
https://kubernetes.io/
https://www.elastic.co/what-is/elk-stack
https://owasp.org/www-pro%20ject-dependency-check/
https://owasp.org/www-pro%20ject-dependency-check/
https://www.postman.com/

