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A vague pattern usually makes the result of pattern identification specious. Most 

existing identification algorithms try to upgrade their identification accuracies by im-
proving the clearness of the vague pattern. However, this improvement can be limited 
due to the poor quality of the pattern itself. Hence, the identification result can still be 
untrustworthy and thus a user needs to repeat the algorithm to find another possible an-
swer, which can be quite time-consuming. In this paper, we propose a novel pattern 
recommendation mechanism which is able to obtain multiple highly possible answers 
from a large datapool based on a given vague pattern. By using the identification algo-
rithm only one time, a user can select a correct identification answer from these candi-
dates given by the recommendation system. Three strategies are proposed in this paper. 
Experiments are performed to demonstrate the effectiveness and efficiency of the pro-
posed mechanism. 
 
Keywords: pattern identification, vague pattern, recommendation mechanism, multi-cri- 
teria search, R-tree 
 
 

1. INTRODUCTION 
 

The pattern identification problem has attracted considerable attention in recent 
years [7, 20]. Most existing identification algorithms first retrieve the representative d 
features from a pattern datapool, such as in PCA [5, 13], LDA [2], ICA [2, 5], NN [4, 15], 
then find from the datapool a pattern similar to the query pattern. For example, Table 1 is 
a face feature datapool, which records the distance between two eyes and the width of the 
mouth of each face. Fig. 1 is the result of mapping these patterns into a coordinates sys-
tem. Each point in this figure represents a face, with its coordinates representing the dis-
tance between two eyes and the width of mouth. Assume that a police has a face picture 
Q of a thief, which is acquired from a surveillance system, and is trying to find a match-
ing face from a datapool by using an identification algorithm. The algorithm first re-
trieves the distance between two eyes and the width of the mouth of Q (say, (3.95, 4.95)). 
Then, the algorithm finds that C(3.9, 4.9) is the closest pattern to Q, as shown in Fig. 1. 
Hence, C has the highest possibility to be the thief. 

However, if Q is a vague picture, the identification result can be incorrect. The am-  
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Fig. 1. The face datapool. 

Table 1. The face datapool. 
Face Distance between eyes (cm) Width of mouth (cm)

A 3.95 5.4 
B 4.3 5 
C 3.9 4.9 
D 4.2 5.3 
E 4.8 5.5 
F 4.5 4.4 
G 5 4.8 
H 4.1 4.1 

 

biguity may be caused by low resolution of the surveillance system [7, 10, 11], a long 
distance between Q and the monitor [3, 21], or the motion blur on the image [1, 11, 14], 
etc. The extent of uncertainty in different features can be quite different. For example, 
the image of eyes of Q may be clear, but the mouth is blurred. If the correct value in this 
case is (3.7, 5.4) (i.e., Q in Fig. 1), then the answer should be A instead of C. On the 
other hand, if the image of eyes of Q is seriously affected by the motion blur but the part 
of mouth is not so that the correct value is (4.6, 4.8) (i.e., Q in Fig. 1), then the answer 
should be B rather than A. These two cases indicate two problems of the existing identi-
fication algorithms; (1) When ambiguity exists, the result returned by an identification 
algorithm can be incorrect. Hence, the user needs to operate the identification algorithm 
again to find another possible answer, which is quite awkward and time consuming; (2) 
Different degree of ambiguity in different features may cause the search result to be 
completely different, which is not dealt with in the existing identification algorithms. 

The design philosophy of the most existing identification algorithms in dealing with 
an ambiguous pattern is to improve the quality of the query pattern and to lower the er-
rors of the captured features. However, we must understand that no matter what quality 
improvement method is used, the resulting improvement may be limited due to the poor 
quality of the target pattern, which then results in numerous errors in the features cap-
tured by the feature extraction algorithm and the results of the feature identification algo-
rithm. Thus, the conventional approach of increasing recognition rates by improving 
quality has some room for improvement. For instance, if the query pattern to be dealt 
with is a signal, such as in the speech identification [19] and the activity identification 
problem [9, 20], a filter is usually used before the algorithm to sift out the noises. Never-
theless, we know that each filter has its own capability limits, so signal quality cannot be 
effectively increased when the signal contains a lot of noise. If the query pattern is an 
image and its resolution is low, Gunturk et al. [7] and Hennings-Yeomans et al. [10] 
propose to construct a super-resolution image from multiple low resolution images. Still, 
we must understand that in conditions with lower image resolution, many objects were 
blurry to begin within their original images and thus unrecognizable no matter how they 
are processed. In view of this, this study proposed a concept unlike those of conventional 
methods to effectively increase the recognition rate of target patterns. 

In this paper, we propose another philosophy in resolving this problem, which is to 
retrieve multiple highly possible answers (i.e., patterns) and return to the user. The user 
will decide from these answers which one(s) will be the correct answer. The user may 
also issue a threshold k before the search process to limit the number of possible answers. 
The mechanism devised in this paper is called a multi-criteria based k-pattern recom-
mendation scheme. This mechanism is used “after” an existing identification algorithm. 

Distance between Eyes (cm) 
Fig. 1. The face datapool. 
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Assume that the query pattern Q is the input to the identification algorithm, which uses d 
numerical features in its process. The result pattern found by the identification algorithm 
is r. The proposed mechanism then utilizes r and the d numerical features to evaluate the 
score of each pattern in the datapool. The patterns with a score smaller than k are re-
turned to the user. In our design, the smaller the score of a pattern, the more likely that 
this pattern is the answer of the query. As far as we know, this paper presents a first at-
tempt to resolve the identification problem by using a recommendation scheme. 

The multi-criteria based k-pattern recommendation scheme has a few notable fea-
tures. First, by operating the identification algorithm only one time, the proposed mecha-
nism can return all possible answers of a query pattern. Hence, the cost incurred by re-
peatedly operating the identification algorithm as in the traditional manner can be avoid-
ed. Second, the mechanism is able to find suitable answers for a query pattern that has 
different degree of ambiguity in different features. That is, even if a query pattern pre-
sents large errors in some features, the mechanism can still utilize the other more accu-
rate features to find the most probable answers. Finally, this mechanism is especially 
designed for a datapool with a very large number of patterns, which is frequently en-
countered in today’s applications. 

The main problem of the multi-criteria based k-pattern recommendation scheme is 
that it involves a lot of disk I/O’s for comparisons. We therefore incorporated the R-tree, 
which is the most efficient tool in reducing disk I/O the in multi-criteria recommendation 
field, to accelerate recommendations. The R-tree was initially designed to store planar 
data in space [8]. However, for years, researchers have been demonstrating that using the 
R-tree to store and process high-dimensional data is extremely efficient. Thus, a number 
of R-tree-based algorithms have been designed for high-dimensional space applications 
such as database queries [22]. In this study, the conventional R-tree cannot be directly 
applied to the problem, so we devised three novel strategies based on the R-tree to pro-
cess the target problem, including the forward strategy, the backward strategy, and the 
hybrid strategy. The forward strategy is the most straightforward method among these 
strategies. The backward strategy is able to reduce the number of I/O’s of the forward 
strategy based on some theorems. The third strategy is a hybrid strategy, which combines 
the previous two strategies so that it owns the advantages of both strategies. The simula-
tion result shows that the hybrid strategy requires the least number of I/O’s in all cases. 

The rest of this paper is organized as follows. The forward and the backward strate-
gy are described in Sections 2 and 3. Section 4 introduces the hybrid strategy. The simu-
lation results are given in Section5. Finally, this paper is concluded in Section 6. 

2. FORWARD STRATEGY 

This section introduces the forward strategy that uses an R-tree to reduce the I/O 
cost of accessing the datapool in the proposed mechanism. Three data structures, an 
R-tree, an S_heap, and a linked list, are used in this method. The R-tree is used to record 
the features of the patterns, which is established prior to executing a search process. The 
S_heap is used to maintain the temporary information when operating the strategy. The 
linked list is used to record the result of the mechanism. 

The forward strategy possesses two functions, the mapping function and the search-
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ing function. Assume the result of the identification stage is a pattern r and the set of 
patterns in the R-tree is P. The mapping function first evaluates the absolute values of the 
differences between r and the patterns in P, and then stores the result of the mapping 
function in the S_heap. The searching function then utilizes S_heap to evaluate the score 
of each pattern, whose results are then returned to the user. Before we study the forward 
strategy, the structure of R-tree is briefly introduced in Section 2.1. Then, the strategy is 
presented in the following subsections. 

 
2.1 A Brief Introduction of the R-tree 

 
A pattern can be considered as a point in a hyperspace whose dimensions corre-

spond to the features of the pattern. The main purpose of the R-tree [8] is to organize the 
patterns (i.e., points) with the similar features (i.e., close to each other) into a node, 
whose corresponding region bounded by the node is named a minimum bounding rectan-
gle (MBR). We use an example in Fig. 2 to briefly introduce the R-tree. The number of 
features of a pattern and the capacity of a node in this example are two and three, respec-
tively. Each point in Fig. 2 (a) is a pattern while each rectangle represents the MBR of a 
node. Fig. 2 (b) is the tree structure of Fig. 2 (a). Two types of nodes are included in this 
tree, which are the leaf node and the internal node. A leaf node, such as N5, records the 
features of some patterns. An internal node, such as N2, stores the information of its child 
MBRs. Both of the leaf and the internal nodes use the coordinates of the bottom-left and 
the upper-right corner to record the region of MBR, as shown in Fig. 2 (b). Expanding an 
MBR lets us acquire the patterns and the MBRs (if any) inside this MBR. 

Note that this R-tree is normally stored in a secondary storage, which is a much 
slower device than main memory. Hence, loading a node of an R-tree to main memory is 
costly comparing to the memory access and the cpu time. A good search strategy should 
be able to avoid it as much as possible. The detailed mechanism of R-tree, such as inser-
tion and deletion of nodes, can be found in [8]. 
 

 
(a) An index result of the R-tree. (b) The tree structure of the R-tree. 

Fig. 2. An example of R-tree. 
 

2.2 Mapping Function 
 

Assume the result of the identification stage is pattern r. r will then be used to 
search for patterns close to r. Three relationships between r and an MBR/a point of the 
R-tree are summarized in Fig. 3. Note that the relationships introduced in the following 
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can be easily extended to a data space higher than two (i.e., patterns with more than two 
features). In Fig. 3, r is the origin and for convenience this coordinate system is named 
the r-coordinates. A solid-line rectangle represents an MBR and a black point is a pattern. 
A white point and a dotted-line rectangle represent respectively the image pattern and the 
image MBR after mapping with respect to the origin r. Note that as the concept of map-
ping function is quite naive and is not the key point of this work. We only use the fol-
lowing two cases to explain it. Other cases can be easily derived by readers. The first 
example is the Example 1 in Fig. 3. As the original p3 falls in the third quadrant of the 
r-coordinates, it must be mapped to the first quadrant of the r-coordinates. To achieve 
this objective, p3 must be mapped with regard to r. Originally at (1, 1), p3 moves to (1, 
1) after mapping. The second example is the Example 4 in Fig. 3. As the original MBR 
falls in the third quadrant of the r-coordinates, it must be mapped to the first quadrant of 
the r-coordinates. To achieve this objective, the lower left corner (i.e., p1) and upper right 
corner (i.e., p2) of the MBR must be mapped with regard to r. Assuming that the original 
p1 and p2 were located at (3, 3) and (1, 1), respectively, the new p1 and p2 will fall 
on (3, 3) and (1, 1) after mapping. Thus, the location of the image MBR will become the 
MBR with (1, 1) and (3, 3) as the lower left and upper right corners. 

 

Type 
MBR occupying more than 

two quadrants in r-coordinates 
MBR occupying only  

one quadrant in r-coordinates
Point in r-coordinates 

Examples 

Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 

 
 

Action Expand the MBR None None 
Fig. 3. Spatial relationships between r-coordinates and MBR/point of an R-tree. 

 

After the above mapping, the image MBRs and the image patterns are inserted into 
an S_heap. In the S_heap, they are sorted in ascending order according to the summation 
of their coordinates. For an MBR, the summation is made on the coordinates of the bot-
tom-left corner of this MBR. Hereafter, we simply name it the summation of an MBR (or 
a point) for brevity. An interesting fact about this summation is that the pattern with a 
greater summation can never be better than the one with a smaller summation. This 
means if the patterns and MBRs in the S_heap are sorted according to their summations 
and if p is not an answer, then all patterns and MBRs behind pattern p in the S_heap need 
not be considered as they cannot be better than p. The indication of this property is that 
computation and I/O can be reduced, so the performance can be enhanced. 

 
2.3 Searching Function 

 
Patterns and MBRs in the S_heap are now retrieved, on which the searching func-

tion is performed. The searching function involves a series of simple operations, as 
shown in Fig. 4. For ease of presentation, both a pattern and an MBR in the S_heap are 
named an element hereafter.  

p1

p2

r
p3

p3
p1

r r r

p1
p2

p1
p2 r r



YI-CHUNG CHEN AND CHIANG LEE 

 

1638

 

 
(a) A linked list. 

 
(b) Insert e into the linked list. 

Fig. 5. The examples of a link- 
ed list. Fig. 4. The flow chart of the searching function of the forward strategy.

 

The function retrieves the first element of the S_heap and assigns a temp score and a 
temp list to this element. The temp score is used to record the score of the element while 
the temp list is used to record the patterns that are better than the retrieved element. In the 
beginning, the temp score is set to 0 and the temp list is empty. Next, when the first ele-
ment, say e, of the S_heap is retrieved, it is compared with the patterns in a linked list 
(referring to the process in Fig. 4). In the beginning, the linked list is empty. But for the 
sake of explaining how the forward strategy works, let us assume that the linked list has a 
content as shown in Fig. 5 (a). The comparison order is from layer 0 to layer 3 and within 
each layer from left to right. In Fig. 5 (a), for example, the retrieved element e will first 
be compared with A, then B and C, and then D, E, and F. 

When e is compared with a pattern in the linked list, the comparison is based on the 
concept given in the following definition. 
 
Definition 1: Given a datapool with d features, an identification result r, and two patterns 
p1 and p2. The absolute difference of p1 and r is (v11, v12, …, v1d) and that of p2 and r is 
(v21, v22, …, v2d). We say that p1 is worse than p2 if v1i > v2i for all 1 ≤ i ≤ d. If v1i > v2i is 
only true for some (but not all) i, then we say that they are incomparable.  
 

The condition v1i > v2i for all 1 ≤ i ≤ d in this definition implies that p1 is not closer 
to r than p2 in all features. In this case, the possibility that p1 becomes the answer of the 
query pattern is smaller than that of p2. If however the condition in Definition 1 does not 
meet (i.e., p1 is closer to r than p2 in some features and p2 is closer to r than p1 in the oth-
er features), then both p1 and p2 have a chance to be the answer of the query pattern. For 
these two cases, we do the following. 

Retrieve the first element e from S_heap

Is S_heap empty?

Case 1

S_heap

Compare e with a pattern
p in the linked list

e is worse than p
Case 2

e and p are incomparable

Case 3
e is a MBR

Case 4

Add 1 to e's temp score and 
insert p into e's temp list 

Do nothing

e is a pattern

Expand e and insert 
children of e into the heap

Insert e into the linked list 
and find e's parent pattern

Is e's temp score > k? Delete e

No

No Yes

Yes

End

The result of mapping function

Give e a temp score and a temp list

Is p the last pattern of the linked list
No

Yes

The comparison
order is from 

layer 0 to layer k
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Let e be the element retrieved from S_heap and p be a pattern of the linked list. 
 
Case 1: e is worse than p. In this case, we add one to the temp score of e and insert p 
into the temp list of e. If the temp score of e is greater than k after the addition, then e 
will be deleted from the S_heap and the process moves on to the next step. This is be-
cause if e is a pattern, then the final score of this pattern must be greater than k. If e is an 
MBR, then the final scores of all patterns in this MBR should be greater than k as well. 
Note that e can never be better than p, as the summation of p must be smaller than e. 
 
Case 2: e and p are incomparable. In this case, no further operation is needed. 

Note that during the comparison, patterns in the linked list are not removed. They 
are only used to determine whether e can be deleted from the S_heap or, if not, how to 
deal with e for further processing. After the processing of case 1 and case 2, the search-
ing function checks whether p is the last pattern in the linked list in this series of com-
parisons. If so, the searching function proceeds to the process of case 3 and 4. Otherwise, 
e is compared with the next pattern in the linked list. 
 
Case 3: p is the last pattern in the linked list, the temp score of e is not greater than 
k, and e is an MBR. In this case, the score of the patterns in this MBR may be smaller 
than or equal to k. Hence, this MBR needs to be expanded and all child MBRs or patterns 
within this MBR should be inserted to the S_heap. Note that before the insertion, the 
image coordinates of these child MBRs and patterns are obtained by using the (Ix, Iy) of 
the MBR and the coordinates of r. The summations of the image coordinates are then 
used to determine the order of these child MBRs and patterns in the S_heap. 
 
Case 4: p is the last pattern in the linked list, the temp score of e is not greater than 
k, and e is a pattern. In this case, this pattern e is an answer of the search process. So, e 
is inserted into layer i of the linked list where i is the score of e. That is, all patterns with 
a score smaller than k (i.e., they are the answer of the query) and the relationships be-
tween these patterns are recorded in a linked list. An example of a four layer linked list 
with k=3 is shown in Fig. 5 (a). A pattern with score i is stored in layer i. Each layer may 
have multiple patterns, in which the order of these patterns (of the same layer) is ar-
ranged according to the order that they are inserted into the linked list. The arrows in the 
linked list record the relationships between the patterns. For example, Fig. 5 (a) shows 
that the parent pattern of F is E and the parent patterns of E are A and B. Hence, F is 
worse than A, B, and E. They are however incomparable to C and D. Assume that the 
temp list of e includes patterns A, C, and D. Then we know e is worse than A, C, and D. 
Also, we know from Fig. 5 (a) that C is better than D. Hence, C cannot be the parent pat-
tern of e, and therefore A and D are the parent patterns of e, as shown in Fig. 5 (b). 

3. BACKWARD STRATEGY 

In this section, we propose a new strategy, named the backward strategy, to improve 
the efficiency of the forward strategy. The main advantage of the forward strategy is us-
ing an R-tree to reduce the I/O cost of accessing the datapool. It however cannot avoid 
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the need of comparing the retrieved element with all patterns in the linked list until it has 
found k+1 patterns better than it. Hence, it requires some I/O’s for accessing cost of ac-
cessing the linked list. The cost can be significant when k is large. 

The backward strategy is designed to remedy the flaw of the forward strategy. 
Hence, the flow chart of the backward strategy is similar to that of the forward strategy. 
The major difference is that when comparing the element retrieved from the S_heap with 
the patterns in the linked list, the comparing order is opposite to that in the forward 
strategy. Such a change help the algorithm to reduce the number of comparisons in the 
searching function. The mapping function of the backward strategy is the same as that in 
the forward strategy. Hence, we only introduce the searching function of the backward 
strategy in the following. Before we explain this searching function, we first introduce a 
series of lemmas and theorems that will be used in the backward strategy. 

 
3.1 Theoretical Foundation of the Backward Strategy 

 
We first introduce the transitivity of relationships of the patterns and the elements. 

Given two patterns p1 and p2 and an element e (either a pattern or an MBR), if p2 is worse 
than p1 and e is worse than p2, then it is quite clear that e must be worse than p1. Accord-
ing to this fact, we are able to derive Theorem 1 in the following. 
 
Theorem 1: Given an element e and a pattern p with a score m, if e is worse than p, then 
the score of e must be equal to or greater than m+1. 
 
Proof: First, the score of p being m implies that p is worse than another m patterns, say 
p1, p2, …, pm. Hence, if e is worse than p, then e should be worse than not only p, but 
also p1, p2, …, pm. That is to say, the score of e must be equal to or greater than m+1.  

Theorem 1 ensures that if an element is worse than a pattern of layer k in the linked 
list, then it can be deleted from the S_heap. 
 
Lemma 1: Given an element e and n patterns p1, p2, …, pn, if (1) the score of p1 is m; (2) 
p2, p3, …, pn are not better than p1; and (3) e is worse than p1, p2, …, pn, then the score of 
e must be equal to or greater than m+n.  
 
Lemma 2: Given two patterns p1 and p2, if the scores of p1 and p2 are the same, then p1 
and p2 must be incomparable.  

From these two lemmas, we can derive Theorem 2. 
 
Theorem 2: Given n patterns p1, p2, …, pn in layer m of the linked list, if an element e is 
worse than p1, p2, …, pn, then the score of e must be equal to or greater than m+n. 
 
Proof: According to Lemma 2, p1, p2, …, pn being in the same layer implies that these 
patterns are incomparable. Hence, from Lemma 1, the score of e must be equal to or 
greater than m+n, as the score of p1 is m and p2, p3, …, pn are not better than p1.  

 
Theorem 2 can be further extended Theorem 3. 

Theorem 3: If an element e is worse than nm patterns of layer m of the linked list, nm+1 
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patterns of layer m+1, …, nm+(k-1-m) patterns of layer m+(k1m), then the score of e must  

be equal to or greater than m+nm+
1

1

k m

m ii
n

 
 .  

Finally, we extend Theorem 3 to Theorem 4. 
 

Theorem 4: Assume an element e is worse than nm patterns of layer m, nm+1 patterns of 
layer m+1, …, nm+(k-1-m) patterns of layer m+(k1m), in which each of these patterns pk 
(1< k < nm+nm+1+…+nm+(k-1-m)) is associated with the number of patterns, ukj, that is bet-
ter than pk in layer j (0 < j < m1). Then the score of e must be equal to or greater than  

nm+
1

k m

m ii
n


 + 1 ( 1 )

1 ...
10

max ( )m m m k m
m n n n

k kjj
u      

 . 

 
Proof: First, the assumption of this theorem indicates that e is worse than at least nm+

1

k m

m ii
n


  patterns of layer k1 to m. Next, if e is worse than p1, p2, …, and pk, then in 

layer j, e must be worse than at least 

1 ( 1 )...
1max ( )m m m k mn n n

k kju     
  patterns. This is because 

1 ( 1 )...
1max ( )m m m k mn n n

k kju     
  is the minimum number of patterns that are better than p1, p2, …, 

or pk in layer j. Hence, according to the transitivity relationship between the patterns, e 
must be worse than at least 

1 ( 1 )
1 ...

10
max ( )m m m k m

m n n n
k kjj

u      
 patterns of layer 0 to layer m1. 

From the above two arguments, we know that e is worse than at least nm+
1

k m

m ii
n


 + 

1 ( 1 )
1 ...

10
max ( )m m m k m

m n n n
k kjj

u      
 patterns of layer 0 to layer k1 and the score of e must be 

equal to or greater than nm+
1

k m

m ii
n


 + 1 ( 1 )

1 ...
10

max ( ).m m m k m
m n n n

k kjj
u      

   

For an element e compared with the patterns of layer k back to layer m in the linked 
list where k > m, Theorem 3 is able to examine whether the score of e is greater than k by 
using the patterns of layer k1 to layer m while Theorem 4 is able to do the same task by 
using the patterns of layer k1 to layer 0. 

 
3.2 The Searching Function of the Nackward Strategy 

 
The flow chart of the searching function of the backward strategy (Fig. 6) is similar 

to that of the forward strategy (Fig. 4). Differences are marked in boldface in Fig. 6. We 
start the introduction of the proposed searching function from its linked list, as it is the 
major part that is different from the forward strategy. Each pattern in the linked list of the 
backward strategy has an additional B_array. If the threshold of score is k, then the B_ 
array is a 1-by-k array. An example of B_array is shown in Fig. 7, in which k=3. The 
B_array [2, 0, 1] of F in this figure implies that F is worse than two patterns of layer 0 
(i.e., A and B) and one pattern of layer 2 (i.e., E). 

We next introduce the process of this function. The first element of the S_heap is 
retrieved and assigned a temp score, a temp list and a max_array. The temp score records 
the number of patterns better than e. Assume that the comparison has been done on layer  
k up to layer m. Then, the temp score of e at this time is equal to nm+

1

k m

m ii
n


 according 

to Theorem 4. The temp list stores the patterns that are better than e. This list is used to 
find the parent patterns of e and establish the B_array of e when e needs to be inserted 
into the linked list. The max_array is a 1-by-k array, which is used to evaluate  

1 ( )
1 ...

10
max ( )m m m k m

m n n n
k kjj

u     
  mentioned in Theorem 4. Assume that the patterns better  

than e in the linked list are p1, p2, …, pn, and the B_array of pi is [vi0, vi1, …,vik-1]. Then 
the max_array of e is [max(v10, v20, …,vn0), max(v11, v21, …,vn1), …, max(v1k-1, v2k-1, …, 
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vnk-1)]. The value of the 

1 ( )
1 ...

10
max ( )m m m k m

m t t t
k kjj

u     
  is eqaul to the summation of the first  

m values (i.e., layer 0 to layer m1) of the max_array. 
Let e be the element retrieved from S_heap and p be a pattern of the linked list. 

 
Case 1: e is worse than p. This case is partly different from the case 1 of the forward 
strategy. In this case, we first add one to the temp score of e and insert p into the temp list 
of e. Next, if p is from layer k, then according to Theorem 1 the final score of e must be 
greater than k. Hence, e is deleted from the S_heap and the process moves on to the next 
step. If p is from layer m instead of layer k, then the max_array of e is updated by the 
B_array of p. The updated max_array is then used to examine whether the condition of 
Theorem 4 is met. If so, the score of e must be greater than k and thus e can be deleted 
from the S_heap. Otherwise, e is compared with the next pattern in the linked list. The 
whole process is also clearly shown in Fig. 6. 
 

 

Retrieve the first element e from S_heap

Is S_heap empty?

Case 1

S_heap

Compare e with a pattern
p in the linked list

e is worse than p
Case 2

e and p are incomparable

Case 3
e is a MBR

Case 4

Add 1 to e's temp score and 
insert p into e's temp list 

Do nothing

e is a pattern

Expand e and insert 
children of e into S_heap

Insert e into the linked list 
and find e's parent pattern

No

Yes

End

The result of mapping function

Give e a temp score, a temp list, and a max_array

Is p the last pattern of the linked list
No

Yes

Is p located in layer k?

Delete e

NoYes

Yes No

The condition of 
Theorem 1 is met

Update e's max_array

Construct e's B_array

The comparison
order is from 

layer k to layer 0

Is the condition of 
Theorem 4 met?

Fig. 6. The flow chart of the searching function of the backward strategy. 
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Case 2: e and p are incomparable. No further operation is needed, same as the case 2 of 
the forward strategy. 

If p is not the last pattern in the linked list, then e will be compared with the next 
pattern in the linked list. Otherwise, we move on to case 3 and case 4. 
 
Case 3: p is the last pattern in the linked list, the temp score of e is not greater than 
k, and e is an MBR. The process of this case is the same as that of the forward strategy. 
As the score of the child elements within the MBR may be smaller than or equal to k, this 
MBR needs to be expanded. Its child elements are then inserted into the S_heap in as-
cending order according to the summation of their image coordinates. 
 

 
Fig. 7. The example of the linked list in the backward strategy. 

 

Case 4: p is the last pattern in the linked list, the temp score of e is not greater than 
k, and e is a pattern. This case is partly different from the case 4 of the forward strategy. 
This e is an answer of the proposed mechanism and thus inserted into the linked list. The 
difference is that an additional B_array for e is established. The B_array is obtained from 
the temp list of e. For example, if the temp list of F in Fig. 7 is [A, B, E], then the B_ 
array of F is [2, 0, 1]. This is because F is worse than two patterns (i.e., A and B) of layer 
0, a pattern (i.e., E) of layer 2, and not worse than any patterns of layer 1. 

4. THE HYBRID STRATEGY 

The hybrid strategy, as indicated by its name, is a combination of the forward strat-
egy and the backward strategy. Hence, it also possesses the mapping function and the 
searching function. The main design purpose is to further reduce the cost for accessing 
patterns during the processing. The mapping part is the same as the previous two strate-
gies. Hence, we also introduce only the searching part in this section. 

The basic idea of the hybrid strategy is that the comparing order of an element, say e, 
in the S_heap with a pattern, say p, in the linked list is mixed. It starts by following the 
backward strategy to compare e with the patterns in the last layer (i.e., layer k) of the 
linked list. When the searching function finds that the access cost of this backward com-
paring order would become greater than comparing in a reverse order (i.e., following the 
forward strategy to compare from layer 0), the search process begins to execute the for-
ward strategy. The major challenge of the hybrid strategy is to find the layer i (0 < i < k), 
i.e., the turning point, at which the search process reverses the comparing order. This 
involves a cost determination process. We introduce this process in the following. 

Let e be the element to be dealt with (i.e., retrieved from the S_heap) and M be its 
parent MBR. As the searching process always starts from the top levels of the R-tree to 
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the bottom levels, the parent of e (that is, M) must have been processed (i.e., compared 
with the linked list) before e is processed. Hence, the max_array of M is known when e is 
going to be processed. Information in this max_array of M is useful during e’s compari-
sons, which will be clear later. We have the following lemma regarding to the max_ar- 
rays of M and e. 

 
Lemma 3: Given an element e and its parent MBR M, if the max_array of e is [ne0, 
ne1, …, nek-1] and the max_array of M is [nm0, nm1, …, nmk-1], then nei should be greater 
than or equal to nmi, where 0 ≤ i ≤ k.  

 
This is because the bottom-left corner of M, if there is a pattern at this corner, is 

definitely better than e (because M contains e). Thus, all patterns better than M must be 
better than e too. From this, we can safely inference that the number of patterns better 
than M recorded in the max_array of M can be known as the least number of patterns 
better than e. For this reason, we say that the max_array of M is also the “min_max_array” 
of e, where the min_max_array stands for the minimum max_array. 

As we said, the comparison starts from the bottom layer (i.e., layer k) of the linked 
list. When the comparison proceeds up to layer i (0 < i < k) and enough patterns better 
than e are found, then e can be deleted without further processing. In Theorem 5 we give 
this number. 

 
Theorem 5: When comparing element e with the patterns of layer i, if the max_array of 
e is [ne0, ne1, …, nek-1] at this moment, then e can be deleted from the S_heap if at least  

k+1max(i,
1

0

i

mm
ne



 )nei
1

1

k

mm i
ne



   patterns better than e are found in layer i. 
 

Proof: If i ≥ 1

0
,

i

mm
ne



  the equation in this theorem is reduced to k+1inei
1

1
.

k

mm i
ne



    

The values nei, nei+1, …, nek-1 in the max_array of e indicate that e is worse than nei patterns 
of layer i, nei+1 patterns of layer i+1, …, and nek-1 patterns of layer k1. Theorem 3 men-
tioned that if the above argument is true, then e is worse than at least i+nei+

1

1

k

mm i
ne



   
patterns. That is to say, if additional k+1inei

1

1

k

mm i
ne



  patterns better than e in layer 
i are found, then e can be deleted from the S_heap (i.e., e is worse than at least k+1 pat-
terns).  

On the other hand, if i <
1

0

i

mm
ne



 , then the expression becomes k+1 1

0

i

mm
ne



 nei 

 1

1

k

mm i
ne



  =k+1 1

0

k

mm
ne



 . As the max_array of e is [ne0, ne1, …, nek-1], e is worse 
than at least 

1

0

k

mm
ne



  patterns in the linked list. Hence, if additional k+1 1

0

k

mm
n



  pat- 
terns better than e in layer i are found, e can be deleted from the S_heap.   

 
As this number (of patterns better than e in order to delete e) can be evaluated be-

forehand, we can estimate the probability that e is able to be deleted when compared with 
patterns in layer i. This probability is given in Theorem 6. But before that a lemma for 
calculating approximate probability is introduced. 
 
Lemma 4: Given a datapool with d features, an element e, and n patterns p1(v11, v12, …, 
v1d), p2(v21, v22, …, v2d), …, and pn(vn1, vn2, …, vnd). Let all features of the patterns be 
normalized to the range [0, 1], i.e., 0 ≤ vij ≤ 1 for all 1 ≤ i ≤ n and 1 ≤ j ≤ d. The probabil-
ity that e is worse than these n patterns is  1 1 21 max( , ,..., )d

i i i niv v v  . 
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Proof: For ease of comprehension, we prove this lemma in a two dimensional space (as 
shown in Fig. 8). It can be easily extended to a higher dimensional case. The minimum 
and the maximum value of the features in this figure are 0 and 1, respectively. Patterns in 
region α are worse than p1(v11, v12), p2(v21, v22), and p3(v31, v32). As the area of the entire 
area is 1, the area of region  is  2

1 1 2 31 max( , , )i i i iv v v  . Therefore, the probability that e 
is located in region  and worse than p1, p2, …, and pn is  1 1 21 max( , ,..., )d

i i i niv v v  .  
 
Theorem 6: Given a datapool with d features, an element e, and n pattern p1(v11, v12, …, 
v1d), p2(v21, v22, …, v2d), …, pn(vn1, vn2, …, vnd) in layer i of the linked list. All features of 
the patterns are normalized to the range [0, 1]. The number of patterns in layer i of the 
linked list is nli. If there are ndi patterns in layer i better than e so that e can be deleted, 
then the probability pdi of deleting e from the S_heap in layer i is 
 

 1 1 2

 0                                         ,    if 
.

1 max( , ,..., ) ,    if 
i i

d
i i i ni i i

nd nl

v v v nd nl


  

  (1) 

 

 
Fig. 8. An example of Lemma 4 and Theorem 6. 

 

Proof: We first consider the case that ndi > nli. As e can never be deleted in this case, pdi 
of e is 0. Next, we consider the case ndi ≤ nli. Let us also refer to Fig. 8. The values of d 
and ndi in this figure are 2 and 3, respectively. p1(v11, v12), p2(v21, v22), p3(v31, v32), and 
p4(v41, v42) are all located in layer i of the linked list. The order of these patterns of layer i 
is p1, p2, p3, and p4. Hence, e should be first compared with p1, p2, p3, and then p4. If e can 
be deleted after comparing p1, p2, and p3, then e must be located in region . Similarly, if 
e is deleted after comparing p1, p2, p3, and p4, then e may be located in region  or in re- 
gion . However, the area of region  is usually much smaller than that of region . The 
area of region  in Fig. 8 is (1v31)(1v22) and that of  is (1v41)(v2212). (1v31) is grea- 
ter than (1v41). (1v22) is usually much greater than (v22v12). As the entire area is 1, pdi 
of e is therefore approximately the area of region , which is  1 1 21 max( , ,..., )d

i i i niv v v  . 
 
This theorem implies that the approximate pdi of e is only affected by the coordi-

nates of the first ndi patterns of layer i. As vij in the linked list are all known, this proba-
bility can be calculated before e is actually compared with the patterns of layer i. That is 
to say, we should be able to find the proper layer i to reverse the comparing order, i.e., 
changing from backward to forward checking, before e is compared with any pattern of 
the linked list. 

Let the element under comparison be e, the numbers of patterns of layer 0 to layer k 
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be respectively nl0, nl1, …, nlk, and the probabilities of deleting e in layer 0 to k be re-
spectively pd0, pd1, …, pdk. We start the comparison from pattern in layer k of the linked 
list. Let us assume that we perform the comparison upward till layer x (x < k). That is, 
patterns in layer k upward to layer x have all been compared with e. Assume that this is 
the turning point and now we reverse the comparing order downward from layer 0 to 
layer x1. Then, the expected cost for accessing patterns from layer 0 to layer x1 can be 
calculated in the following manner. The probability that e can be deleted from S_heap 
when it is compared with the patterns of layer j (i.e., e has not been deleted from S_heap 
after comparing with patters of layer 0 to layer j1) is   1

0 1j
i i jpd pd
  . The cost for  

accessing patterns of layer 0 to layer j for comparison is j

i=0nli. Therefore, the expected 
cost for accessing patterns of layer 0 to layer x1 is 

   1
00 0

1 .
k x jj

i i j ij i
pd pd nl

 
 

     (2) 

If, on the other hand, the turning point is not at layer x (as in the above) but at layer 
x1, then the patterns of layer x1 would be accessed and compared with e and then we 
reverse the pattern comparison from layer 0 down to layer x2. The total access cost for 
this case is therefore the cost of accessing patterns in layer x1 plus the cost of accessing 
patterns from layer 0 to layer x2. pdk-xnlk-x is the expected cost of accessing patterns of 
layer x1 to compare with e and finding that e can be deleted from the S_heap during the 
comparison. As for the access cost for patterns of the above layers (i.e., layer 0 to layer 
x2), it can be calculated in the following manner. The probability that e can be deleted 
from the S_heap when it is compared with the patterns of layer j is    1

01 1j
k x ipd 
     

pdi))pdj. The corresponding access cost for patterns of layer j is 
0

( ).
j

k x ii
nl nl 

  Hence, 
we have the expected cost of accessing patterns of layer x1 first and then turning to lay-
er 0 down to layer x2. 

       1 1
00 0

1 1
k x jj

k x k x k x i i j k x ij i
pd nl pd pd pd nl nl

  
     

         (3) 

Note that in the above two cases, the cost of accessing patterns of layer k upward to 
layer x is not included. It is because this cost in both cases is the same. Hence, there is no 
need to include that part. Cost expressions (2) and (3) can be used to determine the turn-
ing point from the backward strategy to the forward strategy. Let us assume that we have 
finished the comparisons for layer k up to layer x. We will calculate the costs of expres 
sion (2) and expression (3). If cost(2) ≥ cost(3), then we continue the backward strategy 
(to access patterns of layer x1). Otherwise, we change the execution to the forward 
strategy (to access patterns of layer 0). As this strategy is a combination of the previous 
two and not difficult to comprehend, we omit its flow chart. 

 

Table 2. A summary of experiment parameters. 
Parameter Values 

Number of the features in the datapool, d 2, 3, 4, 5, 6 
Number of the error-features in the datapool, m 1, 2, 3 

The upper bound of the percentage of the error in the reference-features, x 0.1% to 11% 
Threshold of the score of the datapool, k 1, 10, 25, 50, 75, 100 

Number of patterns in the datapool 1M 
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5. SIMULATION 

A set of simulations on face identification was conducted in this section to demon-
strate the effectiveness and the efficiency of the recommendation system. The datapool 
used in this simulation is a synthetic face feature datapool. This datapool contains 
1,000,000 patterns and each pattern has six commonly used features. They are the height 
of the face, the height of the forehead, the widths of the left eye and the right eye, the 
width of the nose, and the width of the mouth [12, 17]. Note that we use the synthetic 
feature datapool in this simulation instead of a real pattern datapool for the following two 
reasons. First, the main focus of this paper is not to extract the features from the patterns 
but to provide a method for quickly finding the similar patterns from the datapool. Using 
synthetic datapool allows us to avoid the need of extracting the features from the real 
pattern datapool. Second, for the purpose of testifying the feasibility of the recommenda-
tion system, we need to have a datapool of a large number of patterns. However, most of 
the existing face datapools, such as FERET [18], YaleB [6], and LFW [16] have only 
about ten thousand patterns, which is quite small for our purpose. Hence, a synthetic da- 
tapool is used in the simulation. 

Two parts are included in this simulation. The first part is to study the accuracy of 
the proposed recommendation system. The second part is to compare the efficiency of 
the brute force strategy and the three strategies devised in this paper. The parameters and 
their varying ranges are summarized in Table 2, in which default values are marked in 
boldface. These parameters includes (1) the number of features d in the datapool, which 
varies from two to six and the default value is four; (2) the threshold k of the score, 
which varies from 1 to 100 and the default value is 50; and (3) the number of patterns in 
the datapool, which is fixed at 1M. Each performance curve shown in the figures repre-
sents an average of the experimental results of 30 datapools. All of the experiments were 
performed on an Intel i7-3770 CPU at 3. 40GHz with 4GB main memory, running on 
Microsoft Windows XP. All the programs were written in MATLAB®. 

5.1 The Accuracy of the Recommendation System 

Assume that the query pattern is q, the correct identification answer for q is c, and 
the answer set returned by the proposed recommendation system is L. Normalized Dis-
counted Cumulative Gain (NDCG) can be used to demonstrate the performance of the 
proposed algorithms. From a random selection of 200 query patterns, we determined 
whether the answer set returned by the proposed recommendation system contains the 
correct identification answer for q. Fig. 9 is the NDCG pertaining to q under various d, k, 
and the error of q. The error of q in this figure is determined by two parameters, m and x. 
m refers to the number of features of q that are significantly different from c, where m < 
d. x refers to the maximum difference (as a percentage) of the remaining (dm) features 
between q and c. For the ease of presentation, m features with large errors are hereby 
referred to as error-features, whereas the other (dm) features are referred to as refer-
ence-features. Each subfigure in Fig. 9 differs in its combination of d and m. Each curve 
in the subfigure indicates the effect of k on the NDCG of identifying q under the same 
error conditions. 
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tively stable state. 
When m and k are constants, a higher value for d allows for greater fluctuations in 

the value of x (i.e., the reference-features). For example, when d is 2 and m is 1 (Fig. 9 
(a)), the only curves that attain 100% NDCG are those with x of 0.3% or lower. Increas-
ing d to 6 while maintaining m at 1 (Fig. 9 (g)) makes it possible for all curves with x of 
9% or lower to attain 100% NDCG. That is to say, when dealing with a datapool with 
two features, the recommendation system is able to tolerate only 0.3% error in the refer-
ence-features. Nonetheless, the tolerance can be increased to 9% in cases where the pat-
terns of the datapool have six features. This provides an empirical explanation for our 
assertion that a greater number of features could be expected to produce answers of 
higher accuracy. 

Finally, when d, x, and k remain constant, NDCG decreases with an increase in m. 
For example, when d is 4 and m is 1, (Fig. 9 (c)), the NDCG when x = 2% is approxi-
mately 93% at k = 50. However, keeping d at 4 but increasing m to 2 (Fig. 9 (d)) reduces 
NDCG to approximately 35% with the same k and x. This can be explained by the fact 
that increasing the value of m (i.e., the number of error-feature increases) decreases the 
amount of the correct information that can be obtained by the recommendation system 
from a given query pattern, thereby reducing the NDCG of identifying q. Nevertheless, 
the NDCG remains high when d is 5 or 6. For instance, when d is 5 and m is 2 (Fig. 9 (f)), 
the NDCG at k = 50 reaches 90% for x = 3%. When d is 6 and m is 3 (Fig. 9 (i)), the 
NDCG at k = 50 is approximately 67% for x = 5%. This explains why the proposed 
method is suitable for datapools with a larger number of features. 

5.2 The Performance of the Proposed Strategies 

In this subsection, we study the performance of the three proposed strategies. They 
will be compared with a brute force strategy to see how much improvement can be made. 

5.2.1 Comparing the performance of the brute force strategy, traditional identifica-
tion algorithm and the three proposed strategies 

In this section, we provide a performance comparison of the brute force approach, 
the traditional identification algorithm, and the three proposed methods. The brute force 
strategy represents a straightforward approach to the implementation of a recommenda-
tion system, with no supporting data structure, such as the R-tree or a linked list. Each 
pattern p in the datapool is compared with all other patterns in the same datapool. If k+1 
patterns are found to be better than p, then the score of p is greater than k, thereby indi-
cating that p is not a viable answer for the recommendation system. Only p scores that 
are smaller than k are returned to the user. Furthermore, the process must continue until 
all patterns in the datapool have been processed. The traditional identification algorithm 
searches for one suitable answer at a time using a nearest neighbor query with support 
from an index structure. The ith time that processing is conducted produces the ith near-
est result for the query pattern. Furthermore, the algorithm is repeated until all of the re-
sults are found. 

Fig. 10 presents the time costs of each strategy. Fig. 10 (a) was obtained by varying 
k and Fig. 10 (b) was obtained by varying d. As expected, the time costs of the brute  
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respectively. This figure shows that for all strategies, the time costs increase exponen-
tially with the increase of d. This is because the probability that an element is worse than 
a pattern decreases exponentially as d grows. For example, given a datapool with six fea- 
tures (the values of these features have been normalized to the range [0, 1]) and a pattern 
p(0.3, 0.3, 0.3, 0.3, 0.3, 0.3) in the linked list. When two features are considered, the 
probability that an element is worse than p is about (10.3)2 = 0.49. However, when all 
six features are considered, this probability becomes (10.3)6 = 0.12. This implies that 
when d increases, finding a pattern better than an element becomes more difficult so that 
more comparisons between an element and a pattern are required in the searching process. 
Fig. 11 (b) also reveals that the difference between the backward strategy and the other 
two strategies increases as the value of d grows. The main reasons are (1) in the back-
ward strategy the comparison of an element with a pattern starts from the one with the 
highest score; and (2) when d increases, the probability that an element is worse than a 
pattern with a high score can be quite small. Hence, when d grows, not many patterns 
better than an element e can be found at the early stage of the backward strategy so that e 
needs to be compared with the patterns of a lower score, which increases the execution 
time. As the hybrid strategy always makes the best choice in terms of the comparison 
order, the time cost of the hybrid strategy is similar to the forward strategy and less than 
the backward strategy. This simulation demonstrates that the forward strategy and the 
hybrid strategy are suitable for dealing with a datapool with a greater number of features. 
According to the above two simulations, we conclude that the hybrid strategy is the best 
choice among the three strategies, as it incurs the least time cost in all circumstances. 

6. CONCLUSIONS 

In this paper, we proposed a novel mechanism for dealing with the pattern identifi-
cation problem caused by a vague pattern. This mechanism is able to find suitable an-
swers for a pattern that has different degree of ambiguity in different features. Three 
strategies, the forward strategy, the backward strategy, and the hybrid strategy, were 
proposed to enhance the efficiency of the mechanism. A series of theorems was derived 
so as to accelerate the searching processes. The simulations demonstrated the effective-
ness of the proposed mechanism and revealed that the hybrid strategy is the best choice 
for the proposed mechanism among the three strategies. 
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