
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 34, 1633-1653 (2018)
DOI: 10.6688/JISE.201811_34(6).0015

1633

An Efficient Mechanism
for Compensating Vague Pattern Identification in Support

of a Multi-Criteria Recommendation System

YI-CHUNG CHEN1 AND CHIANG LEE2

1Department of Industrial Engineering and Management
National Yunlin University of Science and Technology

Yunlin, 640 Taiwan
2Department of Computer Science and Information Engineering

National Cheng Kung University
Tainan, 701 Taiwan

E-mail: chenyich@yuntech.edu.tw; leec@mail.ncku.edu.tw

A vague pattern usually makes the result of pattern identification specious. Most

existing identification algorithms try to upgrade their identification accuracies by im-
proving the clearness of the vague pattern. However, this improvement can be limited
due to the poor quality of the pattern itself. Hence, the identification result can still be
untrustworthy and thus a user needs to repeat the algorithm to find another possible an-
swer, which can be quite time-consuming. In this paper, we propose a novel pattern
recommendation mechanism which is able to obtain multiple highly possible answers
from a large datapool based on a given vague pattern. By using the identification algo-
rithm only one time, a user can select a correct identification answer from these candi-
dates given by the recommendation system. Three strategies are proposed in this paper.
Experiments are performed to demonstrate the effectiveness and efficiency of the pro-
posed mechanism.

Keywords: pattern identification, vague pattern, recommendation mechanism, multi-cri-
teria search, R-tree

1. INTRODUCTION

The pattern identification problem has attracted considerable attention in recent
years [7, 20]. Most existing identification algorithms first retrieve the representative d
features from a pattern datapool, such as in PCA [5, 13], LDA [2], ICA [2, 5], NN [4, 15],
then find from the datapool a pattern similar to the query pattern. For example, Table 1 is
a face feature datapool, which records the distance between two eyes and the width of the
mouth of each face. Fig. 1 is the result of mapping these patterns into a coordinates sys-
tem. Each point in this figure represents a face, with its coordinates representing the dis-
tance between two eyes and the width of mouth. Assume that a police has a face picture
Q of a thief, which is acquired from a surveillance system, and is trying to find a match-
ing face from a datapool by using an identification algorithm. The algorithm first re-
trieves the distance between two eyes and the width of the mouth of Q (say, (3.95, 4.95)).
Then, the algorithm finds that C(3.9, 4.9) is the closest pattern to Q, as shown in Fig. 1.
Hence, C has the highest possibility to be the thief.

However, if Q is a vague picture, the identification result can be incorrect. The am-

Received December 4, 2015; revised October 5, 2016; accepted June 27, 2018.
Communicated by Vincent S. Tseng.

YI-CHUNG CHEN AND CHIANG LEE

1634

Fig. 1. The face datapool.

Table 1. The face datapool.
Face Distance between eyes (cm) Width of mouth (cm)

A 3.95 5.4
B 4.3 5
C 3.9 4.9
D 4.2 5.3
E 4.8 5.5
F 4.5 4.4
G 5 4.8
H 4.1 4.1

biguity may be caused by low resolution of the surveillance system [7, 10, 11], a long
distance between Q and the monitor [3, 21], or the motion blur on the image [1, 11, 14],
etc. The extent of uncertainty in different features can be quite different. For example,
the image of eyes of Q may be clear, but the mouth is blurred. If the correct value in this
case is (3.7, 5.4) (i.e., Q in Fig. 1), then the answer should be A instead of C. On the
other hand, if the image of eyes of Q is seriously affected by the motion blur but the part
of mouth is not so that the correct value is (4.6, 4.8) (i.e., Q in Fig. 1), then the answer
should be B rather than A. These two cases indicate two problems of the existing identi-
fication algorithms; (1) When ambiguity exists, the result returned by an identification
algorithm can be incorrect. Hence, the user needs to operate the identification algorithm
again to find another possible answer, which is quite awkward and time consuming; (2)
Different degree of ambiguity in different features may cause the search result to be
completely different, which is not dealt with in the existing identification algorithms.

The design philosophy of the most existing identification algorithms in dealing with
an ambiguous pattern is to improve the quality of the query pattern and to lower the er-
rors of the captured features. However, we must understand that no matter what quality
improvement method is used, the resulting improvement may be limited due to the poor
quality of the target pattern, which then results in numerous errors in the features cap-
tured by the feature extraction algorithm and the results of the feature identification algo-
rithm. Thus, the conventional approach of increasing recognition rates by improving
quality has some room for improvement. For instance, if the query pattern to be dealt
with is a signal, such as in the speech identification [19] and the activity identification
problem [9, 20], a filter is usually used before the algorithm to sift out the noises. Never-
theless, we know that each filter has its own capability limits, so signal quality cannot be
effectively increased when the signal contains a lot of noise. If the query pattern is an
image and its resolution is low, Gunturk et al. [7] and Hennings-Yeomans et al. [10]
propose to construct a super-resolution image from multiple low resolution images. Still,
we must understand that in conditions with lower image resolution, many objects were
blurry to begin within their original images and thus unrecognizable no matter how they
are processed. In view of this, this study proposed a concept unlike those of conventional
methods to effectively increase the recognition rate of target patterns.

In this paper, we propose another philosophy in resolving this problem, which is to
retrieve multiple highly possible answers (i.e., patterns) and return to the user. The user
will decide from these answers which one(s) will be the correct answer. The user may
also issue a threshold k before the search process to limit the number of possible answers.
The mechanism devised in this paper is called a multi-criteria based k-pattern recom-
mendation scheme. This mechanism is used “after” an existing identification algorithm.

Distance between Eyes (cm)
Fig. 1. The face datapool.

A MULTI-CRITERIA MECHANISM FOR VAGUE PATTERN IDENTIFICATION

1635

Assume that the query pattern Q is the input to the identification algorithm, which uses d
numerical features in its process. The result pattern found by the identification algorithm
is r. The proposed mechanism then utilizes r and the d numerical features to evaluate the
score of each pattern in the datapool. The patterns with a score smaller than k are re-
turned to the user. In our design, the smaller the score of a pattern, the more likely that
this pattern is the answer of the query. As far as we know, this paper presents a first at-
tempt to resolve the identification problem by using a recommendation scheme.

The multi-criteria based k-pattern recommendation scheme has a few notable fea-
tures. First, by operating the identification algorithm only one time, the proposed mecha-
nism can return all possible answers of a query pattern. Hence, the cost incurred by re-
peatedly operating the identification algorithm as in the traditional manner can be avoid-
ed. Second, the mechanism is able to find suitable answers for a query pattern that has
different degree of ambiguity in different features. That is, even if a query pattern pre-
sents large errors in some features, the mechanism can still utilize the other more accu-
rate features to find the most probable answers. Finally, this mechanism is especially
designed for a datapool with a very large number of patterns, which is frequently en-
countered in today’s applications.

The main problem of the multi-criteria based k-pattern recommendation scheme is
that it involves a lot of disk I/O’s for comparisons. We therefore incorporated the R-tree,
which is the most efficient tool in reducing disk I/O the in multi-criteria recommendation
field, to accelerate recommendations. The R-tree was initially designed to store planar
data in space [8]. However, for years, researchers have been demonstrating that using the
R-tree to store and process high-dimensional data is extremely efficient. Thus, a number
of R-tree-based algorithms have been designed for high-dimensional space applications
such as database queries [22]. In this study, the conventional R-tree cannot be directly
applied to the problem, so we devised three novel strategies based on the R-tree to pro-
cess the target problem, including the forward strategy, the backward strategy, and the
hybrid strategy. The forward strategy is the most straightforward method among these
strategies. The backward strategy is able to reduce the number of I/O’s of the forward
strategy based on some theorems. The third strategy is a hybrid strategy, which combines
the previous two strategies so that it owns the advantages of both strategies. The simula-
tion result shows that the hybrid strategy requires the least number of I/O’s in all cases.

The rest of this paper is organized as follows. The forward and the backward strate-
gy are described in Sections 2 and 3. Section 4 introduces the hybrid strategy. The simu-
lation results are given in Section5. Finally, this paper is concluded in Section 6.

2. FORWARD STRATEGY

This section introduces the forward strategy that uses an R-tree to reduce the I/O
cost of accessing the datapool in the proposed mechanism. Three data structures, an
R-tree, an S_heap, and a linked list, are used in this method. The R-tree is used to record
the features of the patterns, which is established prior to executing a search process. The
S_heap is used to maintain the temporary information when operating the strategy. The
linked list is used to record the result of the mechanism.

The forward strategy possesses two functions, the mapping function and the search-

YI-CHUNG CHEN AND CHIANG LEE

1636

ing function. Assume the result of the identification stage is a pattern r and the set of
patterns in the R-tree is P. The mapping function first evaluates the absolute values of the
differences between r and the patterns in P, and then stores the result of the mapping
function in the S_heap. The searching function then utilizes S_heap to evaluate the score
of each pattern, whose results are then returned to the user. Before we study the forward
strategy, the structure of R-tree is briefly introduced in Section 2.1. Then, the strategy is
presented in the following subsections.

2.1 A Brief Introduction of the R-tree

A pattern can be considered as a point in a hyperspace whose dimensions corre-

spond to the features of the pattern. The main purpose of the R-tree [8] is to organize the
patterns (i.e., points) with the similar features (i.e., close to each other) into a node,
whose corresponding region bounded by the node is named a minimum bounding rectan-
gle (MBR). We use an example in Fig. 2 to briefly introduce the R-tree. The number of
features of a pattern and the capacity of a node in this example are two and three, respec-
tively. Each point in Fig. 2 (a) is a pattern while each rectangle represents the MBR of a
node. Fig. 2 (b) is the tree structure of Fig. 2 (a). Two types of nodes are included in this
tree, which are the leaf node and the internal node. A leaf node, such as N5, records the
features of some patterns. An internal node, such as N2, stores the information of its child
MBRs. Both of the leaf and the internal nodes use the coordinates of the bottom-left and
the upper-right corner to record the region of MBR, as shown in Fig. 2 (b). Expanding an
MBR lets us acquire the patterns and the MBRs (if any) inside this MBR.

Note that this R-tree is normally stored in a secondary storage, which is a much
slower device than main memory. Hence, loading a node of an R-tree to main memory is
costly comparing to the memory access and the cpu time. A good search strategy should
be able to avoid it as much as possible. The detailed mechanism of R-tree, such as inser-
tion and deletion of nodes, can be found in [8].

(a) An index result of the R-tree. (b) The tree structure of the R-tree.

Fig. 2. An example of R-tree.

2.2 Mapping Function

Assume the result of the identification stage is pattern r. r will then be used to
search for patterns close to r. Three relationships between r and an MBR/a point of the
R-tree are summarized in Fig. 3. Note that the relationships introduced in the following

A MULTI-CRITERIA MECHANISM FOR VAGUE PATTERN IDENTIFICATION

1637

can be easily extended to a data space higher than two (i.e., patterns with more than two
features). In Fig. 3, r is the origin and for convenience this coordinate system is named
the r-coordinates. A solid-line rectangle represents an MBR and a black point is a pattern.
A white point and a dotted-line rectangle represent respectively the image pattern and the
image MBR after mapping with respect to the origin r. Note that as the concept of map-
ping function is quite naive and is not the key point of this work. We only use the fol-
lowing two cases to explain it. Other cases can be easily derived by readers. The first
example is the Example 1 in Fig. 3. As the original p3 falls in the third quadrant of the
r-coordinates, it must be mapped to the first quadrant of the r-coordinates. To achieve
this objective, p3 must be mapped with regard to r. Originally at (1, 1), p3 moves to (1,
1) after mapping. The second example is the Example 4 in Fig. 3. As the original MBR
falls in the third quadrant of the r-coordinates, it must be mapped to the first quadrant of
the r-coordinates. To achieve this objective, the lower left corner (i.e., p1) and upper right
corner (i.e., p2) of the MBR must be mapped with regard to r. Assuming that the original
p1 and p2 were located at (3, 3) and (1, 1), respectively, the new p1 and p2 will fall
on (3, 3) and (1, 1) after mapping. Thus, the location of the image MBR will become the
MBR with (1, 1) and (3, 3) as the lower left and upper right corners.

Type
MBR occupying more than

two quadrants in r-coordinates
MBR occupying only

one quadrant in r-coordinates
Point in r-coordinates

Examples

Example 1 Example 2 Example 3 Example 4 Example 5 Example 6

Action Expand the MBR None None
Fig. 3. Spatial relationships between r-coordinates and MBR/point of an R-tree.

After the above mapping, the image MBRs and the image patterns are inserted into
an S_heap. In the S_heap, they are sorted in ascending order according to the summation
of their coordinates. For an MBR, the summation is made on the coordinates of the bot-
tom-left corner of this MBR. Hereafter, we simply name it the summation of an MBR (or
a point) for brevity. An interesting fact about this summation is that the pattern with a
greater summation can never be better than the one with a smaller summation. This
means if the patterns and MBRs in the S_heap are sorted according to their summations
and if p is not an answer, then all patterns and MBRs behind pattern p in the S_heap need
not be considered as they cannot be better than p. The indication of this property is that
computation and I/O can be reduced, so the performance can be enhanced.

2.3 Searching Function

Patterns and MBRs in the S_heap are now retrieved, on which the searching func-

tion is performed. The searching function involves a series of simple operations, as
shown in Fig. 4. For ease of presentation, both a pattern and an MBR in the S_heap are
named an element hereafter.

p1

p2

r
p3

p3
p1

r r r

p1
p2

p1
p2 r r

YI-CHUNG CHEN AND CHIANG LEE

1638

(a) A linked list.

(b) Insert e into the linked list.

Fig. 5. The examples of a link-
ed list. Fig. 4. The flow chart of the searching function of the forward strategy.

The function retrieves the first element of the S_heap and assigns a temp score and a
temp list to this element. The temp score is used to record the score of the element while
the temp list is used to record the patterns that are better than the retrieved element. In the
beginning, the temp score is set to 0 and the temp list is empty. Next, when the first ele-
ment, say e, of the S_heap is retrieved, it is compared with the patterns in a linked list
(referring to the process in Fig. 4). In the beginning, the linked list is empty. But for the
sake of explaining how the forward strategy works, let us assume that the linked list has a
content as shown in Fig. 5 (a). The comparison order is from layer 0 to layer 3 and within
each layer from left to right. In Fig. 5 (a), for example, the retrieved element e will first
be compared with A, then B and C, and then D, E, and F.

When e is compared with a pattern in the linked list, the comparison is based on the
concept given in the following definition.

Definition 1: Given a datapool with d features, an identification result r, and two patterns
p1 and p2. The absolute difference of p1 and r is (v11, v12, …, v1d) and that of p2 and r is
(v21, v22, …, v2d). We say that p1 is worse than p2 if v1i > v2i for all 1 ≤ i ≤ d. If v1i > v2i is
only true for some (but not all) i, then we say that they are incomparable. 

The condition v1i > v2i for all 1 ≤ i ≤ d in this definition implies that p1 is not closer
to r than p2 in all features. In this case, the possibility that p1 becomes the answer of the
query pattern is smaller than that of p2. If however the condition in Definition 1 does not
meet (i.e., p1 is closer to r than p2 in some features and p2 is closer to r than p1 in the oth-
er features), then both p1 and p2 have a chance to be the answer of the query pattern. For
these two cases, we do the following.

Retrieve the first element e from S_heap

Is S_heap empty?

Case 1

S_heap

Compare e with a pattern
p in the linked list

e is worse than p
Case 2

e and p are incomparable

Case 3
e is a MBR

Case 4

Add 1 to e's temp score and
insert p into e's temp list

Do nothing

e is a pattern

Expand e and insert
children of e into the heap

Insert e into the linked list
and find e's parent pattern

Is e's temp score > k? Delete e

No

No Yes

Yes

End

The result of mapping function

Give e a temp score and a temp list

Is p the last pattern of the linked list
No

Yes

The comparison
order is from

layer 0 to layer k

A MULTI-CRITERIA MECHANISM FOR VAGUE PATTERN IDENTIFICATION

1639

Let e be the element retrieved from S_heap and p be a pattern of the linked list.

Case 1: e is worse than p. In this case, we add one to the temp score of e and insert p
into the temp list of e. If the temp score of e is greater than k after the addition, then e
will be deleted from the S_heap and the process moves on to the next step. This is be-
cause if e is a pattern, then the final score of this pattern must be greater than k. If e is an
MBR, then the final scores of all patterns in this MBR should be greater than k as well.
Note that e can never be better than p, as the summation of p must be smaller than e.

Case 2: e and p are incomparable. In this case, no further operation is needed.

Note that during the comparison, patterns in the linked list are not removed. They
are only used to determine whether e can be deleted from the S_heap or, if not, how to
deal with e for further processing. After the processing of case 1 and case 2, the search-
ing function checks whether p is the last pattern in the linked list in this series of com-
parisons. If so, the searching function proceeds to the process of case 3 and 4. Otherwise,
e is compared with the next pattern in the linked list.

Case 3: p is the last pattern in the linked list, the temp score of e is not greater than
k, and e is an MBR. In this case, the score of the patterns in this MBR may be smaller
than or equal to k. Hence, this MBR needs to be expanded and all child MBRs or patterns
within this MBR should be inserted to the S_heap. Note that before the insertion, the
image coordinates of these child MBRs and patterns are obtained by using the (Ix, Iy) of
the MBR and the coordinates of r. The summations of the image coordinates are then
used to determine the order of these child MBRs and patterns in the S_heap.

Case 4: p is the last pattern in the linked list, the temp score of e is not greater than
k, and e is a pattern. In this case, this pattern e is an answer of the search process. So, e
is inserted into layer i of the linked list where i is the score of e. That is, all patterns with
a score smaller than k (i.e., they are the answer of the query) and the relationships be-
tween these patterns are recorded in a linked list. An example of a four layer linked list
with k=3 is shown in Fig. 5 (a). A pattern with score i is stored in layer i. Each layer may
have multiple patterns, in which the order of these patterns (of the same layer) is ar-
ranged according to the order that they are inserted into the linked list. The arrows in the
linked list record the relationships between the patterns. For example, Fig. 5 (a) shows
that the parent pattern of F is E and the parent patterns of E are A and B. Hence, F is
worse than A, B, and E. They are however incomparable to C and D. Assume that the
temp list of e includes patterns A, C, and D. Then we know e is worse than A, C, and D.
Also, we know from Fig. 5 (a) that C is better than D. Hence, C cannot be the parent pat-
tern of e, and therefore A and D are the parent patterns of e, as shown in Fig. 5 (b).

3. BACKWARD STRATEGY

In this section, we propose a new strategy, named the backward strategy, to improve
the efficiency of the forward strategy. The main advantage of the forward strategy is us-
ing an R-tree to reduce the I/O cost of accessing the datapool. It however cannot avoid

YI-CHUNG CHEN AND CHIANG LEE

1640

the need of comparing the retrieved element with all patterns in the linked list until it has
found k+1 patterns better than it. Hence, it requires some I/O’s for accessing cost of ac-
cessing the linked list. The cost can be significant when k is large.

The backward strategy is designed to remedy the flaw of the forward strategy.
Hence, the flow chart of the backward strategy is similar to that of the forward strategy.
The major difference is that when comparing the element retrieved from the S_heap with
the patterns in the linked list, the comparing order is opposite to that in the forward
strategy. Such a change help the algorithm to reduce the number of comparisons in the
searching function. The mapping function of the backward strategy is the same as that in
the forward strategy. Hence, we only introduce the searching function of the backward
strategy in the following. Before we explain this searching function, we first introduce a
series of lemmas and theorems that will be used in the backward strategy.

3.1 Theoretical Foundation of the Backward Strategy

We first introduce the transitivity of relationships of the patterns and the elements.

Given two patterns p1 and p2 and an element e (either a pattern or an MBR), if p2 is worse
than p1 and e is worse than p2, then it is quite clear that e must be worse than p1. Accord-
ing to this fact, we are able to derive Theorem 1 in the following.

Theorem 1: Given an element e and a pattern p with a score m, if e is worse than p, then
the score of e must be equal to or greater than m+1.

Proof: First, the score of p being m implies that p is worse than another m patterns, say
p1, p2, …, pm. Hence, if e is worse than p, then e should be worse than not only p, but
also p1, p2, …, pm. That is to say, the score of e must be equal to or greater than m+1. 

Theorem 1 ensures that if an element is worse than a pattern of layer k in the linked
list, then it can be deleted from the S_heap.

Lemma 1: Given an element e and n patterns p1, p2, …, pn, if (1) the score of p1 is m; (2)
p2, p3, …, pn are not better than p1; and (3) e is worse than p1, p2, …, pn, then the score of
e must be equal to or greater than m+n. 

Lemma 2: Given two patterns p1 and p2, if the scores of p1 and p2 are the same, then p1
and p2 must be incomparable. 

From these two lemmas, we can derive Theorem 2.

Theorem 2: Given n patterns p1, p2, …, pn in layer m of the linked list, if an element e is
worse than p1, p2, …, pn, then the score of e must be equal to or greater than m+n.

Proof: According to Lemma 2, p1, p2, …, pn being in the same layer implies that these
patterns are incomparable. Hence, from Lemma 1, the score of e must be equal to or
greater than m+n, as the score of p1 is m and p2, p3, …, pn are not better than p1. 

Theorem 2 can be further extended Theorem 3.

Theorem 3: If an element e is worse than nm patterns of layer m of the linked list, nm+1

A MULTI-CRITERIA MECHANISM FOR VAGUE PATTERN IDENTIFICATION

1641

patterns of layer m+1, …, nm+(k-1-m) patterns of layer m+(k1m), then the score of e must

be equal to or greater than m+nm+
1

1

k m

m ii
n

 
 . 

Finally, we extend Theorem 3 to Theorem 4.

Theorem 4: Assume an element e is worse than nm patterns of layer m, nm+1 patterns of
layer m+1, …, nm+(k-1-m) patterns of layer m+(k1m), in which each of these patterns pk
(1< k < nm+nm+1+…+nm+(k-1-m)) is associated with the number of patterns, ukj, that is bet-
ter than pk in layer j (0 < j < m1). Then the score of e must be equal to or greater than

nm+
1

k m

m ii
n


 + 1 (1)

1 ...
10

max ()m m m k m
m n n n

k kjj
u      

 .

Proof: First, the assumption of this theorem indicates that e is worse than at least nm+

1

k m

m ii
n


 patterns of layer k1 to m. Next, if e is worse than p1, p2, …, and pk, then in

layer j, e must be worse than at least

1 (1)...
1max ()m m m k mn n n

k kju     
 patterns. This is because

1 (1)...
1max ()m m m k mn n n

k kju     
 is the minimum number of patterns that are better than p1, p2, …,

or pk in layer j. Hence, according to the transitivity relationship between the patterns, e
must be worse than at least

1 (1)
1 ...

10
max ()m m m k m

m n n n
k kjj

u      
 patterns of layer 0 to layer m1.

From the above two arguments, we know that e is worse than at least nm+
1

k m

m ii
n


 +

1 (1)
1 ...

10
max ()m m m k m

m n n n
k kjj

u      
 patterns of layer 0 to layer k1 and the score of e must be

equal to or greater than nm+
1

k m

m ii
n


 + 1 (1)

1 ...
10

max ().m m m k m
m n n n

k kjj
u      

 

For an element e compared with the patterns of layer k back to layer m in the linked
list where k > m, Theorem 3 is able to examine whether the score of e is greater than k by
using the patterns of layer k1 to layer m while Theorem 4 is able to do the same task by
using the patterns of layer k1 to layer 0.

3.2 The Searching Function of the Nackward Strategy

The flow chart of the searching function of the backward strategy (Fig. 6) is similar

to that of the forward strategy (Fig. 4). Differences are marked in boldface in Fig. 6. We
start the introduction of the proposed searching function from its linked list, as it is the
major part that is different from the forward strategy. Each pattern in the linked list of the
backward strategy has an additional B_array. If the threshold of score is k, then the B_
array is a 1-by-k array. An example of B_array is shown in Fig. 7, in which k=3. The
B_array [2, 0, 1] of F in this figure implies that F is worse than two patterns of layer 0
(i.e., A and B) and one pattern of layer 2 (i.e., E).

We next introduce the process of this function. The first element of the S_heap is
retrieved and assigned a temp score, a temp list and a max_array. The temp score records
the number of patterns better than e. Assume that the comparison has been done on layer
k up to layer m. Then, the temp score of e at this time is equal to nm+

1

k m

m ii
n


 according

to Theorem 4. The temp list stores the patterns that are better than e. This list is used to
find the parent patterns of e and establish the B_array of e when e needs to be inserted
into the linked list. The max_array is a 1-by-k array, which is used to evaluate

1 ()
1 ...

10
max ()m m m k m

m n n n
k kjj

u     
 mentioned in Theorem 4. Assume that the patterns better

than e in the linked list are p1, p2, …, pn, and the B_array of pi is [vi0, vi1, …,vik-1]. Then
the max_array of e is [max(v10, v20, …,vn0), max(v11, v21, …,vn1), …, max(v1k-1, v2k-1, …,

YI-CHUNG CHEN AND CHIANG LEE

1642

vnk-1)]. The value of the

1 ()
1 ...

10
max ()m m m k m

m t t t
k kjj

u     
 is eqaul to the summation of the first

m values (i.e., layer 0 to layer m1) of the max_array.
Let e be the element retrieved from S_heap and p be a pattern of the linked list.

Case 1: e is worse than p. This case is partly different from the case 1 of the forward
strategy. In this case, we first add one to the temp score of e and insert p into the temp list
of e. Next, if p is from layer k, then according to Theorem 1 the final score of e must be
greater than k. Hence, e is deleted from the S_heap and the process moves on to the next
step. If p is from layer m instead of layer k, then the max_array of e is updated by the
B_array of p. The updated max_array is then used to examine whether the condition of
Theorem 4 is met. If so, the score of e must be greater than k and thus e can be deleted
from the S_heap. Otherwise, e is compared with the next pattern in the linked list. The
whole process is also clearly shown in Fig. 6.

Retrieve the first element e from S_heap

Is S_heap empty?

Case 1

S_heap

Compare e with a pattern
p in the linked list

e is worse than p
Case 2

e and p are incomparable

Case 3
e is a MBR

Case 4

Add 1 to e's temp score and
insert p into e's temp list

Do nothing

e is a pattern

Expand e and insert
children of e into S_heap

Insert e into the linked list
and find e's parent pattern

No

Yes

End

The result of mapping function

Give e a temp score, a temp list, and a max_array

Is p the last pattern of the linked list
No

Yes

Is p located in layer k?

Delete e

NoYes

Yes No

The condition of
Theorem 1 is met

Update e's max_array

Construct e's B_array

The comparison
order is from

layer k to layer 0

Is the condition of
Theorem 4 met?

Fig. 6. The flow chart of the searching function of the backward strategy.

A MULTI-CRITERIA MECHANISM FOR VAGUE PATTERN IDENTIFICATION

1643

Case 2: e and p are incomparable. No further operation is needed, same as the case 2 of
the forward strategy.

If p is not the last pattern in the linked list, then e will be compared with the next
pattern in the linked list. Otherwise, we move on to case 3 and case 4.

Case 3: p is the last pattern in the linked list, the temp score of e is not greater than
k, and e is an MBR. The process of this case is the same as that of the forward strategy.
As the score of the child elements within the MBR may be smaller than or equal to k, this
MBR needs to be expanded. Its child elements are then inserted into the S_heap in as-
cending order according to the summation of their image coordinates.

Fig. 7. The example of the linked list in the backward strategy.

Case 4: p is the last pattern in the linked list, the temp score of e is not greater than
k, and e is a pattern. This case is partly different from the case 4 of the forward strategy.
This e is an answer of the proposed mechanism and thus inserted into the linked list. The
difference is that an additional B_array for e is established. The B_array is obtained from
the temp list of e. For example, if the temp list of F in Fig. 7 is [A, B, E], then the B_
array of F is [2, 0, 1]. This is because F is worse than two patterns (i.e., A and B) of layer
0, a pattern (i.e., E) of layer 2, and not worse than any patterns of layer 1.

4. THE HYBRID STRATEGY

The hybrid strategy, as indicated by its name, is a combination of the forward strat-
egy and the backward strategy. Hence, it also possesses the mapping function and the
searching function. The main design purpose is to further reduce the cost for accessing
patterns during the processing. The mapping part is the same as the previous two strate-
gies. Hence, we also introduce only the searching part in this section.

The basic idea of the hybrid strategy is that the comparing order of an element, say e,
in the S_heap with a pattern, say p, in the linked list is mixed. It starts by following the
backward strategy to compare e with the patterns in the last layer (i.e., layer k) of the
linked list. When the searching function finds that the access cost of this backward com-
paring order would become greater than comparing in a reverse order (i.e., following the
forward strategy to compare from layer 0), the search process begins to execute the for-
ward strategy. The major challenge of the hybrid strategy is to find the layer i (0 < i < k),
i.e., the turning point, at which the search process reverses the comparing order. This
involves a cost determination process. We introduce this process in the following.

Let e be the element to be dealt with (i.e., retrieved from the S_heap) and M be its
parent MBR. As the searching process always starts from the top levels of the R-tree to

YI-CHUNG CHEN AND CHIANG LEE

1644

the bottom levels, the parent of e (that is, M) must have been processed (i.e., compared
with the linked list) before e is processed. Hence, the max_array of M is known when e is
going to be processed. Information in this max_array of M is useful during e’s compari-
sons, which will be clear later. We have the following lemma regarding to the max_ar-
rays of M and e.

Lemma 3: Given an element e and its parent MBR M, if the max_array of e is [ne0,
ne1, …, nek-1] and the max_array of M is [nm0, nm1, …, nmk-1], then nei should be greater
than or equal to nmi, where 0 ≤ i ≤ k. 

This is because the bottom-left corner of M, if there is a pattern at this corner, is

definitely better than e (because M contains e). Thus, all patterns better than M must be
better than e too. From this, we can safely inference that the number of patterns better
than M recorded in the max_array of M can be known as the least number of patterns
better than e. For this reason, we say that the max_array of M is also the “min_max_array”
of e, where the min_max_array stands for the minimum max_array.

As we said, the comparison starts from the bottom layer (i.e., layer k) of the linked
list. When the comparison proceeds up to layer i (0 < i < k) and enough patterns better
than e are found, then e can be deleted without further processing. In Theorem 5 we give
this number.

Theorem 5: When comparing element e with the patterns of layer i, if the max_array of
e is [ne0, ne1, …, nek-1] at this moment, then e can be deleted from the S_heap if at least

k+1max(i,
1

0

i

mm
ne



)nei
1

1

k

mm i
ne



  patterns better than e are found in layer i.

Proof: If i ≥ 1

0
,

i

mm
ne



 the equation in this theorem is reduced to k+1inei
1

1
.

k

mm i
ne



 

The values nei, nei+1, …, nek-1 in the max_array of e indicate that e is worse than nei patterns
of layer i, nei+1 patterns of layer i+1, …, and nek-1 patterns of layer k1. Theorem 3 men-
tioned that if the above argument is true, then e is worse than at least i+nei+

1

1

k

mm i
ne



 
patterns. That is to say, if additional k+1inei

1

1

k

mm i
ne



  patterns better than e in layer
i are found, then e can be deleted from the S_heap (i.e., e is worse than at least k+1 pat-
terns).

On the other hand, if i <
1

0

i

mm
ne



 , then the expression becomes k+1 1

0

i

mm
ne



 nei

 1

1

k

mm i
ne



  =k+1 1

0

k

mm
ne



 . As the max_array of e is [ne0, ne1, …, nek-1], e is worse
than at least

1

0

k

mm
ne



 patterns in the linked list. Hence, if additional k+1 1

0

k

mm
n



 pat-
terns better than e in layer i are found, e can be deleted from the S_heap. 

As this number (of patterns better than e in order to delete e) can be evaluated be-

forehand, we can estimate the probability that e is able to be deleted when compared with
patterns in layer i. This probability is given in Theorem 6. But before that a lemma for
calculating approximate probability is introduced.

Lemma 4: Given a datapool with d features, an element e, and n patterns p1(v11, v12, …,
v1d), p2(v21, v22, …, v2d), …, and pn(vn1, vn2, …, vnd). Let all features of the patterns be
normalized to the range [0, 1], i.e., 0 ≤ vij ≤ 1 for all 1 ≤ i ≤ n and 1 ≤ j ≤ d. The probabil-
ity that e is worse than these n patterns is  1 1 21 max(, ,...,)d

i i i niv v v  .

A MULTI-CRITERIA MECHANISM FOR VAGUE PATTERN IDENTIFICATION

1645

Proof: For ease of comprehension, we prove this lemma in a two dimensional space (as
shown in Fig. 8). It can be easily extended to a higher dimensional case. The minimum
and the maximum value of the features in this figure are 0 and 1, respectively. Patterns in
region α are worse than p1(v11, v12), p2(v21, v22), and p3(v31, v32). As the area of the entire
area is 1, the area of region  is  2

1 1 2 31 max(, ,)i i i iv v v  . Therefore, the probability that e
is located in region  and worse than p1, p2, …, and pn is  1 1 21 max(, ,...,)d

i i i niv v v  . 

Theorem 6: Given a datapool with d features, an element e, and n pattern p1(v11, v12, …,
v1d), p2(v21, v22, …, v2d), …, pn(vn1, vn2, …, vnd) in layer i of the linked list. All features of
the patterns are normalized to the range [0, 1]. The number of patterns in layer i of the
linked list is nli. If there are ndi patterns in layer i better than e so that e can be deleted,
then the probability pdi of deleting e from the S_heap in layer i is

 1 1 2

 0 , if
.

1 max(, ,...,) , if
i i

d
i i i ni i i

nd nl

v v v nd nl


  

 (1)

Fig. 8. An example of Lemma 4 and Theorem 6.

Proof: We first consider the case that ndi > nli. As e can never be deleted in this case, pdi
of e is 0. Next, we consider the case ndi ≤ nli. Let us also refer to Fig. 8. The values of d
and ndi in this figure are 2 and 3, respectively. p1(v11, v12), p2(v21, v22), p3(v31, v32), and
p4(v41, v42) are all located in layer i of the linked list. The order of these patterns of layer i
is p1, p2, p3, and p4. Hence, e should be first compared with p1, p2, p3, and then p4. If e can
be deleted after comparing p1, p2, and p3, then e must be located in region . Similarly, if
e is deleted after comparing p1, p2, p3, and p4, then e may be located in region  or in re-
gion . However, the area of region  is usually much smaller than that of region . The
area of region  in Fig. 8 is (1v31)(1v22) and that of  is (1v41)(v2212). (1v31) is grea-
ter than (1v41). (1v22) is usually much greater than (v22v12). As the entire area is 1, pdi
of e is therefore approximately the area of region , which is  1 1 21 max(, ,...,)d

i i i niv v v  .

This theorem implies that the approximate pdi of e is only affected by the coordi-

nates of the first ndi patterns of layer i. As vij in the linked list are all known, this proba-
bility can be calculated before e is actually compared with the patterns of layer i. That is
to say, we should be able to find the proper layer i to reverse the comparing order, i.e.,
changing from backward to forward checking, before e is compared with any pattern of
the linked list.

Let the element under comparison be e, the numbers of patterns of layer 0 to layer k

YI-CHUNG CHEN AND CHIANG LEE

1646

be respectively nl0, nl1, …, nlk, and the probabilities of deleting e in layer 0 to k be re-
spectively pd0, pd1, …, pdk. We start the comparison from pattern in layer k of the linked
list. Let us assume that we perform the comparison upward till layer x (x < k). That is,
patterns in layer k upward to layer x have all been compared with e. Assume that this is
the turning point and now we reverse the comparing order downward from layer 0 to
layer x1. Then, the expected cost for accessing patterns from layer 0 to layer x1 can be
calculated in the following manner. The probability that e can be deleted from S_heap
when it is compared with the patterns of layer j (i.e., e has not been deleted from S_heap
after comparing with patters of layer 0 to layer j1) is   1

0 1j
i i jpd pd
  . The cost for

accessing patterns of layer 0 to layer j for comparison is j

i=0nli. Therefore, the expected
cost for accessing patterns of layer 0 to layer x1 is

   1
00 0

1 .
k x jj

i i j ij i
pd pd nl

 
 

   (2)

If, on the other hand, the turning point is not at layer x (as in the above) but at layer
x1, then the patterns of layer x1 would be accessed and compared with e and then we
reverse the pattern comparison from layer 0 down to layer x2. The total access cost for
this case is therefore the cost of accessing patterns in layer x1 plus the cost of accessing
patterns from layer 0 to layer x2. pdk-xnlk-x is the expected cost of accessing patterns of
layer x1 to compare with e and finding that e can be deleted from the S_heap during the
comparison. As for the access cost for patterns of the above layers (i.e., layer 0 to layer
x2), it can be calculated in the following manner. The probability that e can be deleted
from the S_heap when it is compared with the patterns of layer j is    1

01 1j
k x ipd 
   

pdi))pdj. The corresponding access cost for patterns of layer j is
0

().
j

k x ii
nl nl 

 Hence,
we have the expected cost of accessing patterns of layer x1 first and then turning to lay-
er 0 down to layer x2.

       1 1
00 0

1 1
k x jj

k x k x k x i i j k x ij i
pd nl pd pd pd nl nl

  
     

       (3)

Note that in the above two cases, the cost of accessing patterns of layer k upward to
layer x is not included. It is because this cost in both cases is the same. Hence, there is no
need to include that part. Cost expressions (2) and (3) can be used to determine the turn-
ing point from the backward strategy to the forward strategy. Let us assume that we have
finished the comparisons for layer k up to layer x. We will calculate the costs of expres
sion (2) and expression (3). If cost(2) ≥ cost(3), then we continue the backward strategy
(to access patterns of layer x1). Otherwise, we change the execution to the forward
strategy (to access patterns of layer 0). As this strategy is a combination of the previous
two and not difficult to comprehend, we omit its flow chart.

Table 2. A summary of experiment parameters.
Parameter Values

Number of the features in the datapool, d 2, 3, 4, 5, 6
Number of the error-features in the datapool, m 1, 2, 3

The upper bound of the percentage of the error in the reference-features, x 0.1% to 11%
Threshold of the score of the datapool, k 1, 10, 25, 50, 75, 100

Number of patterns in the datapool 1M

A MULTI-CRITERIA MECHANISM FOR VAGUE PATTERN IDENTIFICATION

1647

5. SIMULATION

A set of simulations on face identification was conducted in this section to demon-
strate the effectiveness and the efficiency of the recommendation system. The datapool
used in this simulation is a synthetic face feature datapool. This datapool contains
1,000,000 patterns and each pattern has six commonly used features. They are the height
of the face, the height of the forehead, the widths of the left eye and the right eye, the
width of the nose, and the width of the mouth [12, 17]. Note that we use the synthetic
feature datapool in this simulation instead of a real pattern datapool for the following two
reasons. First, the main focus of this paper is not to extract the features from the patterns
but to provide a method for quickly finding the similar patterns from the datapool. Using
synthetic datapool allows us to avoid the need of extracting the features from the real
pattern datapool. Second, for the purpose of testifying the feasibility of the recommenda-
tion system, we need to have a datapool of a large number of patterns. However, most of
the existing face datapools, such as FERET [18], YaleB [6], and LFW [16] have only
about ten thousand patterns, which is quite small for our purpose. Hence, a synthetic da-
tapool is used in the simulation.

Two parts are included in this simulation. The first part is to study the accuracy of
the proposed recommendation system. The second part is to compare the efficiency of
the brute force strategy and the three strategies devised in this paper. The parameters and
their varying ranges are summarized in Table 2, in which default values are marked in
boldface. These parameters includes (1) the number of features d in the datapool, which
varies from two to six and the default value is four; (2) the threshold k of the score,
which varies from 1 to 100 and the default value is 50; and (3) the number of patterns in
the datapool, which is fixed at 1M. Each performance curve shown in the figures repre-
sents an average of the experimental results of 30 datapools. All of the experiments were
performed on an Intel i7-3770 CPU at 3. 40GHz with 4GB main memory, running on
Microsoft Windows XP. All the programs were written in MATLAB®.

5.1 The Accuracy of the Recommendation System

Assume that the query pattern is q, the correct identification answer for q is c, and
the answer set returned by the proposed recommendation system is L. Normalized Dis-
counted Cumulative Gain (NDCG) can be used to demonstrate the performance of the
proposed algorithms. From a random selection of 200 query patterns, we determined
whether the answer set returned by the proposed recommendation system contains the
correct identification answer for q. Fig. 9 is the NDCG pertaining to q under various d, k,
and the error of q. The error of q in this figure is determined by two parameters, m and x.
m refers to the number of features of q that are significantly different from c, where m <
d. x refers to the maximum difference (as a percentage) of the remaining (dm) features
between q and c. For the ease of presentation, m features with large errors are hereby
referred to as error-features, whereas the other (dm) features are referred to as refer-
ence-features. Each subfigure in Fig. 9 differs in its combination of d and m. Each curve
in the subfigure indicates the effect of k on the NDCG of identifying q under the same
error conditions.

1648

creas
can b
settin

(a

(c

(e

(g

As shown in
ses with k. Th
be upgraded
ng k to a value

YI

a) d=2, m=1.

) d=4, m=1.

) d=5, m=1.

g) d=6, m=1.

Fig. 9. The

n Fig. 9, when
his means that
by increasing
e of 50 or gre

I-CHUNG CHEN

(i) d=6
e accuracy of q

n d, m, and x
t if the error o

g k in the pro
ater, which sh

AND CHIANG L

6, m=3.
by varying d, m

are constant,
of q is high, th
oposed recomm
hould be suffic

EE

 (b) d=3,

(d) d=4, m=

 (f) d=5, m

 (h) d=6,

m, x, and k.

the NDCG of
hen the NDCG
mendation sy
cient for NDC

, m=1.

=2.

m=2.

, m=2.

f identifying q
G of identifyi
stem. We sug

CG to reach a

q in-
ing q
ggest
rela-

A MULTI-CRITERIA MECHANISM FOR VAGUE PATTERN IDENTIFICATION

1649

tively stable state.
When m and k are constants, a higher value for d allows for greater fluctuations in

the value of x (i.e., the reference-features). For example, when d is 2 and m is 1 (Fig. 9
(a)), the only curves that attain 100% NDCG are those with x of 0.3% or lower. Increas-
ing d to 6 while maintaining m at 1 (Fig. 9 (g)) makes it possible for all curves with x of
9% or lower to attain 100% NDCG. That is to say, when dealing with a datapool with
two features, the recommendation system is able to tolerate only 0.3% error in the refer-
ence-features. Nonetheless, the tolerance can be increased to 9% in cases where the pat-
terns of the datapool have six features. This provides an empirical explanation for our
assertion that a greater number of features could be expected to produce answers of
higher accuracy.

Finally, when d, x, and k remain constant, NDCG decreases with an increase in m.
For example, when d is 4 and m is 1, (Fig. 9 (c)), the NDCG when x = 2% is approxi-
mately 93% at k = 50. However, keeping d at 4 but increasing m to 2 (Fig. 9 (d)) reduces
NDCG to approximately 35% with the same k and x. This can be explained by the fact
that increasing the value of m (i.e., the number of error-feature increases) decreases the
amount of the correct information that can be obtained by the recommendation system
from a given query pattern, thereby reducing the NDCG of identifying q. Nevertheless,
the NDCG remains high when d is 5 or 6. For instance, when d is 5 and m is 2 (Fig. 9 (f)),
the NDCG at k = 50 reaches 90% for x = 3%. When d is 6 and m is 3 (Fig. 9 (i)), the
NDCG at k = 50 is approximately 67% for x = 5%. This explains why the proposed
method is suitable for datapools with a larger number of features.

5.2 The Performance of the Proposed Strategies

In this subsection, we study the performance of the three proposed strategies. They
will be compared with a brute force strategy to see how much improvement can be made.

5.2.1 Comparing the performance of the brute force strategy, traditional identifica-
tion algorithm and the three proposed strategies

In this section, we provide a performance comparison of the brute force approach,
the traditional identification algorithm, and the three proposed methods. The brute force
strategy represents a straightforward approach to the implementation of a recommenda-
tion system, with no supporting data structure, such as the R-tree or a linked list. Each
pattern p in the datapool is compared with all other patterns in the same datapool. If k+1
patterns are found to be better than p, then the score of p is greater than k, thereby indi-
cating that p is not a viable answer for the recommendation system. Only p scores that
are smaller than k are returned to the user. Furthermore, the process must continue until
all patterns in the datapool have been processed. The traditional identification algorithm
searches for one suitable answer at a time using a nearest neighbor query with support
from an index structure. The ith time that processing is conducted produces the ith near-
est result for the query pattern. Furthermore, the algorithm is repeated until all of the re-
sults are found.

Fig. 10 presents the time costs of each strategy. Fig. 10 (a) was obtained by varying
k and Fig. 10 (b) was obtained by varying d. As expected, the time costs of the brute

1650

force
porta
al id
clusi
the t
prop
algor
strate
manc

5.2.2

strate
rang
at 4
and t
an el
strate
back
than
back
cates
forw

The

(a) B

e approach fa
ance of a supp

dentification a
ion of an inde
time cost of th
posed strategie
rithm is requi
egies access t
ce of the three

2 Comparison

We study in

egy, and the h
ge of k varying

and 1M, resp
the other two
lement e the f
egies overcom

kward strategy
them. Hence

kward strategy
s that the bac

ward strategy a
Fig. 11 (b) g
value of k an

(a) B
Fig. 11.

0

100

200

300

400

0 20

T
im

es
 (

s)

Forward

YI

By varying k.
Fig. 10. Com

ar exceed thos
porting data st
lgorithm is fa
ex support str
he traditional i
es. This can b
ired to access
the entire dat
e strategies is

n of the three

the following
hybrid strategy
g from 1 to 10
pectively. As
strategies inc

forward strateg
me this obsta
y can be delete
e, both of th
y are less than
ckward strateg
and hence are
gives the time
nd the number

By varying k.
. Comparing the

40 60 8k

Backward H

I-CHUNG CHEN

mparing the tim

se of the other
tructure to red
ar less than tha
ructure, which
identification
be explained b

the entire dat
aset only onc
outlined in th

e proposed str

g the perform
y. Fig. 11 (a) s
00. The value

we can see, t
creases as k gr
gy has to find

acle. By using
ed after the str

he number of
n those of the
gy and the hyb
suitable for de
cost of the th

r of the pattern

e time cost of th

80 100

Hybrid

AND CHIANG L

me cost by vary

r three strateg
duce I/O costs
at of the brute
h greatly redu
algorithm is f
by the fact th

ataset repeated
ce. Further an
he following.

rategies

mance of the f
shows the tim
of d and the n
the difference
rows. This is

d k+1 patterns
g Theorems 1
rategy finds a

f comparisons
e forward strat
ybrid strategy
ealing with a
hree strategies
ns in this simu

he three strateg

0

1000

2000

3000

4000

2

T
im

e(
s)

EE

(b) By varyin
ying k and d.

gies. This dem
s. The time co
e force approa
uces access tim
far greater tha
hat the traditio
dly, whereas t
nalysis pertain

forward strate
me cost of the s
number of the
e between the
mainly becau
better than e,

1 and 4, mos
a pattern or a f
s and accesse
tegy. This sim
are less sensi
request with a
s by varying d
ulation are fix

(b) By varyin
gies by varying k

3 4Number of f

Forward Backw

ng d.

monstrates the
st of the tradit
ach, due to th
mes. Nonethe
an that of the t
onal identifica
he three prop

ning to the pe

egy, the backw
strategies, with
patterns are f

e forward stra
use before dele
, but the other
st elements in
few patterns b
es required in
mulation also i
itive to k than
a greater k.
d from two to
xed at 50 and

ng d.
k and d.

5 6features

ward Hybrid

e im-
tion-

he in-
eless,
three
ation

posed
erfor-

ward
h the
fixed
ategy
eting
r two
n the
better
n the
indi-
n the

o six.
1M,

A MULTI-CRITERIA MECHANISM FOR VAGUE PATTERN IDENTIFICATION

1651

respectively. This figure shows that for all strategies, the time costs increase exponen-
tially with the increase of d. This is because the probability that an element is worse than
a pattern decreases exponentially as d grows. For example, given a datapool with six fea-
tures (the values of these features have been normalized to the range [0, 1]) and a pattern
p(0.3, 0.3, 0.3, 0.3, 0.3, 0.3) in the linked list. When two features are considered, the
probability that an element is worse than p is about (10.3)2 = 0.49. However, when all
six features are considered, this probability becomes (10.3)6 = 0.12. This implies that
when d increases, finding a pattern better than an element becomes more difficult so that
more comparisons between an element and a pattern are required in the searching process.
Fig. 11 (b) also reveals that the difference between the backward strategy and the other
two strategies increases as the value of d grows. The main reasons are (1) in the back-
ward strategy the comparison of an element with a pattern starts from the one with the
highest score; and (2) when d increases, the probability that an element is worse than a
pattern with a high score can be quite small. Hence, when d grows, not many patterns
better than an element e can be found at the early stage of the backward strategy so that e
needs to be compared with the patterns of a lower score, which increases the execution
time. As the hybrid strategy always makes the best choice in terms of the comparison
order, the time cost of the hybrid strategy is similar to the forward strategy and less than
the backward strategy. This simulation demonstrates that the forward strategy and the
hybrid strategy are suitable for dealing with a datapool with a greater number of features.
According to the above two simulations, we conclude that the hybrid strategy is the best
choice among the three strategies, as it incurs the least time cost in all circumstances.

6. CONCLUSIONS

In this paper, we proposed a novel mechanism for dealing with the pattern identifi-
cation problem caused by a vague pattern. This mechanism is able to find suitable an-
swers for a pattern that has different degree of ambiguity in different features. Three
strategies, the forward strategy, the backward strategy, and the hybrid strategy, were
proposed to enhance the efficiency of the mechanism. A series of theorems was derived
so as to accelerate the searching processes. The simulations demonstrated the effective-
ness of the proposed mechanism and revealed that the hybrid strategy is the best choice
for the proposed mechanism among the three strategies.

ACKNOWLEDGMENTS

This work was supported in part by the Ministry of Science and Technology of
Taiwan, under Contracts MOST 106-2119-M-224-003 and MOST 106-2221-E-006-247.

REFERENCES

1. T. Ahonen, E. Rahtu, V. Ojansivu, and J. Heikkila, “Recognition of blurred faces
using local phase quantization,” in Proceedings of International Conference on Pat-
tern Recognition, 2008, pp. 1-4.

YI-CHUNG CHEN AND CHIANG LEE

1652

2. M. S. Bartlett, J. R. Movellan, and T. J. Sejnowski, “Face recognition be independ-
ent component analysis,” IEEE Transactions on Neural Network, Vol. 13, 2002, pp.
1450-1464.

3. R. Chellappa, J. Ni, and V. M. Patel, “Remote identification on faces: problems,
prospects, and progress,” Pattern Recognition Letters, Vol. 33, 2012, pp. 1849-1859.

4. K. Choi, K. A. Toh, and H. Byun, “Incremental face recognition for large-scale so-
cial network services,” Pattern Recognition, Vol. 45, 2012, pp. 2868-2883.

5. B. A. Draper, K. Beak, M. S. Bartlett, and J. R. Beveridge, “Recognition faces with
PCA and ICA,” Computer Vision and Image Understanding, Vol. 91, 2003, pp. 115-
137.

6. A. S. Georghiades, P. N. Belhumeur, and D. J. Kriegman, “From few to many: Illu-
mination cone models for face recognition under variable lighting and pose,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. 23, 2001, pp. 643-
660.

7. B. Gunturk, A. Batur, Y. Altunbasak, M. H. I. Hayes, and R. Mersereau, “Eigenface-
domain super resolution for face recognition,” IEEE Transactions on Image Pro-
cessing, Vol. 12, 2003, pp. 597-606.

8. A. Guttman, “R-trees: A dynamic index structure for spatial searching,” SIGMOD
Record, Vol. 14, 1984, pp. 47-57.

9. Z. He and L. Jin, “Activity recognition from acceleration data based on discrete con-
sine transform and SVM,” in Proceedings of IEEE Conference on Systems, Man, and
Cybernetics, 2009, pp. 5041-5044.

10. P. Hennings-Yeomans, S. Baker, and B. Kumar, “Simultaneous super-resolution and
feature extraction for recognition of low-resolution faces,” in Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition, 2008, pp. 1-8.

11. H. Ishida, T. Takahashi, I. Ide, Y. Mekada, and H. Murase, “Recognition of camera-
captured low-quality characters using motion blur information,” Pattern Recognition,
Vol. 41, 2008, pp. 2253-2262.

12. A. Nefian and M. Hayes, “An embedded hmm-based approach for face detection and
recognition,” in Proceedings of IEEE Conference on Acoustics, Speech and Signal
Processing, 1999, pp. 3553-3556.

13. T. H. B. Nguyen and H. Kim, “Novel and efficient pedestrian detection using bidi-
rectional PCA,” Pattern Recognition, Vol. 46, 2013, pp. 2220-2227.

14. M. Nishiyama, A. Hadid, H. Takeshima, J. Shotton, T. Kozakaya, and O. Yamaguchi,
“Facial deblur inference using subspace analysis for recognition of blurred faces,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 33, 2011, pp.
838-845.

15. X. X. Niu and C. Y. Suen, “A novel hybrid CNN-SVM classifier for recognizing
handwritten digits,” Pattern Recognition, Vol. 45, 2012, pp. 1318-1325.

16. N. Pinto, J. J. DiCarlo, and D. D. Cox, “How far can you get with a modern face
recognition test set using only simple features?” in Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition Workshops, 2009, pp. 2591-2598.

17. P. Phillips, “Matching pursuit filters applied to face identification,” IEEE Transac-
tions on Image Processing, Vol. 7, 1998, pp. 1150-1164.

18. P. Phillips, H. Wechsler, J. Huang, and P. Rauss, “The Feret database and evaluation
procedure for face-recognition algorithms,” Image and Vision Computing, Vol. 16,

19. O
c
2

20. J
i
P

21. Y
h
m

22. M
m
D

Man
teres
alyse

A MU

1998, pp. 295
O. Räsänen a
covery and re
2012, pp. 606
J. Y. Yang, J.
ity recognitio
Pattern Recog
Y. Yao, B. A
high magnific
ment,” Compu
M. L. Yiu an
multi-dimensi
Data Bases, 2

nagement, Nat
sts include sp
es, artificial in

ULTI-CRITERIA M

5-306.
and U. K. Lain
ecognition fro
6-616.
 S. Wang, and

on: an effectiv
gnition Letters

Abidi, N. Kalk
cation face rec
uter Vision an

nd N. Mamou
ional data,” in

2007, pp. 483-

Yi-C

in Electri
Tainan, T
partment
National
joined the
Computer
in some p
tant Profe

tional Yunlin
atio-temporal

ntelligences, a

Chia
Cheng-K
degrees i
Gainesvil
Hudson L
pated in a
of a paral
of Nation
fessor of
Engineeri
conferenc

MECHANISM FOR

ne, “A method
om categorica

d Y. P. Chen,
ve learning al
s, Vol. 29, 200

ka, N. Schmid
cognition: Da
nd Image Und
ulis, “Efficient
n Proceedings
-494.

Chung Chen (
ical Engineeri
Taiwan, in 20
of Computer
Cheng Kung

e faculty of D
r Science, Fen
projects related
fessor in the

University o
databases, re

and techniques

ang Lee (李強
ung Universit
in electrical e
lle, in 1986 a
Laboratories,
a project work
llel and distrib

nal Cheng Kun
f the Departm
ing. He has p
ces.

R VAGUE PATTER

d for noise-ro
al sequences,”

“Using accele
algorithm for
08, pp. 2213-2

d, and M. Abi
atabase acquis
derstanding, V
t processing o
s of Internatio

(陳奕中) rece
ing from Nat

007 and 2008
Science and

g University,
Department o
ng Chia Univ
d to AI techni
Department

of Science and
ecommendatio
s of Industry 4

強) received
ty, Taiwan, in
engineering fr
and 1989, resp

Kingston, Ne
king on the de
buted databas
ng University

ment of Comp
published man

RN IDENTIFICATI

obust context-
” Pattern Reco

eration measu
constructing
2220.
idi, “Improvin
sition, evaluat

Vol. 111, 2008
of top-k domi
onal Conferen

eived the B.S.
tional Cheng
, and the Ph.
Information
Tainan, Taiw
f Information

versity in 2014
iques. He is c
of Industrial

d Technology
on systems, s
4.0.

the BS degr
n 1980 and th
rom the Univ
pectively. He
ew York, in
esign and per

se system. He
y in 1990 and
puter Science
ny papers in m

ION

aware pattern
ognition, Vol

urements for a
neural classif

ng long range
tion, and enha
, pp. 111-125
inating querie
nce on Very L

and M.S. deg
Kung Univer
D. degree in
Engineering f

wan, in 2014.
n Engineering
4 and particip
urrently an A
Engineering

y. His research
ocial network

ee from Nati
he M.E. and P
versity of Flo
joined IBM M
1989 and par
formance ana
joined the fac
is currently a

e and Informa
major journals

1653

n dis-
l. 45,

activ-
fier,”

e and
ance-
5.
es on
Large

grees
rsity,
 De-
from
. He

g and
pated

Assis-
and

h in-
k an-

ional
Ph.D.
orida,
Mid-
rtici-

alysis
culty
Pro-

ation
s and

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

