JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 34, 319-335 (2018)
DOI: 10.6688/JISE.201803_34(2).0001

Efficient Optimal Priority Assignment
for Fixed Priority Preemption Threshold Scheduling’

SAEHWA KM
Department of Information Communications Engineering
Hankuk University of Foreign Studies
Gyeonggi-do, 449-791 Korea
E-mail: ksaehwa@hufs.ac.kr

This paper proposes an efficient priority assignment algorithm for fixed priority
preemption threshold scheduling (PTS), which we named FAST-TRAVERSE. It is op-
timal in the sense that it always finds a feasible priority assignment if one exists. While
there are existing optimal algorithms, they are inefficient to be used in practice. The key
ideas of FAST-TRAVERSE are to prune sibling traverses and preemption threshold as-
signments if possible based on the notion of the effective blocking task. The empirical
evaluation results clearly show that FAST-TRAVERSE achieves the largest feasibility
and can be employed as an on-line priority assignment algorithm for PTS.

Keywords: real-time systems and embedded systems, system integration and implemen-
tation, real-time feasibility, scalability, fixed-priority scheduling

1. INTRODUCTION

Fixed priority preemption threshold scheduling (PTS) [1] has been widely applied in
the real-time industry due to its effectiveness and simplicity. PTS is an extension of
preemptive fixed priority scheduling where each task has a preemption threshold as a
scheduling attribute in addition to its priority. The preemption threshold of a task is a
form of run-time priority that remains after the task has been dispatched and until its ex-
ecution is completed, so it regulates the degree of “preemptiveness” in fixed priority
scheduling. If the threshold of each task is the same as the original priority, then PTS
becomes equivalent to fully-preemptive fixed priority scheduling. If the threshold of each
task is the highest priority in the system, then PTS becomes equivalent to non-preemptive
scheduling (NPS). The use of PTS is very effective in system tuning processes since it
improves real-time schedulability, eliminates unnecessary preemptions, reduces the num-
ber of tasks since a group of non-preemptive tasks can be considered to be a single task,
and allows for scalable real-time systems to be designed [2].

To increase the real-time schedulability (feasibility) via the adoption of PTS, we
need an algorithm that assigns to each task feasible scheduling attributes, that is, the pri-
ority and the preemption threshold. A scheduling attributes assignment algorithm is op-
timal if it is guaranteed to output a feasible (schedulable) scheduling attributes assign-
ment if one exists [3-6]. While there are previously proposed optimal scheduling attrib-
utes assignment algorithms for PTS [7, 8], they are very inefficient to be used in practice

Received July 11, 2016; revised September 17, 2016; accept November 14, 2016.

Communicated by Shao-Li Tsao.

" This work was supported by Hankuk University of Foreign Studies Research Fund of 2017. This research was
also supported by Basic Science Research Program through the National Research Foundation of Korea (NRF)
funded by the Ministry of Science, ICT & Future Planning (2017R1A2B1001824).

319

320 SAEHWA KIM

when the number of tasks are more than ten: it is impossible to get the assignment result
even with modern computers. With this, some research activities have proposed heuristic
scheduling attributes assignment algorithms [1, 9, 10] for PTS. However, they often fail
to find feasible scheduling attributes since they are non-optimal, and such practical needs
have motivated our work.

This paper proposes an efficient optimal priority assignment algorithm for fixed
priority preemption threshold scheduling (PTS), which we named FAST-TRAVERSE. It
is optimal in the sense that it is guaranteed to find a feasible priority assignment if one
exists. While FAST-TRAVERSE is an extension of PRUNED-TRAVERSE [8], the for-
mer is dramatically faster the latter and even faster than PA-DMMPT [10], which is the
best heuristic algorithm to the best of our knowledge. Our empirical results show that the
average algorithm run time of FAST-TRAVERSE when the number of tasks is 50 was
only 49% larger than that of DMPO (Deadline Monotonic Priority Ordering), which is
the mostly widely used and one of the simplest assignment algorithm. With this, FAST-
TRAVERSE can be employed as an on-line priority assignment algorithm for PTS. For
example, it can be employed for the on-line admission control system that decides
whether newly arrived tasks are acceptable or not.

As all the other priority assignment algorithms for PTS, FAST-TRAVERSE assigns
priorities to tasks from the lowest priority to the highest priority, whose appropriateness
with respects to the efficiency of the feasibility test is widely known, as shown in [11]. If
one priority ordering is found to be infeasible, FAST-TRAVERSE traverses another pri-
ority ordering also from the lowest unassigned priority by a sibling traverse. Here a sib-
ling traverse means assigning the same priority to the remaining tasks in the unassigned
task set.

Our key idea is to prune sibling traverses and preemption threshold assignments if
possible. Once a priority ordering is found to be infeasible, FAST-TRAVERSE finds the
minimum priority of the priority ordering that causes the priority ordering to be infeasi-
ble. For this, we try to find the effective blocking task that actually causes the task set
infeasible. Once we find such a task, we also set the minimum infeasible preemption
threshold value of the task. With this, we prune any preemption threshold assignment
that assigns preemption threshold larger than that value.

The remainder of the paper is organized as follows. In the next subsection, we pre-
sent the related work. Section 2 presents the task model with some notations and defini-
tions. Section 3 discusses previous algorithms with a walk-through example. Section 4
specifies the proposed algorithm, FAST-TRAVERSE, with the theoretical backgrounds.
Section 5 gives empirical performance evaluation results. Finally, Section 6 concludes
the paper.

1.1 Related Work

There are various previously proposed priority and preemption threshold assignment
algorithms for PTS. To begin with, DMPO (deadline monotonic decreasing order) is opti-
mal in the fully-preemptive fixed priority scheduling [6] and is so even though there are
blockings if there is no jitter [5]. Therefore, the approach of assigning priorities using
DMPO and then assigning preemption thresholds using the optimal preemption threshold
assignment algorithm of [4], which we refer to OPT-ASSIGN-THRESHOLD, is widely

EFFICIENT OPTIMAL PRIORITY ASSIGNMENT FOR FIXED PRIORITY PTS 321

used in practice. In this paper, DMPO means deadline-monotonic priority assignment com-
bined with OPT-ASSIGN-THRESHOLD, as this approach was employed in [9, 12].

However, DMPO is not optimal algorithm in the sense that even if a task set is in-
feasible with DMPO, the task set may be indeed feasible with another priority assign-
ment. Therefore, optimal algorithms such as SEARCH [4]', TRAVERSE [7], CORREC-
TED-SEARCH [8], and PRUNED-TRAVERSE [8] have been proposed. PRUNED-
TRAVERSE [8] is the most efficient (fast) one among all existing optimal algorithms.
However, its complexity is O(n!-n*) where 7 is the number of tasks in a task set, which
means computationally intractable if n is large. For example, PRUNED-TRAVERSE
cannot give an assignment result for some task set in a single day even in a high-perfor-
mance modern computer when n is more than 15. Therefore, existing optimal algorithms
cannot be employed in practice, which motivated our work.

Since optimal algorithms are too inefficient, heuristic algorithms such as GREEDY
[1] and PA-DMMPT [10] were proposed. Among these heuristic algorithms, PADM-
MPT is the best with respect to the possibility of finding a feasible priority assignment.
However, it is not optimal and thus may not find a feasible priority assignment for a giv-
en task set, which will be demonstrated in Section 3.

On the other hand, [12] proposed an optimal preemption threshold assignment algo-
rithm that considers the cash related preemption delay (CRPD) for PTS. However, it as-
sumes pre-assigned priorities for a given task set and thus still does not guarantee an op-
timal priority assignment result for a given task set.

2. TASK MODEL

We use the same task model as the one used in the traditional fixed-priority preemp-
tion threshold scheduling [1, 4, 13, 14]. We assume a uniprocessor system and a system has
a fixed set of tasks /"= {7, , ..., 7}. Each task 7 has a fixed period T}, a fixed relative
deadline D;, and a known worst-case execution time C;. There is no restriction such that
each task’s deadline should be shorter than its period. All timing values are real numbers.
Each task 7 also has a fixed priority p; and a preemption threshold pt; where p; and pt; are
assigned by a specific priority and preemption threshold assignment algorithm. We denote
a higher priority with a larger value: 1 is the lowest priority value and |/7| is the highest
priority value. Note that it is meaningful to assign a task a preemption threshold that is no
less than its regular priority since a preemption threshold is used as an effective run-time
priority to control unnecessary preemptions [4]: which means that V z;, pt; > p;.

Each task has a distinct priority value: every task has a different priority value. Each
task set /"has |77|! distinct priority orderings for its tasks. We denote the resultant priority
ordering generated by a specific priority assignment algorithm ALGORITHM as PO,;.
With this, a specific priority ordering PO, is a sequence of priorities for tasks in task set
I, which we denote as PO, = ¢"y, p"», ..., p"|rp. The inverse mapping of each priority
ordering PO, is a task ordering from the lowest priority to the highest priority, which we
denote as PO, ' = TO, = (i, J» ---» ky where each number represents a task index. We also
denote the inverse mapping of task ordering 70, as Tt 0,”' = PO,. Besides, a specific
preemption threshold ordering is a sequence of preemption thresholds for tasks in task set
I, which we denote as PTO, = (pt", pt"s, ..., pt"|r)).

! SEARCH is not optimal in fact [8].

322 SAEHWA KIM

As the feasibility test under PTS, we adopt the worst-case response time analysis
equations of [9] while extending its integer time model to real number time model. Orig-
inal equations were introduced by [4], whose errors were fixed by [15]. These results
were refined by [14], whose results in turn were concisely arranged by [9]. We rewrite
the relevant equations of [9] for calculating the worst-case response time R; of task z; as
follows.

R, = max {F,, =(¢-1)-T;}, M

o]l

L=B+ Y {ﬂq 3

Vi.pizpi| T

F S,
F,, =S8,+C+ Z U lﬂ—[l{“qm.c,)
e T T T g
Vj.p;>pt; J J

S,, =B +(g-1)C+ Y [I{STWJJ'CP ®)

V/‘,]JJZ]), j

B[:max{C/—é‘ijPf,-Zpi>pf}’ ©

where L; is the longest level—p; busy period [16], ¢ is the index of instances of task 7;
within L;, Q; is the last index of instances of task z; within L;, F;, is the finish time of the
gth instance of task 7;, S, is the start time of the gth instance of task 7, B; is the
worst-case blocking time of task z;, and ¢ is the infinitesimal amount of time larger than
zero. Whenever a variable appears on both sides of the Eq. (i.e. L; in Eq. (2) and F;, in
Egs. (3) and (4)), its value can be found by iterating until the value converges [15]. Refer
to [9] for the appropriate initial values for the iterations.

Note that ¢ in Eq. (6) was 1 in [9] that used the integer time model where all real
numbers of timing parameters should be adapted to integer numbers. The value of &
should be set as the upper bound on the relative error due to rounding in real numbers.
The original analysis in [14] that the equations of [9] are based on clearly shows the va-
lidity of using ¢ instead of 1. By using ¢ instead of 1 in calculating blocking time B;, we
allow real numbers in timing parameters such as C;.

Note also that Egs. (1)-(6) provide tight worst-case response time results and not an
upper bound on the worst-case response time such as [17], which can be used just for the
sufficient feasibility test. In other words, these equations provides an “exact” worst-case
response time under PTS as proved in [14], and thus can be used for the exact feasibility
test. Based on this exact worst-case response time analysis, this paper proposes an effi-
cient optimal priority and preemption threshold assignment algorithm.

2.1 Walk-through Example Task Set
As a walk-through example task set, we use a task set in Table 1 that is composed of

four tasks. The task indices of the task set are in the deadline monotonic decreasing order
(DMPO). For this task set, the resultant priority ordering of DMPO is POpy, =(1, 2, 3, 4).

EFFICIENT OPTIMAL PRIORITY ASSIGNMENT FOR FIXED PRIORITY PTS 323

However, as shown in Table 1, this priority ordering makes task 7, miss its deadline
since (R, = 35) > (D, = 27). Fig. 1 (a) demonstrates such a deadline miss: the fifth in-
stance of task 7, completes at time point 155 while its absolute deadline is (5 - 1)-7, + D,
= 151. Note that the worst-case response time cannot be obtained at the critical instant
[18] when there is a non-preemptiveness of tasks [9].

Table 1. Walk-through example task set.

DMPO PA-DMMPT Optimal Assignment
G| T | D
pi | pli R Pi Pl R; Di Pl R;
7 13] 120 | 80 | 1 4 66 1 4 66 3 3 62
o 4 80 | 70 | 2 4 66 3 3 61 2 4 66
3 5 110 | 66 | 3 3 62 2 4 66 1 4 66
o | 22| 31 27 | 4 4 35 4 4 35 4 4 27

l—'—V arrived ——© deadline —> waiting — & executing —® deadline-missed execution —+ completedl

0 2 27 66 110 115 120

deadline miss —
>

26 31 66 110 115 120
deadline miss —,
>Q

¥ Y Y
4 Ll 11 mnmannn S LT LT QOO TTTT EENEREEEERRREN I EESEREREEEEEE I OO T LTI
0 2 2713 53 58 62 66 88 93 115 124 133 151
(b) PA-DMMPT [10]
{, 9
L e e i m ey
0 22 31 53 57 80 120 146 155
7 r ¢ v ¢ v
oo .. P
0 57 61 80 88 92 150
E ‘{’ e ol
0 61 66 110 120

0 2 213 53 58 6 e
(c) Optimal approaches [7, 8]

Fig. 1. PTS schedule produced for the walk-through example task set of Table 1 by the assign-
ment algorithms of (a) PA-DMMPT [10] and (b) optimal approaches such as TRAVERSE,
PRUNED-TRAVERSE [8], and FAST-TRAVERSE. Note that task z; in (a) and (b) miss-
es its deadline while every task in (c) does not miss its deadline.

88 93 15 124 146 155

324 SAEHWA KIM

3. PREVIOUS ASSIGNMENT ALGORITHMS

There are largely two kinds of priority and preemption threshold assignment algo-
rithms for PTS, which are heuristic ones and optimal ones. As discussed in Section 1.1,
the best heuristic one is PA-DMMPT [10] and the best optimal one is PRUNED-TRA-
VERSE [8]. Therefore, we discuss further these two algorithms in this section. Both of
PA-DMMPT and PRUNED-TRAVERSE first tentatively assign priorities to all tasks and
then assign preemption thresholds to tasks using OPT-ASSIGN-THRESHOLD of [4].
When they assign priorities, both of them assign tasks priorities from the lowest priority
1 to the highest priority |/7|.

PA-DMMPT assigns each priority to the task with the highest heuristic value among
the remaining tasks in the unassigned task set. The heuristic value 4; of task 7; is calcu-
lated as either the task blocking limit if R; < D; or (D; — R;) otherwise. Here, all tasks in
the unassigned task set except task z; are assigned deadline monotonic priorities that are
higher than p;. In addition to this, all tasks in the unassigned task set (including task z)
are assigned the maximum preemption thresholds. For the walk-through example task set
in Table 1, PA-DMMPT assigns task priorities as follows.

e For priority 1, /1 =9 — &, h,=—18, h3 =0, hy =—17. Thus, p; = 1.

e For priority 2, h, = 13, h; = 13, hy = —17.Thus, p, =2 or p; = 2. We set p; = 2 since
DMPO leads to the infeasible assignment as shown in Table 1.

e For priority 3, h, = 18, hy = —12. Thus, p, = 3.

e For priority 4, the only remaining task is 7. Thus, py = 4.

With this, the resultant priority ordering of PA-DMMPT is POp, = (1, 3, 2, 4). As
shown in Table 1, priority ordering POp, makes task z, miss its deadline since (R, = 35)
> (D, = 27). Fig. 1 (b) demonstrates such a deadline miss: the fifth instance of task z,
completes at time point 155 while its absolute deadline is (5-1)-T, + D, = 151.

PRUNED-TRAVERSE traverses all possible priority orderings until it finds a feasi-
ble priority and preemption threshold assignment while pruning infeasible priority or-
derings. Specifically, it prunes any priority ordering that assigns priority prio to task z; in
any of the following conditions.

(Condition 1) Task 7; is infeasible (R; > D;) with the highest preemption threshold.
(Condition 2) prio is less than infeasiblePrioMax;, which is the maximum priority with
which task z;has been infeasible.

For the walk-through example in Table 1, PRUNED-TRAVERSE assigns task prior-
ities as shown in the priority and preemption threshold assignment tree in Fig. 2 (a). In
the figure, each white/gray circle/triangle node represents a feasible/infeasible priori-
ty/preemption threshold assignment for a task, and its depth corresponds to the assigned
priority/preemption threshold value. The green ‘x” mark annotation to a circle node rep-
resents the setting of the value of infeasiblePrioMax; to the priority level of the node.
This annotation appears not only for gray (infeasible) circle nodes but also for the highest
priority assignment circle node when its preemption threshold assignment is infeasible.
Any green ‘x’ mark connected with a dashed-lined gray circle node represents the prun-
ing of the child traverse due to (Condition 2) with infeasiblePrioMax;. Each path from
the root to a leaf node corresponds to a possible task or priority ordering. Each number

EFFICIENT OPTIMAL PRIORITY ASSIGNMENT FOR FIXED PRIORITY PTS 325

@@ assigning pi: feasible/infeasible AN assigning pt;: feasible/infeasible
% setting infeasiblePrioMaxi (@ A8 pruning the child traverse with infeasiblePrioMax;
(n) n'h feasibility test (n):k k™ operation after (1)
eliminated in FAST-TRAVERSE

piorpt;
1 @)
---------------- *-x------ oS e TS b
1
2 BASN | 6) 19)4. (32 29A ! AM) 43)
_____________ i s O, Y . Awn&(TR LA
]

L BES O 100 Aab

_______ (12)_(10__ () ___Gyl______(14x1 (23_) G0 G4_3n_en1 (38):1 (42)__(45)_(47)

(a) PRUNED-TRAVERSE

@@ assigning p:: feasible/infeasible A\ /A assigning pt:: feasible/infeasible
m setting infeasiblePrioMaxi (:1;) #8 pruning the child traverse with infeasiblePrioMaxi
ﬁ(D setting 7.failReturnPrio @*}f{ pruning the sibling traverse with 7-failReturnPrio
ﬁ setting infeasibleThresMini A//;’ pruning the child traverse with infeasibleThresMin;
(n) n™ feasibility test (n):k k™ operation after (n)

24) /‘ Aﬁ) A”ﬂ”)
D A AL

(b) FAST-TRAVERSE
Fig. 2. Priority and preemption threshold assignment trees for the walk-through example task set in
Table 1.

with round braces “(n)” besides a node represents the nth feasibility test that is performed
for the operation of the node, and “(n):k” besides a node or a mark denotes the kth opera-
tion after the nth feasibility test.

In Fig. 2 (a), four complete task orderings were generated: 70, = (1, 2, 3, 4), TO, =
(1,3,2,4), TO;=(3,1,2,4), and TO4 = (3, 2, 1, 4). The last task ordering TO, = TOpz =
(3, 2, 1, 4) corresponds to the priority ordering POpg = Tt Opr' = (3, 2, 1, 4) for PRUN-
ED-TRAVERSE of Table 1. The table shows that priority ordering POpz makes every
task feasible, which is also demonstrated in Fig. 1 (c). As shown in Fig. 2 (a), whenever a
complete task ordering is generated, preemption thresholds are assigned to the tasks.
Specifically, for the task orderings 70;-TO,, four preemption threshold orderings are
generated: PTO, = (4, 4, 3, (4)), PTO, = (4, 3, 4, (4)), PTO; = (4, 3, 4, (4)), and PTO; =
(3, 4, 4, 4) where “(4)” represents an infeasible preemption threshold assignment. Note
that the gray circles annotated with “(24)”, “(12):2”, “(23):17, “(23):2”, and “(36):1”

326 SAEHWA KIM

pruned child traverses. Such pruning help in reducing the number of feasibility tests,
which makes PRUNED-TRAVERSE outperform existing optimal scheduling attributes
assignment algorithms. However, the nodes surrounded with round squares can be fur-
ther eliminated in FAST-TRAVERSE, which will be shown in the next section.

4. ALGORITHM SPECIFICATION FOR FAST-TRAVERSE

FAST-TRAVERSE assigns tasks priorities from the lowest priority to the highest
priority, which generates priority orderings until a feasible priority ordering is found.
Once a priority ordering is found to be infeasible, it generates another priority ordering
also from the lowest unassigned priority by a sibling traverse. Here a sibling traverse
means assigning the same priority to the remaining tasks in the unassigned task set.

Our key idea is to prune sibling traverses if possible once we have found that a priority
ordering is infeasible. For a given task set /” that has been assigned a priority ordering,
FAST-TRAVERSE finds the minimum priority /-failReturnPrio of the priority ordering
that causes the task set /" to be infeasible. Then, FAST-TRAVERSE prunes all sibling
traverses that assign priorities larger than 7 failReturnPrio. To find IfailReturnPrio, we
also employ the notion of effective blocking task for priority level prio, which is the task
that causes the task set to be infeasible by blocking a task with priority prio.

Along with sibling traverses, FAST-TRAVERSE also prunes preemption threshold
assignments if possible using the notion of the minimum infeasible preemption threshold
infeasibleThresMin; for task 7, which is the minimum preemption threshold of task z
that causes the task set to be infeasible. FAST-TRAVERSE sets this value whenever it
finds an effective blocking task and prunes the preemption threshold assignment that
assigns to task z; any preemption threshold not lesser than infeasibleThresMin;.

Fig. 3 shows our proposed FAST-TRAVERSE in pseudo code. As shown in the
figure, FAST-TRAVERSE invokes FAST-TRAVERSE, which in turn invokes FAST-
OPT-ASSIGN-THRESHOLD. FAST-TRAVERSE first sorts tasks using DMPO since
DMPO finds feasible priority assignments in many cases (line 2). Then, it initializes pa-
rameters of each task (lines 3-6). Since priorities are in the range of [1, |/"|], the initial
maximum and minimum priority or preemption threshold values are set to 0 and |/”|+1
(line 4), respectively. Like all existing priority assignment algorithms, FAST-TRAV-
ERSE lets all priority unassigned tasks have the highest priority and preemption thresh-
old (line 5). Then, it invokes FAST-TRAVERSE.

_FAST-TRAVERSE assigns priorities prio from the lowest priority (1) to the high-
est priority (|/7]) to each task 7 in task set UnAssigned by recursively invoking itself with
the priority prio+1 and the remaining unassigned task set Undssigned—{z;} in line 19.
Lines 9-20 and the last line 28 are the same as PRUNED-TRAVERSE of except
FAST-TRAVERSE invokes FAST-OPT-ASSIGN-THRESHOLD instead of RESOT-
RING-OPT-ASSIGN-THRESHOLD of [8]. Therefore, we only explain lines 21-27 in
_FAST-TRAVERSE, which are added parts to PRUNED-TRAVERSE of [8].

1 FAST-TRAVERSE (7 set of tasks)
2 I« descendingSort(/; D;);
3 foreach (5 € I") {

EFFICIENT OPTIMAL PRIORITY ASSIGNMENT FOR FIXED PRIORITY PTS

infeasiblePrioMax;j < 0; infeasibleThresMin; < |11+ 1;
pi—I|lNs pti—|];

} //end-foreach

return _FAST-TRAVERSK(l, /] I');

_FAST-TRAVERSE (prio: priority, UnAssigned: set of tasks, 1: set of tasks)

foreach (7; € Undssigned) {
if (prio < infeasiblePrioMax;) continue;
pi<—prio; pti—|I'];
if (prio=|I"|) return FAST-OPT-ASSIGN-THRESHOLD(/);
if (R;>D;j) {
pi<—|["|; //restore to the highest priority
if (prio > infeasiblePrioMax;) infeasiblePrioMax; < prio;
continue;
} // end-if
pti < prio;
if (FAST-TRAVERSE(prio+1, Undssigned —{ 7 }, I") = success) return success;
foreach (7j € UnAssigned) pj<«|I"|; //restore to the highest priority
if (prio > IfailReturnPrio) return fail; // prune the sibling traverse
} // end-foreach
7 < Vj, (ptj 2 prio > pj) A (Cj is the maximum); // 7j is the effective blocking task.
if (7j exists) {
I“failReturnPrio < pj; // from Theorem 1
infeasibleThresMinj < ptj; // from Theorem 2
} else I failReturnPrio < 0; // I'is not feasible with any assignment.
return fail;

FAST-OPT-ASSIGN-THRESHOLD (/: set of tasks)

SortedTaskSet < ascendingSort(/; p;);
foreach (7; € SortedTaskSet) {
plti < pi;
while (R; > D;)) {
pli<—pti+t1;
if (pt; >|I"|) or (pt; > infeasibleThresMin;))) {
if (p; > infeasiblePrioMax;) infeasiblePrioMax; < pj;
I failReturnPrio <« pj;,
if (p; ==|I"]) {
5 Y, (ptj 2 |I"| > pj) A (Cj is the maximum);
I’failReturnPrio « pj; // from Corollary 1
infeasibleThresMin; = ptj; // from Theorem 2
} // end-if
return fail;
} // end-if } // end-while } //end-foreach
return success,

Fig. 3. Pseudo code for the proposed FAST-TRAVERSE algorithm.

Table 2. An infeasible task set under PTS even with the optimal assignment.

G T; D;
7 4 640 400
5 | 11 160 100
5 | 23 100 90
o | 2 3 3

327

328 SAEHWA KIM

pior pti

LA foo &
,,,,,,,,,, L S I S & SR = G (7= N
2 ok S
7777777777 i1) oy

ONGCE

\A (4\,.
777777777 01 _ (3;*)_(351(38)) (Al)l__ i ,__)) (63):1
V

AN KK A% PN \ / r
\ A\
AAAD RO “Aoo O % DAALY
(10) ©) () _ 31 (21 (16)_(18) 19 (30) 29)26) (22):1 (21 GOEN4D (52) G) @8) (aay1 (33):1(58)(61) (63)

pior pti
1 (2% M asa
5 (2§10):~ ””
—————————— 410275\ --- - -
s WAOD Ok %
"ﬂ(;ﬁ(‘m)() 10:1/3) Qé“ 1. /; **
} ,4,<, J ,,,,,, e .
(b) FAST-TRAVERSE
@@ assigning pi: feasible/infeasible /A /A assigning pti: feasible/infeasible
% setting infeasiblePrioMaxi (i) 48 pruning the child traverse with infeasiblePrioMaxi
% setting /.failReturnPrio @w* pruning the sibling traverse with 7 failReturnPrio
ﬁ setting infeasibleThresMin; A\/;» pruning the child traverse with infeasibleThresMin;
(n) n' feasibility test (n):k k™ operation after (1)
eliminated in FAST-TRAVERSE!

Fig. 4. Priority and preemption threshold assignment trees for the infeasible example task set in
Table 2.

First, line 21 lets the algorithm return if prio > I failReturnPrio, which prunes the
sibling traverse for assigning priority prio for the remaining tasks in UnAssigned in line 9.
Lines 23-28 are executed when all tasks in Undssigned are pruned in assigning priority
prio. If the effective blocking task 7 for the priority level prio exists (line 24),
I failReturnPrio and infeasibleThresMin; are set to p; (line 25) and pt; (line 26), respec-
tively, from the following Theorems 1 and 2. Otherwise, /.failReturnPrio is set to 0 (line
27) since /"is not feasible with any assignment.

Lemma 1: (From Theorem 2 of [8]) Under PTS, if preemption threshold ps; of task z is
fixed, then its worst-case response time R; does not decrease when its priority p; is
lowered.

Theorem 1: Under any scheduling attributes assignment algorithm that assigns distinc-
tive priorities to tasks for PTS, if all tasks are pruned while assigning priority prio and

there exists an effective blocking task 7, then /" failReturnPrio is the priority of p;.

Proof: Let a pruned task for assigning priority prio be 7. Since all tasks have been

EFFICIENT OPTIMAL PRIORITY ASSIGNMENT FOR FIXED PRIORITY PTS 329

pruned while assigning priority prio, the next priority assignment iteration would try to
assign a lower priority to task z. From Lemma 1, R; does not decrease when its priority is
lowered (since its interference time always exceeds its blocking time from the proof of
Lemma 1). Accordingly, the only way to decrease R; is to reduce blocking time B;, which
is C; as long as there exists 7. Therefore, we don’t need to traverse sibling priority as-
signment that assigns task z; the lower priority than prio until we eliminate the previous
priority assignment to task 7. Consequently, /- failReturnPrio is p;. d

Theorem 2: Under any scheduling attributes assignment algorithm that assigns distinc-
tive priorities to tasks for PTS, if all tasks are pruned while assigning priority prio and
there exists effective blocking task z;, then infeasibleThresMin; s pt;.

Proof: This theorem can be proved in a similar way to the proof of Theorem 1. The ex-
istence of task 7 and pruning of all tasks while assigning priority prio infers that the
pruned tasks cannot be feasible without reducing their blocking times. Since their block-
ing times were caused by the preemption threshold assignment to task 7, infeasibleThres-
Min; is pt;. a

FAST-OPT-ASSIGN-THRESHOLD is the same as the optimal preemption thresh-
old assignment algorithm of [4] except the additional second condition of line 35 and
additional operations of lines 37-42. First, the second condition of line 35, pt; > infea-
sibleThresMin,, is for additionally pruning the preemption threshold assignment when the
currently assigning preemption threshold for task z; is not lesser than infeasibleThresMin;.
Line 36 is from PRUNED-TRAVERSE of [8] and updates infeasiblePrioMax; of task z;
since priority p; is also infeasible priority of task 7. In line 37, I failReturnPrio is set to
p; since the priority ordering is infeasible due to the priority assignment to task z. If task
7; is the highest priority task (line 38), the effective blocking task z; always exists. In this
case, [failReturnPrio and infeasibleThresMin; are set to p; (line 40) and pt; (line 41),
respectively from the following Corollary 1 and the above Theorem 2.

Corollary 1: Under any scheduling attributes assignment algorithm that assigns distinc-
tive priorities to tasks for PTS, if the highest priority task 7, is infeasible, then 7/ fail-
ReturnPrio is the priority of the effective blocking task.

Proof. If the highest priority task gz, is infeasible, there is no remaining task to be assigned
priority, which means all tasks are pruned while assigning priority |/;] and there is always
exists an effective blocking task. Therefore, this corollary follows from Theorem 1. d

For the walk-through example task set in Table 1, FAST-TRAVERSE assigns task
priorities as shown in Fig. 2 (b). The figure uses additional graphical notations to those of
Fig. 2 (a). Specifically, the yellow star annotation to a white circle node represents set-
ting the value of 7 .failReturnPrio to the priority level of the node. Any yellow star mark
connected with a white circle node represents pruning the sibling traverse with
[failReturnPrio. The red cross mark annotation to a white triangle node represents set-
ting the value of infeasibleThresMin; to the priority level of the node. Any red cross mark
connected with a gray triangle node represents pruning the preemption threshold assign-
ment with infeasibleThresMin,.

330 SAEHWA KIM

Figs. 2 (a) and (b) are the same from the node of “(1)” to the ‘x’ mark annotation of
“(12):1”. However, in Fig. 2 (b), the yellow star mark “(12):2” identifies the effective
blocking as 7; (line 39 in Fig. 3) and sets /.failReturnPrio = p;= 1 (line 40 in Fig. 3).
Then, the red cross mark annotation of “(12):3” sets infeasibleThresMin, = pt; = 4 (line
41 in Fig. 3). After this, the yellow star marks of “(12):4” and “(12):5” eliminate sibling
traverses since priority levels of 3 and 2 are larger than 7 failReturnPrio (= 1) (line 21 in
Fig. 3). Moreover, the red cross mark annotation of “(22):1” eliminates the nodes from
“(34)” to “(36)” in Fig. 2 (a) since priority level 4 is the same as infeasibleThresMin, (= 4)
(lines 35 and 43 in Fig. 3). In such a way, nodes surrounded by four round squares in Fig.
2 (a) were eliminated in Fig. 2 (b).

As another example, we introduce an infeasible task set under PTS even with any
optimal assignment algorithm in Table 2. Note that task indicess of the task set are in the
deadline monotonic decreasing order (DMPO). Fig. 4 shows priority and preemption
threshold assignment trees for this task set. In Fig. 4, FAST-TRAVERSE finds all tasks
are pruned while assigning specific priority twice. The first is after “(10):4” and the other
is after “(15):5” while assigning priorities 3 and 2, respectively. In the first case where
assigning priority 3, the yellow star mark “(10):5” identifies the effective blocking as o
and sets /.failReturnPrio = p,=2 (line 25 in Fig. 3). Due to this, the yellow star marks of
“(15):4” eliminates the sibling traverse since priority level 3 is larger than 7. failReturn-
Prio (=2) (line 21 in Fig. 3).

In the other case where assigning priority 2 (after “(15):5”), there does not exist the
effective blocking task. Therefore, FAST-TRAVERSE sets 7 failReturnPrio = 0 (line 27
in Fig 3), as shown with the yellow start mark annotation of “(15):6”. Note that this set-
ting of 7 failReturnPrio = 0 enables pruning of the sibling traverse as shown with the
yellow star mark annotation of “(15):7”, which greatly helps in eliminating a large num-
ber of feasibility tests in Fig. 4 (a).

4.1 Complexity

The complexity of PRUNED-TRAVERSE has been shown to be O(E-n!-n%) [8]
where n=|/"| and FE is the non-polynomial [3] complexity of the feasibility test (calculat-
ing R; from Egs. (1)-(6)). O(E-n!-n%) is derived from 4 + B-C where 4 is the complexity
of priority assignment, B is the number of priority orderings, and C is the complexity of
preemption threshold assignment. Each value is derived as follows.

o The complexity of priority assignment (4):

OEn{1+(n—-1){1+(n-2){1+... }}})
=0E{n+nmn-D)+nm-1)m-2)+...+nl})
=O(En!)

e The number of priority orderings (B): n!
e The complexity of preemption threshold assignment (C):

OE-{n+(n—-1H+..+1})
=O(E-n-(n—-1)/2)
=O(E-n?)

EFFICIENT OPTIMAL PRIORITY ASSIGNMENT FOR FIXED PRIORITY PTS 331

The complexity of FAST-TRAVERSE is derived in a similar way. Let the values of
A, B, and C for FAST-TRAVERSE be 4', B, and C' and then the complexity of FAST-
TRAVERSE is 4’ + B'-C'. Once the first complete priority ordering and the preemption
threshold assignment does not succeed (returns fail), FAST-TRAVERSE finds the effec-
tive blocking task 7. Then, I failReturnPrio and infeasibleThresMin; is set. In addition to
this, for any task 7 that has been found infeasible, infeasiblePrioMax; is set. With this,
IfailReturnPrio and infeasiblePrioMax; affects A' and B’ while infeasibleThresMin;
affects C'. Among these, the effects of 7.failReturnPrio are dominant and thus we con-
sider its effect as follows.

If IfailReturnPrio is set to 0, which has been demonstrated as the yellow start mark
annotation of “(15):6” in Fig. 4 (b), any further traverse is stopped, which means the fur-
ther traverse takes time of 0. If 7 failReturnPrio is set to 1, which has been demonstrated
as the yellow start mark annotation of “(12):2” in Fig. 2 (b), all sibling traverses of as-
signing priorities 2 — n are pruned. The value of 7 failReturnPrio is set from 0 to n — 1
and the probability of each value can be regarded to be in a uniform distribution, which
means each value has the possibility of 1/n. Then, the possibility of non-pruning is 1-1/n.
Then, the probabilistic number of assigning priority 1 is 1+(1 — 1/n)-{1 + (1 — 1/n)-{1 +
(1 - Un)-{..}} =20 (A=1/n)"= n(1 = ((n — 1)/n)"). In such a way, for each assign-
ment of priority i, the next probabilistic number of assigning priority i+1 is
Do (=1 (=" = (n—i)(1 = ((n — i — D/(n —i)""7). With this, 4", B, and C' are
calculated as follows.

o The complexity of priority assignment (4'):

et o

o (25 e (2 oo (-4 (-4
ol (55

o The number of priority orderings (B'): n! HZ;I) (1-

n—k—1
n—k
further reduces the number of priority orderings, its probability is unpredictable and
thus we ignore its effect for the complexity computation.
e The complexity of preemption threshold assignment (C'): the same as C = O(E-n?).
While infeasibleThresMin; ensures that C' is less than C, its probability is unpredicta-
ble and thus we regard C’ as C.

Y™). While infeasiblePrio Max;

Therefore, the complexity of FAST-TRAVERSE, 4’ + B'-C', is as follows.

O[E.n!-n2.ﬁ{l—(n;f;1jnk}}

332 SAEHWA KIM

—k—-1,.
Since 1—(’1”7)" *is less than 1, such multiplications to the complexity of PRUNED-

TRAVERSE reduces much the computation time of PRUNED-TRAVERSE. For exam-
—k—1,, 4
ple, when 7 is 5, 10, and 20, the values of ”j) (1—(n7k)" *) are about 0.24, 0.03, and
- e

0.0004, respectively. Such a reduction will be empirically shown in the next section.

5. EMPIRICAL PERFORMANCE EVALUATION

This section empirically evaluates the performance of FAST-TRAVERSE by com-
paring it with DMPO, PA-DMMPT, and PRUNED-TRAVERSE, which were discussed
in Sections 1.1 and 3. The performance metrics are 1) the percentage of feasible task sets
and 2) the actual run time for the algorithm execution. The experiments were conducted
with Matlab R2016a on an Intel Core 17-4790, 3.60 GHz system with 16 GB of RAM. To
ensure that the feasibility of a given task set is greatly dependent on a proper scheduling
attributes assignment algorithm, we need to prepare highly demanding workloads. There-
fore, we set the total utilization of each task set to U = 0.9. We have generated each task
set in the similar manner as in [9]. Specifically, for each task 7;, we generated C; as a
random integer that is uniformly distributed in the interval [100, 500] and the utilization
of each task u; using UUniFast [19] algorithm. Accordingly, we derived T; = C;/u; while
D; as a random integer that is uniformly distributed in the interval [C; + 0.5 - (T; — C)), T;].
We varied the number of tasks |/7| from five to fifty. For each configuration, we generat-
ed 2,000 task sets. For the feasibility test, we set the value of &in Eq. (6) to 10° (s was 1
in [9]).

Fig. 5 (a) shows the percentage of feasible task sets for varying number of tasks.
Due to the run-time performance problem, the results of PRUNED-TRAERSE were only
available when the number of tasks is not larger than 15. As shown in the figure, the
percentages of feasible task sets are the same for PRUNED-TRAVERSE and FAST-
TRAVERSE when the results of PRUNED-TRAVERSE are available. Fig. 5 clearly
shows that FAST-TRAVERSE always has the larger percentage of feasible task sets than
PA-DMMPT and DMPO. Specifically when |/7| = 25, FAST-TRAVERSE could make
4.1% and 5.1% more task sets feasible than PA-DMMPT and DMPO, respectively
(62.5% for FAST-TRAVERSE, 58.4% for PA-DMMPT, and 57.4% for DMPO).

Fig. 5 (b) shows the average algorithm run time results for varying number of tasks.
Y axis is in a log scale to better show the distributions of result values. Fig. 5 (b) clearly
shows that FAST-TRAVERSE is much faster than PRUNED-TRAVERSE and PA-
DMMPT. When |/"| = 15, the average algorithm run times with FAST-TRAVERSE were
reduced by 8,802,627% and 19,185% compared to PRUNED-TRAVERSE and PA-
DMMPT, respectively (0.017 sec for FAST-TRAVERSE, 1,496.5 sec for PRUNED-
TRAVERSE, and 3.278 sec for PA-DMMPT). Fig. 5 (b) also shows that FAST-TRA-
VERSE even takes similar algorithm execution time to DMPO, which is one of the sim-
plest and widely used priority assignment algorithms for PTS as we discussed in Section
1.1. More importantly, the average algorithm run time differences between FAST-TRA-
VERSE and DMPO change little as the number of tasks |/7] increases. Even when |/7| =
50, the average algorithm run time of FAST-TRAVERSE was 0.2178 sec, which is only
49% larger than that of DMPO (0.1462 sec), while it always produces an optimal priority

EFFICIENT OPTIMAL PRIORITY ASSIGNMENT FOR FIXED PRIORITY PTS 333

assignment result. With this, FAST-TRAVERSE can be used as an on-line priority and
preemption threshold assignment algorithm for PTS, which is essential for on-line ad-
mission control for newly arrived tasks.

Percentage of Feasible Task Sets

100 ¢

90 r

80

701

FAST-TRAVERSE (PTS)
—% PRUNED-TRAVERSE (PTS)
—+— PA-DMMPT (PTS)
—%—DMPO (PTS)

—B—FPS

—A- NPS

25 30 35 40 45
Number of Tasks

(a) The ratio of feasible tasks.

20 50

Algorithm Execution Time (sec)

10000 ¢

1000 ¢

100 ¢

0.1

0.01

0.001
5

—%- PRUNED-TRAVERSE
—+ PA-DMMPT

FAST-TRAVERSE
—¥—DMPO

——
-t
4

I I
15 20

25 30

35 40 45 50

Number of Tasks
(b) Algorithm execution time.

Fig. 5. Performance evaluation with varying number of tasks (U= 0.9).

Table 3. Comparison of the average numbers of response time tests (iteration counts)

over the varying number of tasks.

Number of tasks 5 10 15
PRUNED-TRAVERSE 22.1 2614.4 2340017.8
FAST-TRAVERSE 11.7 24.5 34.6
Ratio of the number of the eliminated tests of o N o
PRUNED-TRAVERSE in FAST-TRAVERSE 47.1% 99.06% 99.9985%

Table 3 compares the average number of response time tests (iteration counts) by
using Egs. (1)-(6) for PRUNED-TRAVERSE and FAST-TRAVERSE over varying num-
ber of tasks. The last row of Table 3 shows the ratio of the number of the eliminated tests
of PRUNED-TRAVERSE in FAST-TRAVERSE. As shown in the table, the more the
number of the tasks is, the reduction ratio becomes dramatically larger.

6. CONCLUSIONS

We proposed an optimal priority and preemption threshold assignment algorithm for
PTS, which we named FAST-TRAVERSE. The proposed algorithm is optimal: it always
finds a feasible priority and preemption threshold assignment if one exists. FAST-
TRAVERSE prunes sibling traverses and preemption threshold assignments using the
notions of the effective blocking task. The empirical evaluation results clearly showed
that FAST-TRAVERSE always makes more task sets feasible than any other non-opti-
mal priority assignment algorithm for PTS. The empirical results also showed that
FAST-TRAVERSE is applicable for a large number of tasks, which was impossible with

334 SAEHWA KIM

previous existing optimal algorithms. We also showed that FAST-TRAVERSE is much
faster than the best known heuristic algorithm, which makes it applicable as an on-line
admission control algorithm.

10.

11.

12.

13.

14.

REFERENCES

. M. Saksena and Y. Wang, “Scalable real-time system design using preemption thres-
holds,” in Proceedings of IEEE Real-Time Systems Symposium, 2000, pp. 25-34,

. S. Kim, “Dual ceiling protocol for real-time synchronization under preemption thres-
hold scheduling,” Journal of Computer and System Sciences, Vol. 76, 2010, pp. 741-
750.

. N. C. Audsley, “On priority assignment in fixed priority scheduling,” Information
Processing Letters, Vol. 79, 2001, pp. 39-44.

. Y. Wang and M. Saksena, “Scheduling fixed priority tasks with preemption thresh-
old,” in Proceedings of IEEE Real-Time Computing Systems and Applications Sym-
posium, 1999, pp. 328-335.

. K. Bletsas and N. Audsley, “Optimal priority assignment in the presence of block-
ing,” Information Processing Letters, Vol. 99, 2006, pp. 83-86.

. A. Zuhily and A. Burns, “Optimal (D—J)-monotonic priority assignment,” Infor-
mation Processing Letters, Vol. 103, 2007, pp. 247-250.

. S. Kim, “Synthesizing multithreaded code from real-time object-oriented models via
schedulability-aware thread derivation,” IEEE Transactions on Software Engineer-
ing, Vol. 40, 2014, pp. 413-426.

. S. Kim, “Assigning priorities for fixed priority preemption threshold scheduling,”
The Scientific World Journal, Vol. 2015, 2015, pp. 1-14.

. G. Buttazzo, M. Bertogna, and G. Yao, “Limited preemptive scheduling for real-

time systems, a survey,” IEEE Transactions on Industrial Informatics, Vol. 9, 2013,

pp- 3-15.

H. Zeng, M. D. Natale, and Q. Zhu, “Minimizing stack and communication memory

usage in real-time embedded applications,” ACM Transactions on Embedded Com-

puting Systems, Vol. 13,2014, pp. 149:1-149:25.

N. Min-Allaha, S. U. Khanb, X. Wangc, and A. Y. Zomayad, “Lowest priority first

based feasibility analysis of real-time systems,” Journal of Parallel and Distributed

Computing, Vol. 73,2013, pp. 1066-1075.

R. J. Bril, S. Altmeyer, V. Heuvel, M. M. H. P. van den Heuvel, and R. 1. Davis,

“Integrating cache-related pre-emption delays into analysis of fixed priority sched-

uling with pre-emption thresholds,” in Proceedings of Real-Time Systems Symposi-

um, 2014, pp. 161-172.

J. Chen, A. Harji, and P. Buhr, “Solution space for fixed-priority with preemption

threshold,” in Proceedings of IEEE Real Time and Embedded Technology and Ap-

plications Symposium, 2005, pp. 385-394.

U. Keskin, R. J. Bril, and J. J. Lukkien, “Exact response-time analysis for fixed-pri-

ority preemption-threshold scheduling,” in Proceedings of IEEE Conference on

Emerging Technologies and Factory Automation, 2010, pp. 1-4.

15

16.

17.

18.

19.

EFFICIENT OPTIMAL PRIORITY ASSIGNMENT FOR FIXED PRIORITY PTS 335

. J. Regehr, “Scheduling tasks with mixed preemption relations for robustness to tim-
ing faults,” in Proceedings of IEEE Real-Time Systems Symposium, 2002, pp. 315-
326.

J. P. Lehoczky, “Fixed priority scheduling of periodic task sets with arbitrary dead-
lines,” in Proceedings of IEEE Real-Time Systems Symposium, 1990, pp. 201-209.

E. Bini, T. H. C. Nguyen, P. Richard, and S. K. Baruah, “Response-time bound in
fixed-priority scheduling with arbitrary deadlines,” IEEE Transactions on Comput-
ers, Vol. 58,2009, pp. 279-286.

C. Liu and J. Layland, “Scheduling algorithm for multiprogramming in a hard re-
al-time environment,” Journal of the ACM, Vol. 20, 1973, pp. 46-61.

E. Bini and G. C. Buttazzo, “Measuring the performance of schedulability tests,”
Real-Time Systems, Vol. 30, 2005, pp. 129-154.

Saehwa Kim (&£ t8]) received her B.S., M.S., and Ph.D. de-
grees in Electrical and Computer Science Engineering from Seoul
National University, Seoul, Korea, in 1997, 2000, and 2006, re-
spectively. She is currently an Associate Professor at the Depart-
ment of Information Communications Engineering, Hankuk Uni-
versity of Foreign Studies, Korea. Her research interest is in soft-
ware engineering and embedded software platforms that are spe-
cialized for specific industrial domains such as automotive vehicles,
intelligent robots, and software defined radios.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

