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A co-location pattern is a subset of spatial objects whose instances are frequently 

located together in geography space. The traditional co-location mining algorithms treat-
ed the spatial proximity relationship between the instances as unanimous by binary logic, 
which weakened the accuracy and effectiveness of the results. In this paper, the co-loca- 
tion pattern mining based on fuzzy neighbor relationship is studied. Firstly, fuzzy neigh-
bor relationship (FNR) is defined to measure the proximity level between instances, and 
then the fuzzy participation ratio and the fuzzy participation index are defined. Secondly, 
the algorithm for spatial co-location pattern mining based on FNR (CPFNR) is proposed 
by the basic idea of the Join-less algorithm. Moreover, optimizing strategy is adopted for 
the CPFNR algorithm. Finally, the effectiveness of the CPFNR algorithm is verified by 
experiments on the real datasets, and the performance of our algorithm is evaluated on 
the synthetic datasets.    
 
Keywords: data mining, fuzzy set, spatial co-location pattern, fuzzy neighbor relationship, 
fuzzy participation index 
 
 

1. INTRODUCTION 
 

Spatial co-location pattern mining, which is an important branch of spatial data 
mining, has attracted more and more researchers. A co-location pattern is a subset of 
spatial objects whose instances are frequently located together in geography space. Spa-
tial co-location pattern mining discovers the association relation of spatial objects from 
the spatial datasets, helping for human decision-making. For example, epidemiologists 
have found that the Nile crocodile and Egyptian plovers are frequently co-located. Bota-
nists have found that eighty percent of the semi-humid evergreen broad-leaved forests 
grow in places where there is orchid according to the distribution of the symbiotic vege-
tation. Spatial co-location pattern mining has been applied to many applications, includ-
ing species distribution [1], location services [2], public security [3], environmental ma- 
nagement [4] and so on. 

The traditional co-location mining algorithm employed the participation index (PI) 
to measure the prevalence of a co-location pattern [5]. Given a co-location pattern c = {o1, 
o2, …, ok} where o1, o2, …, ok are object types, the participation index of c is defined as 
PI(c) = minoicPR(c, oi), where PR(c, oi) is the participation ratio of the object oi in c,  
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calculated by 

number of distinct instances of  in row instances of 
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number of instances of  
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row instance of c is an instance cliques of c, which is composed of neighbor instances 
whose object types match the types in c. But this PI calculation defined the neighbor 
relationship (R-neighbor) between instances by setting a distance threshold. Namely, 
when the distance between two instances is no less than the distance threshold, the two 
instances satisfy R-neighbor and they are neighbors, otherwise they don’t. This binary 
judgment didn’t take into accounts the proximity level, thus weakening the accuracy and 
validity of the mining results. 
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Fig. 1 (a) shows an example spatial dataset. There are four different objects O = {A, 

B, C, D}. Each instance is marked by its object type and a numeric ID value. For exam-
ple, the instance A.1 is the first instance of object A. Let the distance threshold is 300. 
The solid line between two instances indicates the R-neighbor, and the value on the line 
is the Euclidean distance between the two instances. Object A has five instances, B has 
four instances, C has three instances, and D has four instances. Fig. 1 (b) illustrates the 
table instances (the set of row instance) and the PI values of co-location patterns {B, C} 
and {C, D}. We can get that PI({B, C}) = PI({C, D}). Namely, the co-location {B, C} 
has the same prevalence as the co-location {C, D}. But, obviously, the distances between 
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(b) Table instances and PI&PR values of the co-locations {B, C} and {C, D}. 
Fig. 1. A motivating example. 

(a) An example spatial dataset.

table instance of {B,C} 
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the instances of B and the instances of C are much smaller than those between the in-
stances of C and the instances of D. However, the PI calculation treats them equally 
without considering the proximity level between instances. 

To address the above problem, this paper defines fuzzy neighbor relationship (FNR) 
to measure the proximity level by the fuzzy set theory. But it is a big challenge that min-
ing co-location pattern based on FNR (CPFNR) instead of R-neighbor because the par-
ticipation index (PI) which is defined based on R-neighbor as the metric of the preva-
lence of a co-location pattern will not fit for the co-location pattern based on FNR. And 
the traditional mining methods are not suitable for CPFNR either.  

Our contributions are as follows: (1) We define FNR to measure the proximity level 
between instances; (2) The fuzzy participation ratio and fuzzy participation index are 
defined based on FNR, which are very different from the participation ratio and index in 
the conventional algorithms; (3) The CPFNR algorithm as well as the optimization strat-
egy is proposed; (4) Extensive experiments are conducted to verify that the proposed 
algorithm is effective and the proposed algorithm as well as the optimization techniques 
achieves satisfactory performance. 

The remainder of this paper is organized as follows: Section 2 describes related 
work; Section 3 gives the concepts and properties of co-location patterns based FNR; 
Section 4 proposes the algorithm for co-location pattern mining based on FNR; Section 5 
verifies the effectiveness and the performance of the proposed algorithms; Section 6 
presents the conclusion and future work. 

2. RELATED WORK 

Co-location was originally proposed by Shekhar and Huang for discovering the dis-
tribution of ecological species [5], and the Join-based co-location mining algorithm 
which is an Apriori-like strategy was put forward. But when the datasets is dense or the 
length of the co-location pattern increases, the connections between the table instances 
become huge. The partial join approach [6] and the Join-less algorithm [7] were pre-
sented for reducing the connections between table instances. Wang et al. proposed 3 
Join-less co-location pattern mining approaches [8-10]. The CPI-tree (Co-location Pat-
tern Instances tree) algorithm [8] materialized the neighbor relation of the instances by a 
tree structure. The iCPI-tree algorithm [9] integrated the Apriori pruning and the tree 
structure of CPI-tree. The work in [10-13] studied the problem of maximal co-location 
pattern mining. The incremental mining and competitive pairs mining of co-location pat-
terns were studied in [14, 15]. Prevalent co-location redundancy reduction problem was 
discussed in [16]. The paper [17] presented a new lossless condensed representation of 
prevalent co-location collections. High utility co-location pattern mining methods were 
presented in [18-20]. The research on co-location pattern mining in big data was con-
ducted in [21, 22]. 

Researchers have not only studied the co-location pattern mining methods, but also 
extended the research objects from the classical data to the special data. The co-location 
patterns were mined from spatial uncertain data [23], from the uncertain data with prob-
ability intervals [24] and from interval data [25]. The paper [26] proposed the co-location 
pattern mining algorithm for rare objects.  
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In 1965, the concept of fuzzy set was proposed by Professor Zadeh, which is used 
for studying the problem with vagueness or uncertainty, then it developed rapidly. In 
previous work, the idea of fuzzy set theory has been introduced into the study of spatial 
co-location pattern mining. Our paper [27] proposed a spatial co-location pattern mining 
method for fuzzy objects first. Co-location pattern mining was studied for spatial datasets 
with fuzzy attributes in [28]. However, so far, no research work has been done on ap-
plying the fuzzy set to the neighbor relationship in co-location pattern mining, which will 
be addressed in this paper. The most similar work to ours is [29], in which a kernel-den- 
sity-estimation (KDE) model was adopt to measure the proximity level between instanc-
es. And a KDE-based prevalence index (PI-K) was defined in the SGCT-K algorithm for 
mining the maximal co-location patterns. However, the SGCT-K algorithm has the fol-
lowing limitations: (1) It needs a distance threshold, which is difficult to set, to identify 
neighboring instances; (2) The PI-K is rather small, leading too hard to give a prevalence 
threshold to select the prevalent co-locations; (3) Because only the KDE-based preva-
lence index of a co-location pattern was deduced, the SGCT-K algorithm can’t be ap-
plied to the applications that concern on the prevalence ratio of an object, such as co- 
location pattern mining with rare objects. Based on the membership function, the FNR 
defined in this paper doesn’t require a distance threshold. And compared to the KDE- 
based prevalence index, the fuzzy participation index (ratio) is much more closer to par-
ticipation index (ratio) in classic mining methods. 

3. RELATED CONCEPTS AND PROPERTIES 

This section first defines some concepts, and then the related properties are followed. 

3.1 Basic Definitions 

Spatial objects represent different kinds of events in space. The spatial object set is 
denoted as O = {o1, o2, ..., on}. The object in each specific location is called spatial in-
stance, expressed in i. The collection of the spatial instances are called instance set, de-
noted as S = S1∪S2∪...∪Sn, where Sj(1 ≤ j ≤ n) is the instances set of the spatial object oj. 
In this paper, two representations of a spatial instance are used: (1) Any spatial instance 
in S is denoted as is(1≤ s ≤ |S|); (2) Given an object oj (1 ≤ j ≤ n), an instance of oj is de-
noted as is

j (1≤ s ≤ |Sj|). 
 

Definition 1 (fuzzy neighbor relationship (FNR)): Taking the Euclidean distances D 
between the spatial instances as the domain, where D[0, ), the fuzzy neighbor rela-
tionship FNR is defined as a set of proximity relationship based on the distances D. The 
distance between two specific instances is denoted as dist(.), then we can give the fol-
lowing mapping: : D[0, ), dist()(dist(.)). We say that  determines a fuzzy 
subset FNR on D, and  is the membership function of FNR, (dist(.)) is the member-
ship value of dist(.) which indicates the probability of dist(.) belonging to FNR.

  

 
The FNR maps the distance between two instances to a value in the interval [0,1]. 

Different from the R-neighbor in traditional co-location pattern mining framework, the 
FNR can measure the proximity level between two spatial instances. Namely, the larger 
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the membership value, the higher the proximity level. In practical applications, the mem- 
bership function is often determined by expert experience. In the example datasets in Fig. 
2, we give the membership function  as follows: 
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In Eq. (1), the value 300 is called the boundary distance. According to Eq. (1), in 
Fig. 2, we can get the FNR: (dist(B.1, C.1)) = 0.9, (dist(C.1, D.2)) = 0.25, (dist(A.1, 
B.1)) = 0.8, (dist(A.1, C.2) = 1, (dist(A.2, C.3)) = 0.2, etc.  
 
Definition 2 (-cut set): Given a user-defined membership threshold [0,1], the -cut 
set of FNR is defined as: FNR = {(dist(.)) | (dist(.)D, (dist(.))  }, in which the 
membership values between instances satisfy .  
 
Definition 3 (fuzzy neighbors): Given two spatial instances isS and itS, if (dist(is, 
it))FNR, then we call is and it fuzzy neighbors, denoted as FNeib(is, it). 

 
If two spatial instances are fuzzy neighbors, then the solid line is connected between 

them in the graph. As shown in Fig. 2, they are FNeib(B.1, C.1), FNeib(A.1, C.2), etc. 
A co-location pattern c is a set of spatial objects, i.e., c  O. The number of objects 

in c is called the size of c. For example, in Fig. 2, the co-location {A, B, C} is a size-3 
co-location pattern. A row instance is an instance set in which the instances form a 
clique under the fuzzy neighbors. A row instance of c is denoted as RI(c). The collection 
of all row instances of c is called the table instance of c, denoted as TI(c). For example, 
in Fig. 2, the instance set {A.1, B.1, C.2} is a row instance of the co-location pattern {A, 
B, C}, and the row instances {A.1, B.1, C.2}, {A.3, B.2, C.3} and {A.4, B.4, C.2} con-
stitute the table instance of {A, B, C}. 

 

Fig. 2. The example spatial datasets based on FNR with  = 0.1. 
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3.2 Fuzzy Participation Ratio and Fuzzy Participation Index 

In this section, we define the fuzzy participation ratio and the fuzzy participation 
index based on FNR. Firstly, we give the concept of the contribution of an instance. 
 
Definition 4 (the contribution of an instance): The contribution of an instance refers to 
the contribution to the fuzzy participation index of its object, and is defined as the small-
est value in the membership values between the instance and all its fuzzy neighbors in 
the row instance. The contribution of the instance is(1 ≤ s ≤ t) in the row instance RI(c) = 
{i1, i2, …, it} is expressed as:   

ContriRI(c)(is) = mint
j=1((dist(is, ij)))  js. (2) 

For example, in Fig. 2, the contribution of B.1 in row instance {B.1, C.1} is Con-
tri{B.1,C.1}(B.1) = 0.9. And the contribution of A.1 in row instance {A.1, B.1, C.2} is 
Contri{A.1,B.1,C.2}(A.1) = min((dist(A.1, B.1)), (dist(A.1, C.2))) = 0.8. 

Next, we will introduce the definitions of fuzzy participation ratio and fuzzy partic-
ipation index, the names of which are the same as definitions in [27] but their meanings 
are quite different. Fuzzy participation ratio and fuzzy participation index are defined 
based on FNR in this paper while they are defined for fuzzy objects in [27]. 
 
Definition 5 (fuzzy participation ratio and fuzzy participation index): Given a co-lo- 
cation pattern c = {o1, o2, …, ok}, the fuzzy participation ratio FPR(c, ou) of the object 
ouc(1 ≤ u ≤ k) in c is a fraction, of which the molecule is the sum of the contribution of 
the instances of ou in the table instance of c, and the denominator is the number of the 
instances of ou. i.e.,  

( )
( ), ( ) ( )

( )

( , ) .
| ({ }) |

s
u

s
RI c u

i RI c RI c TI c
u

u

Contri i

FPR c o
TI o

 


    (3) 

In Eq. (3), when an instance of ou appears in more than one row instances, only the larg-
est contribution value is summed in the summation expression. 

The fuzzy participation index of the co-location pattern c is the smallest fuzzy par- 
ticipation ratio of the object in c. i.e., 

{ }),(min=)( 1= u
k
u ocFPRcFPI .    (4) 

Given a user-defined fuzzy prevalence threshold min_fprev, a co-location pattern 
c is prevalent if FPI(c) ≥ min_fprev. 

For example, in Fig. 2, let min_fprev = 0.4. The table instance of the co-location 
pattern c = {A, B, C} is {{A.1, B.1, C.2}, {A.3, B.2, C.3}, {A.4, B.4, C.2}}. The con-
tribution of A.1 in {A.1, B.1, C.2} is Contri{A.1,B.1,C.2}(A.1) = 0.8, the contribution of A.3 
in {A.3, B.2, C.3} is Contri{A.3,B.2,C.3}(A.3) = 0.8, and the contribution of A.4 in {A.4, B.4, 
C.2} is Contri{A.4,B.4,C.2}(A.4) = 0.5. So the fuzzy participation ratio of the object A in c is 

FPR(c, A) = 

0.8 0.8 0.5
5

 
 = 0.425. Similarly, we can get FPR(c, B) = 0.55 and FPR(c, C) = 

0.53 respectively. Therefore the fuzzy participation index of c is FPI(c) = min(FPR(c, A), 
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FPR(c, B), FPR(c, C)) = 0.425, then we can get that c is prevalent. We can also obtain 
that FPI({B, C}) = 0.575 and FPI({C, D})=0.3125. Compared to the result PI({B, C}) =  
PI({C, D}) = 3/4 in the motivating example in Fig.1, the FPI could give a different result, 
FPI({B, C}) > FPI({C, D}). It can be seen that, because the calculation of FPI takes into 
accounts the proximity levels between instances, the prevalence of the co-location pat-
terns can be better differentiated. 

In the definition of the fuzzy participation ratio, when all of the membership values 
between instances are 1, the contribution of each instances is “1”, in this case, the fuzzy 
participation ratio is the participation ratio in the classical algorithm. When the member-
ship value between instances is in the interval (0,1], the higher the membership value, the 
much the contribution, the larger the fuzzy participation ratio. Therefore, the definition 
of fuzzy participation ratio is reasonable. 

3.3 Properties 

The fuzzy participation ratio and the fuzzy participation index possess the anti-mo- 
notonicity property. 
 
Lemma 1: Fuzzy participation ratio and fuzzy participation index are monotonically 
non-increasing with increases in the size of the co-location. 
 
Proof: Given a size-k co-location pattern c = {o1, o2, …, ok} and a size-k+1 co-location c 
= cok+1, for any object ou(1 ≤ u ≤ k), if an instance of ou contributes to the fuzzy partici-
pation ratio of ou in c, it certainly does so in c, but not vice versa. So the fuzzy participa-
tion ratio is monotonically non-increasing with increases in the size of the co-location. 
As the fuzzy participation index is the minimum participation ratio of all the objects in 
the co-location, it is also monotonically non-increasing with increases in the size of the 
co-location. 
 
Theorem 1: If a co-location pattern c is prevalent, all of its subsets cc are prevalent; 
conversely, if c is not prevalent, all of its supersets cc are also not prevalent. 
 
Proof: According to Lemma 1, the fuzzy participation index of the co-location pattern c 
is no larger than the fuzzy participation index of any subset of c, and it is no less than the 
fuzzy participation index of the superset of c. Therefore, if c is prevalent, all of its sub-
sets are prevalent; if c is not prevalent, all of its supersets are also not prevalent. 

4. CO-LOCATION PATTERNS MINING BASED ON FNR 

In this section, an algorithm for the co-location pattern mining based on FNR (CPF- 
NR) is designed by improving the classic Join-less algorithm [7]. And we give a strategy 
to optimize the algorithm. 

4.1 The Algorithm for Co-location Pattern Mining Based on FNR (CPFNR) 

The CPFNR algorithm first constructs the fuzzy star neighbor set, and then itera- 
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tively executes the following steps: Generate the candidate co-location patterns; Collect 
star instances of the candidate co-location patterns; Prune the candidate co-locations; 
Check the clique relationships of the star instances; Select the co-location patterns whose 
fuzzy participation index is no less than the fuzzy prevalence threshold. 

 
(A) The Star Model 

Similar to the star model in the Join-less algorithm, in the CPFNR algorithm, the 
star model is used to store the fuzzy star neighbour set. 

 
Definition 6 (fuzzy star neighbor): Given an ouO(1 ≤ u ≤ n), for any instance is

u (1 ≤ s ≤ 
|Su|), the fuzzy star neighbor of is

u is defined as: 

))},(∧>(∨=|{=)( t
v

s
u

s
u

t
v

t
v

s
u iiFNeibuviiiiSNeib     (5) 

where ou is referred as the central object and is
u is the central instance.  

According to Definition 6, the fuzzy star neighbor of an instance is a collection of 
the instance and its fuzzy neighbors, requiring that the type of its fuzzy neighbor is larger 
than the type of the instance itself in the dictionary order. Unlike the star model in the 
Join-less algorithm, the star model in the CPFNR algorithm stores the star neighbor of 
the instance as well as the membership values between the instance and its star neighbor. 
For example, in Fig. 2, the star neighbor of the instance A.1 is {A.1, (B.1 0.8), (C.2 1), 
(D.2 0.7)}, where the membership value of A.1 and B.1 is 0.8, of A.1 and C.2 is 1 and of 
A.1 and D.2 is 0.7. 

Given a collection of instances I = {i1, i2, ..., im}, if all instances excluding i1 are 
fuzzy neighbors of the instance i1 in I, I is called a star instance of the co-location pat-
tern which is composed of the object types of the instances in I. For example, in Fig.2, 
the star neighbor {A.2, (B.3 0.6), (C.3 0.2)} of A.2 is a star instance of the co-location 
{A, B, C}. The star instance of the co-location pattern c is denoted as SI(c), and the col-
lection of SI(c) is called the star table instance, recorded as STI (c). 

 
(B) Coarse Pruning 

In order to reduce the complexity of checking the clique relationships of the star in-
stance, we prune the candidate co-locations by the upper bound of fuzzy participation 
index on the star instance level. In the star instance, it is easy to get the contribution of 
the central instance; for the non-central instances, we can only get the membership value 
between it and the central instance, so we can’t compute the contribution of it. But we 
treat the membership value between it and the central instance as the contribution of it 
instead. Then we can compute a fuzzy participation ratio of its object, which is called the 
upper bound of fuzzy participation ratio because the star instance may be not true row 
instance. So we can give the following definitions. 
 
Definition 7 (the upper bound of fuzzy participation ratio and the upper bound of 
fuzzy participation index): Given a size-k candidate co-location pattern c = {o1, o2, …, 
ok}, on the star instance level, for any object ouc(1 ≤ u ≤ k), the upper bound fuzzy par-
ticipation ratio of ou is denoted as U_FPR(c, ou), which is defined as follows: 
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In Eq. (6), when an instance of ou appears in more than one star instances, only the larg-
est contribution value is summed in the summation expression. 

The upper bound of the fuzzy participation index of the co-location pattern c, 
denoted as U_FPI(c), and is defined as the minimum upper bound of the fuzzy participa-
tion ratio of all objects in c. Namely,  

)},(_{min=),(_ 1= u
k
uu ocFPRUocFPRU .    (7) 

Theorem 2: For any co-location pattern c, if U_FPI(c)  min_fprev, then c could be 
pruned. 
 
Proof: Given a size-k co-location c = {o1, o2, …, ok}, for any object ouc(1 ≤ u ≤ k), FPR 
(c, ou) ≤ U_FPR(c, ou), and )},(_{min≤)},({min=)( 1=1= u

k
uu

k
u ocFPRUocFPRcFPI = U_ 

FPI(c). So if U_FPI(c) < min_fprev, we can get FPI(c) < min_fprev, then c could be 
pruned. 
 

For example, in Fig. 2, let min_fprev = 0.5. The star instance set of the co-location 
pattern c = {A, B, C} is {{A.1, B.1, C.2}, {A.2, B.3, C.3}, {A.3, B.2, C.3}, {A.4, B.4, 
C.2}}. The upper bound of the fuzzy participation ratio of the object A, B and C in c are 

0.8 0.5 0.8 0.2
_ ( ,A) 0.46

5
U FPR c

  
  , 

0.8 0.6 0.8 0.6
_ ( ,B) 0.7

4
U FPR c

  
  , 

1 0.9
_ ( ,C) 0.63

3
U FPR c


    

respectively, then the upper bound of the fuzzy participation index of c is U_FPI(c) = 0.46 
< min_fprev = 0.5, and c could be pruned. 
 
(C) Description for the CPFNR Algorithm 

The description for the CPFNR algorithm is as following: 
 

Algorithm 1: the CPFNR algorithm 
Input: O = {o1, o2, ..., on}: spatial object set, S: spatial instance set, : membership func-
tion, min_fprev: fuzzy prevalence threshold, : membership threshold. 
Output: co-location patterns with FPI ≥ min_fprev 
Variables: k: size of a co-location pattern, FSN: fuzzy star neighbor set, Ck: a set of size-k 
candidate co-locations, SIk: star instance set of size-k candidate co-locations, Pk: a set of 
size-k prevalent co-location patterns, TIk: table instance of size-k candidate co-locations. 
Steps: 
(1)  FNR = get_membership_value(S, );   
(2)  FSN = gen_star_neighbor (O, S, FNR);  
(3)  P1 = O;               
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(4)  while(not empty Pk-1) do 
(4.1) Ck = gen_candidate_co-locations(Pk-1);  
(4.2) SIk = get_star_instances(Ck, FSN);   
(4.3) if k = 2 then TIk = SIk; 

else 
{  

Ck = prune_candidate_co-locations(Ck, SIk, min_fprev);  
TIk = check_clique_instance(Ck, SIk);  

}  
(4.4) Pk= select_prevalent_co-locations(Ck, TIk, min_fprev);  
(4.5) k = k+1; 
end do 
 

(D) The Computational Complexity Analysis 
The detail analysis of the computational complexity of the classic Join-less algo-

rithm is described in [7], in which the computational complexity of the Join-less algo-
rithm Tjl = Tstar_neighborhood(S) + Tjl(2) +

2

( )jl
k

T k

 , where Tstar_neighborhood(S) represents the  

cost in constructing the star neighbor set, and Tjl(k)(k ≥ 2) represents the cost for finding 
size-k co-location patterns. Compared to the Join-less algorithm, the CPFNR algorithm 
cost more time to compute the membership values between instances and more memory 
to storage them in constructing the fuzzy star neighbor set. For finding size-k(k ≥ 2) 
co-location patterns, the CPFNR algorithm spend more time on scanning the fuzzy star 
neighbor set to compute the upper bound of fuzzy participation index of the candidate 
co-locations for coarse pruning and the fuzzy participation index of the candidate co- 
locations for selecting the prevalent co-locations. 

4.2 Optimizing Strategy 

Although the CPFNR algorithm has shown good performance which is shown by 
the experiments in the later section, we can still provide a strategy to further improve the 
efficiency. In the steps (4.3) and (4.4) of the CPFNR algorithm, we need to scan the star 
neighbor set to get the contribution of the instance for computing the fuzzy participation 
index of its object, which will be time-consuming. We will give a tactics to improve the 
efficiency of these two steps. 
 
Theorem 3: Given a co-location pattern c = {o1, o2, …, ok}, for any object ou(1  u  k) 
in c, if FPR(c, ou) < min_fprev, then c is not prevalent and could be pruned. 
 
Proof: Because FPI(c) = mink

u=1{FPR(c, ou)}  FPR(c, ou), if FPR(c, ou) < min_fprev, then 
FPI(c) < min_fprev, we can get c is not prevalent, and it could be pruned. 

According to Theorem 3, once we acquire that the fuzzy participation ratio of some 
object of the co-location pattern is less than min_fprev, we can prune the co-location 
immediately without having to calculate the fuzzy participation ratio of all the other ob-
jects for the fuzzy participation index of the co-location. It will reduce the time spent on 
scanning the star neighbor set and improve the efficiency of the algorithm.  
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Fig. 3. The real datasets. 

5. EXPERIMENTS 

In this section, we perform experiments to verify the effectiveness and efficiency of 
the proposed algorithm on both real and synthetic datasets. All the algorithms are imple- 
mented in Java and run on a normal PC with core i7 3.40 GHz CPU and 16G memory. 

5.1 Datasets 

Fig. 3 shows the two real datasets used in our experiments. The summary of the two 
real datasets is demonstrated in Table 1. The datasets Real-1 is the vegetation distribu-
tion datasets of the Three Parallel Rivers of Yunnan Protected Area, which has 31 spe-
cies of plants with 336 instances as shown in Fig. 3 (a). The datasets Real-2 is also the 
vegetation distribution datasets of the Three Parallel Rivers of Yunnan Protected Area. It 
has less objects but more instances than Real-1. The distribution of the datasets Real-2 is 
shown in Fig. 3 (b). Both of the two real datasets are normalized in the range of 2000* 
2000 in the experiments. 

 

 
(a) Real-1 

 
 (b) Real-2 
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Table 1. Real datasets summary. 
Dataset Number of objects Number of instances (Max, Min) 
Real-1 31 336 (62,3) 
Real-2 15 3913 (1536,6) 

(Max, Min): the maximum and minimum number of the object’s instances in the real datasets. 

 
The synthetic datasets used in the experiments are produced by a synthetic data 

generator similar to that used in the paper [5], distributed in a range of 2000*2000.  
 

 
                (a) On Real-1                             (b) On Real-1 

 
(c) On Real-1                             (d) On Real-2 

 
(e) On Real-2                             (f) On Real-2 

Fig. 4. The frequency histograms of the three prevalence metrics of the size-2 co-locations on the 
two real datasets. 
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5.2 The Effectiveness of the CPFNR Algorithm 
 
(A) Comparisons of the prevalence metrics at the macro-level 

We conduct experiments on the real datasets to compare the prevalence metrics of 
the CPFNR algorithm with that of the other two algorithms, namely, the classic Join-less 
algorithm and the SGCT-K algorithm. The prevalence metrics of the CPFNR algorithm, 
the classic Join-less algorithm [7] and the SGCT-K algorithm [29] are the fuzzy partici-
pation index (FPI), the participation index (PI), and the participation index based on 
kernel density evaluation (PI-K), respectively. We set the boundary distance in the mem- 
bership function of FNR to be equal to the distance threshold of the Join-less algorithm 
and the SGCT algorithm for verifying the effectiveness of the CPFNR algorithm. 

As shown in Table 2 and Fig. 4, the three kinds of prevalence metrics have different 
ranges when the boundary distance of FNR and the distance threshold of Join-less or 
SGCT-K are the same. Table 2 lists the minimum, the maximum and the average values 
of the PI, the FPI and the PI-K of the size-2 co-locations on the two real datasets. It can 
be seen that both the maximum and the average values of the FPI are smaller than those 
of the PI. The reason is that the participation ratio (PR) of an object in the Join-less algo-
rithm is computed by counting the number of times its instances occur in the row in-
stances without taking into account the proximity level between instances. However, the 
fuzzy participation ratio of an object is calculated based on the contribution of its in-
stances, which is obtained from the membership values between it and its fuzzy neigh-
bors. Accordingly, for an instance that appears in a row instance, in the former case, the 
contribution to the participation ratio is assigned the value of 1, while in the latter case, 
the contribution to the fuzzy participation ratio is assigned to the value in the interval 
[0,1]. Therefore, for the same co-location pattern, the FPI is always no larger than the PI. 
Table 2 and Fig.4 also show that the FPI is close to the PI while the PI-K is so small that 
there is great difference between the PI-K and the PI. 
 

Table 2. The extreme values of the prevalence metrics of the size-2 co-locations on the 
real datasets. 

Datasets 
PI FPI PI-K 

Min Max AVG Min Max AVG Min Max AVG 
Real-1 0 0.7692 0.2174 0 0.5871 0.1365 0 0.1649 0.0221 
Real-2 0 0.8176 0.1841 0 0.6941 0.1168 0 0.0501 0.0034 
 

Nevertheless, from Fig. 4, It can be observed that, the three prevalence metrics ac-
cord the exponential-like distribution on the whole. The distribution of the FPI is much 
more similar to that of the PI than the PI-K. In table 2, the same characteristics are shown 
in the maximum and minimum values of the three metrics. The maximum values of the 
three in Real-1 are both smaller than those in Real-2, while the average values of the 
three in Real-1 are both larger than those in Real-2. From the macro point of view, we 
can draw a conclusion that the FPI has the similar effects in mining co-location patterns 
as the PI and the PI-K do. 

 
(B) Comparisons of the prevalence metric values at the micro-level 
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Table 4. The ranks of the three metrics of the top 10 size-2 co-locations. 

Table 3. The plants in top 10 size-2 co-locations in result of the CPFNR algorithm. 

We will analyze the differences among the three prevalence metrics in detail by the 
mining results on the datasets Real-1. Table 3 lists the plants in the top 10 size-2 co-loca- 
tion patterns mined by the CPFNR algorithm, which are listed in Table 4, and the sym-
bols for each plant used in the experiments. Table 4 lists the FPI, the PI and the PI-K as 
well as the ranks of the 10 prevalent co-location patterns in the results of the three min-
ing methods. As shown in Table 4, the ranks of the FPI and the PI-K of the 10 co-loca- 
tion patterns are different from that in the Join-less algorithm. Compared to the ranks of 
PI-K, the rank of FPI is more similar to that of PI. The co-location patterns {A, L} and 
{A, I}(marked by gray background) share the same prevalence level in the results of the 
Join-less algorithm but have different prevalence levels in the results of the CPFNR al-
gorithm or the SGCT-K algorithm. The same thing happens to the co-locations {B, X} 
and {B, E} (marked by gray background). Obviously, this is because the influence of 
distances between instances on participation ratio is not considered in the Join-less algo-
rithm, while the CPFNR algorithm uses the fuzzy set theory to measure the proximity 
level or the SGCT-K algorithm constructed the KDE model among the instances. Next 
we will describe how these happen in the CPFNR algorithm and the Join-less algorithm 
in detail (the explanations for the SGCT-K algorithm was discussed in [29]).  

Table 5 gives the (fuzzy) participation ratio((F)PR) of the objects contained in the 
four co-location patterns mentioned above(marked by gray background in Table 4) for 
the CPFNR algorithm and the Join-less algorithm. We select the co-locations {B, X} and 
{B, E} as the representative to describe the problem. As we know, the FPR of an object is 
determined by the contribution of its instances in the row instances and the total number 
of instances. In Table 5, for the same object B, it has the same prevalence level in the   

 

 
 

Tabs Name of plants Tabs Name of plants 
A Abies georgei L Fritillaria delavayi franch 
B Taxus yunnanensis S Pseudotsuga forrestii craib 
E Yunnan Torreyn X Cephalotaxus lancceolata 
I Wake robin Z Megacarpaea delavayi Franch 
J Saussurea gossypiphora c Cordyceps sinensis 
K Magnolia sieboldii   

Patterns 
CPFNR Join-less SGCT-K 

FPI Rank PI Rank PI-K Rank 
{L, c} 0.5871 1 0.6667 10 0.0684 21 
{L, Z} 0.5702 2 0.625 15 0.0846 13 
{A, L} 0.5605 3 0.75 2 0.0703 19 
{B, X} 0.5335 4 0.6522 11 0.0451 55 
{A, J } 0.5078 5 0.6923 8 0.0627 32 
{E, X} 0.4874 6 0.7222 7 0.0503 46 
{A, I} 0.4749 7 0.75 2 0.048 51 
{B, E} 0.4727 8 0.6522 11 0.0417 67 
{A, Z} 0.4611 9 0.6154 16 0.0410 70 
{A, K} 0.4601 10 0.7692 1 0.0757 14 
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Table 5. The (F)PR for the objects in the representative patterns. 
Patterns the FPR for CPFNR the PR for Join-less 

{A, L} 
FPR{{A, L}, A}=0.5604 

FPR{{A, L}, L}=0.5623 

PR{{A, L}, A}=0.7692 

PR{{A, L}, L}=0.75 

{A, I} 
FPR{{A, L}, A}=0.4832 

FPR{{A, L}, I}=0.4749 

PR{{A, I}, A}=0.7692 

PR{{A, I}, I}=0.75 

{B, X} 
FPR{{B, X}, B}=0.5335 

FPR{{B, X}, X}=0.7069 

PR{{B, X}, B}=0.6522 

PR{{B, X}, X}=0.84615 

{B, E} 
FPR{{B, E}, B}=0.4726 

FPR{{B, E}, E}=0.5416 

PR{{B, E}, B}=0.6522 

PR{{B, E}, E}=0.7222 

 

Join-less algorithm but has different prevalence levels in CPFNR algorithm. The only 
difference is that the distances between the instances of the object B and their fuzzy 
neighbors with object type X are different from that between the instance of B and their 
fuzzy neighbors with object type E, thus the membership values of different distance, 
which will be transformed to the contribution to the participation ratio of B, will be di-
verse in this two case. Fig. 5 shows the frequency of the distances between B’s instances 
and their fuzzy neighbors with object type X or E for the co-locations {B, X} and {B, E}. 
The average distances are 66.13 for {B, X} and 80.53 for {B, E}, respectively. The 
smaller the distance, the larger the membership value. Therefore, there is FPR({B, X}, B) 
> FPR{{B, E}, B}. Further, it can be obtained that FPI({B, X}) > FPI({B, E}), which is 
a more accurate result than PI({B,X})=PI({B, E}). 
    The above analysis reveals that the CPFPR algorithm is more accurate than the 
Join-less algorithm. The co-location pattern {L, c} (marked by underlined text) in Table 
4 ranks first in CPFNR while ranks tenth in Join-less. Namely, the plants L and c are 
frequently observed together than other pair of plants actually. This result is more valua-
ble for the Botanists to make decisions. 

 

 
Average = 66.13                            Average = 80.53 

(a) {B, X}                                  (b) {B, E} 
Fig. 5. The frequency histograms of the distances for co-locations {B, X} and {B, E}. 

Legend:          the frequency of the distances 
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Table 6. the NRR of the three metrics on the two real datasets. 
Patterns The NRR of FPI The NRR of PI The NRR of PI-K 
Real-1 89.47 7.5 99.445 
Real-2 99 87.878 98 

 

From Table 5 and Fig. 5, we have come to conclusion that, it is more possible to 
share the same prevalence level using the PI than the FPI or the PI-K. To a certain extent, 
the FPI can distinguish the effects of different distances between instances that contrib-
ute to the fuzzy participation ratio. We formulate the non-repeat rate (NRR) of the prev-
alence metrics to evaluate the tree metrics as follows: 

*100%non

T

n
NRR

n
  

where, nT is the total number of the size-2 co-locations and nnon is the number of co-loca- 
tions with non-repeat prevalence levels in the size-2 co-locations. A higher NRR indi-
cates a more refined result. 

Table 6 lists the NRRs of the three metrics on the two real datasets. We can see that 
the NRR of PI is the lowest of the three. The NRRs of FPI and the PI-K are much more 
higher than that of the PI. With more objects but less instances in Real-1, the NRR of PI 
on Real-1 is pretty small while both the FPI and PI-K earn a high score, which indicates 
that our algorithm is more stable than the Join-less algorithm.  

5.3 Performance Evaluation of the CPFNR Algorithm  

Although the SCGT-K algorithm is the most similar to the CPFNR algorithm, it 
aimed to mine the maximal co-locations which is a lossy compression form of the mined 
co-location patterns, and the prevalence metrics PI-K of SGCT-K is extremely small (the 
FPI is several times larger on average than the PI-K), such that we couldn’t compare the 
CPFNR algorithm with it for verifying the efficiency of CPFNR. We evaluate the per-
formance of the CPFNR algorithm and its optimizing strategy (O_CPFNR) on synthetic 
datasets by changing the number of instances, the fuzzy prevalence threshold and the 
membership threshold. We also examine the scale of the results of the CPFNR algorithm. 
We also compare the number of the mined prevalent co-location patterns of the CPFNR 
algorithm and the classic Join-less algorithm by changing the number of instances, the 
(fuzzy) prevalence threshold and the membership threshold. 

The default values of the parameters in the experiments are as follows: the number 
of spatial objects is 20, the number of instances is 80000, the fuzzy prevalence threshold 
min_fprev is 0.4, and the membership threshold α is 0.001, the distance threshold in the 
Join-less algorithm is set to be equal to the boundary distance of FNR. 
 
(A) The efficiency of the CPFNR algorithm 

Effect of the number of instances. We first consider the influence of the different 
number of instances on the performance of the two algorithms. As you can see from Fig. 
6 (a), both of the two algorithms show good performance. The running time of the two 
algorithms increases with the number of instances increasing. The CPFNR algorithm  
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costs more running time than the O_CPFNR algorithm, and the running time of the for-
mer grow faster than that of the latter, which indicates that the improving method per-
form better. We can get that the O_CPFNR algorithm reduces the time of CPFNR algo-
rithm by up to 14.2%. 

Effect of min_fprev. Then we study the effect of the different fuzzy prevalence 
threshold min_fprev on the performance of the two algorithms. In Fig. 6 (b), as min_ 
fprev varies from 0.8 to 0.2, the running time of the two algorithms increases. And the 
running time of the O_CPFNR algorithm is less than that of the CPFNR algorithm all the 
time. When min_fprev = 0.2, the O_CPFNR algorithm reduces the time of CPFNR algo-
rithm by up to 14%. 

Effect of . Finally we study the impact of the membership threshold  by varying 
 from 0.01 to 0.5. As shown in Fig. 6 (c), with  increasing, the running time of the two 
algorithms decreases. The reason is that FNRα becomes small with  increasing, which 
means that the fuzzy neighbors involved in the mining process decrease. So the running 
time of the two algorithms decreases naturally. And the O_CPFNR algorithm reduces the 

(a) Number of instances                           (b) min_fprev 

(c) Membership threshold                        (d) Number of instances 

(e) min_fprev                           (f) Membership threshold  
Fig. 6. The execution time and number of co-location patterns on different parameters. 
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time of CPFNR algorithm by up to 16%. 
 

(B) Comparisons of the scale of the results  
As fuzzy participation index in the CPFNR algorithm is not greater than participa-

tion index in the Join-less algorithm, the prevalent co-location set generated by CPFNR 
should be a subset of the result of Join-less, that is, if a co-location pattern appears in the 
result of CPFNR, it must also be in the result of Join-less, otherwise it is not. By the ex-
perimental results of the CPFNR and Join-less algorithms under different parameters, we 
evaluate the number of the prevalent co-location patterns generated of the two algo-
rithms.  

Effect of the number of instances. The effect of the number of instances on the 
number of prevalent co-location patterns generated by two algorithms is considered first. 
The number of instances increased from 20000 to 100000. As can be seen from Fig. 6 
(d), the number of patterns generated by the two algorithms increases with the increase 
of the number of instances. Because the fuzzy participation index in the CPFNR algo-
rithm is no larger than the participation index in the Join-less algorithm, resulting in the 
number of prevalent co-location patterns mined by the former will be less than by the 
latter when the other parameters are the same. 

Effect of min_fprev. Next, the number of prevalent co-location patterns generated 
on different min_fprev by two algorithms is studied. In Fig. 6 (e), we can observe that, as 
min_fprev varies from 0.8 to 0.2, the number of patterns generated by the two algorithms 
grow faster. Obviously, the growth rate of the CPFNR algorithm is much faster than the 
Join-less algorithm. 

Effect of . In Fig. 6 (f), as the membership threshold α varies from 0 to 0.5, the 
number of prevalent co-location patterns mined by the Join-less algorithm remains the 
same, while the number of prevalent patterns obtained by the CPFNR algorithm de-
creases. The reason is that the Join-less algorithm does not take the proximity level into 
account, then the change of  will not affect its results; as the increase of , FNR be-
come small, resulting in the number of prevalent co-location patterns decreases. In addi-
tion, the number of the prevalent patterns produced by the CPFNR algorithm decreases 
slowly, this is because the membership values with low value are cut down in FNR, of 
which the impact on the fuzzy participation index is little, so the number of the prevalent 
patterns generated decreases slowly. 

6. CONCLUSIONS 

Although lots of the co-location pattern mining approaches were proposed, most of 
them neglected the proximity level between instances. This paper defines the fuzzy 
neighbor relationship (FNR) to measure the proximity level and proposes an efficient 
algorithm based on FNR (CPFNR). The experimental results demonstrate that our algo-
rithm can distinguish the effects of different distances between instances, which will con- 
tribute to the fuzzy participation ratio (index). And due to the anti-monotonicity of the 
fuzzy participation index of the co-location pattern, our algorithm achieves good perfor-
mance. This work is more valuable for human decision in practical application. The fu-
ture work is to study the co-location pattern mining with maximum membership threshold. 
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