
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 34, 205-223 (2018) 
DOI: 10.6688/JISE.2018.34.1.13 

 

205  

Reaching Optimal Interactive Consistency 
in a Fallible Cloud Computing Environment 

 
SHU-CHING WANG1, SHUN-SHENG WANG2 AND KUO-QIN YAN3 

1Department of Information Management 
2Department of Industrial Engineering and Management 

3Department of Business Administration 
Chaoyang University of Technology 

Taichung, 413 Taiwan 
E-mail: {scwang; sswang; kqyan}@cyut.edu.tw 

 
Nowadays, network bandwidth and hardware technology are developing rapidly and 

resulting in the vigorous development of the Internet. However, cloud computing, an In-
ternet-based development in which dynamically scalable and often virtualized resources 
are provided as a service over the Internet has become a significant issue. In a cloud- 
computing environment, the fault-tolerance is an important research topic. To cope with 
the influence from faulty components, reaching a common consistency at the presence of 
faults before performing some special tasks is essential. However, the previous protocols 
for the interactive consistency problem of cloud computing are not enough for a cloud- 
computing environment with hybrid dual fallible components that nodes and communi-
cation media maybe in dormant or malicious fault simultaneously. In this study, the in-
teractive consistency problem with a hybrid dual fallible cloud computing topology is re-
visited. The new proposed protocol can make all fault-free nodes reach consistency with 
minimal rounds of message exchanges and tolerate the maximal number of allowable 
dormant and malicious faulty nodes and communication media in a cloud computing en-
vironment.      
 
Keywords: interactive consistency problem, fault tolerance, reliability, cloud computing, 
distributed computing   
 
 

1. INTRODUCTION 
 
As network bandwidth and quality outstrip computer performance, various commu-

nication and computing technologies previously regarded as being of different domains 
can now be integrated, such as telecommunication, multimedia, information technology, 
and construction simulation [9]. Thus, applications associated with network integration 
have gradually attracted considerable attention. Similarly, cloud computing facilitated 
through distributed application over networks has also gained more recognition [3]. 
Cloud computing has greatly encouraged distributed systems design and practiced to 
support user-oriented service applications [9]. However, distributed systems have grown 
rapidly in both size and number. In a distributed computing system, nodes allocated to 
different places or in separate units are connected together so that they collectively may 
be used to greater advantage. In many cases, reaching a common consistency in the 
presence of faulty components is the central issue of fault-tolerant distributed computing, 
because many applications require such consistency [3]. 

Received June 29, 2016; revised September 25, 2016; accepted October 4, 2016.  
Communicated by Ren-Hung Hwang. 
 



SHU-CHING WANG, SHUN-SHENG WANG AND KUO-QIN YAN 

 

206

 

Currently, cloud computing can ensure increased ability to use the low-power nodes 
to achieve high reliability [5]. Furthermore, many applications of cloud computing pro-
vide the convenience of users. For users, the system must provide better reliability and 
fluency [9]. Therefore, reliability is one of the most important aspects of cloud compu-
ting. To ensure that a cloud-computing environment is reliable, a mechanism to allow a 
set of nodes to reach an agreed value is necessary. 

The Byzantine Agreement (BA) problem first studied by Lamport et al. is a well- 
known paradigm for the problem of achieving reliability in a distributed network of 
nodes. The definitions of the BA problem are [4]: (1) There are n nodes (n  4), of which 
at most one-third of the total number of nodes could fail without breaking down a work-
able network; (2) The nodes communicate with each other through message exchange in 
a fully connected network; (3) The message’s sender is always identifiable by the re-
ceiver; (4) A node is chosen as a source, and its initial value vs is transmitted to other 
nodes for executing the protocol; (5) The faulty component considered is node only. 

A closely related sub-problem, the interactive consistency problem (IC problem) 
has been studied extensively [2]. The definition of IC problem is to make the fault-free 
nodes in an n-node distributed system reach interactive consistency. Each node chooses 
an initial value and communications with the others by exchanging messages. There is 
interactive consistency in that each node i has its initial value vi and agrees on a set of 
common values. Therefore, interactive consistency has been achieved if the following 
conditions are met [2]: 

 
Consistency: Each fault-free node agrees on a set of common values V = [v1, v2, …, vn]. 
Validity: If the initial value of fault-free node i is vi, then the ith value in the com- 

mon vector V should be vi. 
 
However, cloud computing is an Internet-based development. It is a style of compu-

ting in which dynamically scalable and often virtualized resources are provided as a ser-
vice over the Internet. Nevertheless, in a cloud-computing environment, the connected 
topology is not very significant. In previous protocol proposed by Wang et al., the faulty 
component is assumed node only [12, 13]. However, the communication medium fault 
was assumed as the node fault in [12, 13]. And, the fault-free nodes might be treated as 
faulty nodes due to their failed communication media [12, 13]. This assumption is un-
reasonable, for it violates the definition of interactive consistency that all fault-free nodes 
should agree on a common value. In additional, the topology of the previous research 
results is a fully connected network [4]. However, the topology does not meet the current 
network topology that cloud computing environment used. 

In this study, the IC problem is to be solved on a cloud-computing environment. In 
addition, the types of faulty components are assumed to be in the hybrid where faults can 
come from both the nodes and the communication media, and the types of faults are as-
sumed to be in the dual where faults can be dormant or malicious. The proposed protocol, 
is named Optimal Cloud Consistency Protocol (in short OCCP) that can use a minimum 
number of message exchanges and can tolerate a maximum number of allowable faulty 
components to make each fault-free node reach a common interactive consistency in the 
cases of node failure, communication medium failure, and both node and communication 
medium failure.  



REACHING OPTIMAL INTERACTIVE CONSISTENCY IN A FALLIBLE CLOUD COMPUTING ENVIRONMENT 207

The rest of this paper is organized as follows. Section 2 will serve to introduce the 
basic assumption of the interactive consistency. Then, the proposed protocol OCCP will 
be brought up and illustrated in detail in Section 3. In Section 4, gives an example of 
executing the proposed protocol. Section 5 is responsible for proving the correctness and 
complexity of our new protocol. Finally, Section 6 gives conclusions of this research. 

2. BASIC ASSUMPTIONS OF INTERACTIVE CONSISTENCY 

Before the IC problem can be solved, two basic assumptions must be made and 
clearly defined in advance. They are the network structures and the failure types of faulty 
components. 

2.1 The Network Structure 

With the advancement and development of various technologies, computing prob-
lems become more complicated and larger [9]. A cloud-computing environment allows a 
user faster operation of Internet applications. The majority of cloud-computing infra-
structure consists of reliable services delivered through data centers and built on servers 
with different levels of virtualization technologies [5]. The services are accessible any-
where that has access to networking infrastructure. Commercial offerings must meet the 
quality of service requirements of customers, and typically offer service-level agree-
ments [9]. Therefore, a distributed system must be having high stability to handle in-
stances where many users utilize a given environment. In this section, the topology of 
cloud computing is discussed. 

According to the researches of [1, 10], a two-layer cloud topology is used in this 
study. The topology of two-layer cloud environment is shown in Fig. 1. The topology is 
composed of two layers, as follows: 
 
(1) The nodes in Layer-A receive the service requests from users of different types of 

applications. 
 

 
Fig. 1. The topology of two-layer cloud computing environment. 



SHU-CHING WANG, SHUN-SHENG WANG AND KUO-QIN YAN 

 

208

 

(2) Some nodes form service blocks in Layer-B, where each service block provides a 
specific application service. According to the properties of nodes, the nodes are clus-
tered to service block Bi where 1 ≤ i ≤ gn and gn is the total number of service blocks 
in Layer-B. 

(3) For the reliable communication, the broadcast network is used to connect the nodes 
between Layer-A and Layer-B. In Layer-A, each node must forward the message to 
all nodes in the corresponding service block of Layer-B.   

2.2 Failure Types 

In previous works, researchers used to assume that the faulty components in the IC 
problem were nodes only [11]. In reality, it is also possible for any communication me-
dium to be failed. From this viewpoint, to treat a communication medium fault as a node 
fault violates the definition of the IC problem because the innocent nodes will be ex-
cluded from the common consistency when communication medium faults are treated as 
node faults. To deal with this problem, a communication medium fault should not be 
taken for a node fault. 

However, network components may not always work well. A node is said to be 
fault-free if it follows protocol specifications during the execution of a protocol; other-
wise, the node is said to be faulty. The symptoms of node failure can be classified into 
two categories. There are dormant fault and malicious fault (also called as the Byzantine 
fault) [4]. The dormant faults of nodes include crashes and omission. A crash fault hap-
pens when a node is broken. An omission fault takes place when a node fails to transmit 
or receive a message on time or at all. On the occasion of a malicious fault, the behavior 
of a faulty node is unpredictable and arbitrary. The message transmitted by a malicious 
faulty node is random or arbitrary. It is the most damaging failure type and causes the 
worst problem. That is, if the IC problem can be solved in a malicious fault case, then the 
IC problem can also be solved in other failure mode. 

The symptoms of communication medium failure can also be classified into two 
categories: dormant fault and malicious fault [11]. The dormant faults of communication 
media are crash and stuck-at. A crash fault happens when a communication medium is 
broken. A stuck-at fault takes place when the message received from a certain commu-
nication medium is always a constant value. However, a communication medium with 
the malicious fault is one whose behavior is unrestricted and arbitrary. It is also the most 
damaging failure type of all and causes the worst problem. If a common consistency can 
be reached at the presence of a malicious fault, then a common consistency in the other 
failure modes can also be reached. That is, a fault-free communication medium can 
transmit messages on time and correctly, but the message which is transmitted by a faulty 
communication medium may be changed or delayed. 

The hybrid failure mode is one where both faulty nodes and faulty communication 
media exist [6]. In this mode, there are totally nine types of failure combinations because 
there are three types of node faults and three types of communication medium faults. The 
nine types of failure combinations are crash-crash, crash-stuck (stuck-at), crash-mali- 
cious, omission-crash, omission-stuck, omission-malicious, malicious-crash, malicious- 
stuck, and malicious-malicious. The first part in the pair indicates the type of faulty node, 
and the second one denotes the type of faulty communication medium. The worst case of 
all those above is the case of malicious-malicious [6]. If the IC problem in the case of 



REACHING OPTIMAL INTERACTIVE CONSISTENCY IN A FALLIBLE CLOUD COMPUTING ENVIRONMENT 209

malicious-malicious failure can be solved, then the IC problem in all the other eight 
types of failure modes can also be solved. 

In the synchronous system, a fault-free node can detect the dormant faults by en-
codes a transmitted message by Manchester code before transmission [7, 8]. Fischer et al. 
also indicate that BA in an asynchronous network is impossible even if only one crash 
faulty node [2]. Hence, the assumption of underlying cloud computing environment is 
synchronous. 

3. THE DEFINITIONS AND CONDITIONS FOR THE IC PROBLEM 

In this study, the IC problem is discussed in a synchronous cloud-computing envi-
ronment, so no delay of nodes or communication media is included in our discussion. 
Therefore, the nodes executing our new protocol should receive the messages from other 
nodes within a predictable period of time. If the message is not received on time, the 
message must have been influenced by faulty components.   

3.1 Constraints 

In the IC problem, the number of faulty components can be allowed is determined 
by the total number of nodes and the connectivity of the network. In Lamport et al.’s 
protocol [4], the fallible component is node only, the failure type of the fallible node is 
malicious and network topology is fully connected. So that, the constraints of Lamport et 
al. is n > 3fm and c=n1 where n is the number of nodes, fm is the total number of allowa-
ble malicious faulty nodes and c is the connectivity in the distributed system. In Meyer et 
al., the assumption of failure types of the fallible node are dual failure mode (both 
dormant fault and malicious fault), and the underlying network topology may not be ful-
ly connected [6]. Therefore, the constraint of Meyer et al. is n > 3fm+fd and c > 2fm+fd 

where fd is the total number of allowable dormant faulty nodes in the distributed system. 
However, Siu et al. found that the correct constraint on number of nodes required should 
be n > (n1)/3+2fm+fd [11]. 

In this paper, OCCP is used to solve the IC problem in a cloud-computing environ-
ment with fallible nodes and communication media, and dual failure mode assumed. 
With consideration for efficient consistency, the interactive consistency is applied to each 
node in Layer-A, and the majority function is applied to the nodes in Layer-B. 

Therefore, the constraint of the OCCP in Layer-A is nA > (nA1)/3+2fmA+fdA where 
nA is the number of nodes, fmA is the total number of allowable malicious faulty nodes, 
and fdA is the total number of allowable dormant faulty nodes in Layer-A. This constraint 
specifies the number of nodes required in Layer-A. 

 
Constraint 1: nA > (nA1)/3+2fmA+fdA, where nA is the number of nodes, fmA is the total 
number of allowable malicious faulty nodes, and fdA is the total number of allowable 
dormant faulty nodes in Layer-A. 
 
Constraint 2: cA > 2CmA+CdA, where cA is the connectivity of Layer-A, CmA is the maxi-
mum number of malicious faulty communication media and CdA is the maximum number 
of dormant faulty communication media in Layer-A. 



SHU-CHING WANG, SHUN-SHENG WANG AND KUO-QIN YAN 

 

210

 

Constraint 1 specifies the number of nodes in Layer-A required; due to the unit of 
the cloud computing environment is node, so that a consistency can be achieved if nA > 

(nA 1)/3+2fmA+fdA. On the other hand, Constraint 2 specifies the required connectivity 
of Layer-A. The constraint with the connectivity of Layer-A is based on the number of 
malicious faulty nodes fmA, the number of dormant faulty nodes fdA, the number of mali-
cious faulty communication media CmA, and the number of dormant faulty communica-
tion media CdA in Layer-A. In addition, the total number of malicious faulty nodes and 
the total number of malicious faulty communication media must be smaller than half of 
cACdA. Hence, the constraint as to the connectivity of Layer-A in cloud computing en-
vironment is cA > 2CmA+CdA.    

3.2 Approach 

In the hybrid case, both nodes and communication media may be failed simultane-
ously. If a common consistency value from fault-free nodes in the hybrid case needs to 
be reached, the faulty influences from both the nodes and the communication media must 
to be removed. In this section, OCCP is introduced to solve IC problem in dual failure 
mode with both fallible nodes and fallible communication media in a cloud-computing 
environment. In OCCP, Virtual Channel (VC) is used to transmit the message(s), so the 
VC is introduced at first. 

3.2.1 The transmission protocol VC 

The concept of Virtual Channel (VC) is a way to make a reliable un-fully connected 
network (without faulty communication media) work just like a fully connected network. 
In this paper, the proposed protocol VC cannot only make an un-fully connected network 
work just like a fully connected network but also remove the influence from mali-
cious/dormant faulty communication media and malicious/dormant faulty nodes between 
the sender node and receiver node. The definition of our protocol VC is shown in Fig. 2. 

In VC, the receiver can always detect the message(s) through dormant faulty com-
ponents if the protocol VC appropriately encodes a transmitted message by Manchester 
code [7, 8]. Therefore, the message(s) through dormant faulty nodes and dormant faulty 
communication media can be detected and the value 0 is replaced as the message re-
ceived. The value 0 is used to represent the absence message. 

By using our VC, the influences by the dormant faulty components between any 
pairs of nodes can be gotten rid of in each round of message exchange, and the influ-
ences by the malicious faulty communication media between any pairs of nodes can be 
ruled out in each round of message exchange if cA > 2CmA+CdA. Due to the fault-free 
sender node can send cA copies of a message to fault-free receiver nodes. In the worst 
case, a fault-free receiver node can receive cACdA messages transmitted by the fault-free 
sender node. So that, a fault-free destination node can decide which the correct messages 
are by taking the majority value. 

The function VMAJ is shown in Fig. 2. There are four cases in the function VMAJ. 
The case 1 is used to detect the sender node is a dormant faulty node or not. The case 2 
and case 3 are the usual cases to output the correct messages from the sender node that is 
not a dormant faulty node and also not an asymmetric malicious faulty node. The case 4 
is used to detect the sender node is an asymmetric malicious faulty node or not. 



REACHING OPTIMAL INTERACTIVE CONSISTENCY IN A FALLIBLE CLOUD COMPUTING ENVIRONMENT 211

An example of VC is shown in Fig. 3. Fig. 3 (a) illustrates a 4-connectivity network 
model with six nodes, and Fig. 3 (b) illustrates the sender node A1 using VC to transmit a 
message to destination node A4. There are four adjacent paths to node A4, so node A4 can 
receive four values from the sender node. In Fig. 3 (b), these four values can be acquired 
by node A1 via VC to transmit messages to node A4 directly, through node A2 to node A4, 
through node A5 to node A4, and through node A6 to node A4. Node A4 can receive the 
vector V1 = [v1, v 2, v5, v6] and use function VMAJ on vector V1. 

3.2.2 The proposed protocol OCCP 

In this section, OCCP is introduced to solve IC problems in dual failure mode with 
fallible nodes and communication media underlying a cloud-computing environment. 
The proposed protocol OCCP is organized as two parts, the Interactive Consistency 
Process and the Agreement Process. However, the nodes of Layer-A execute Interactive 
Consistency Process first, and then the nodes in service block of Layer-B execute 
Agreement Process. 

 
Protocol VC (Virtual Channel) 
Definition: 
 Each node has the common knowledge of graphic information G = (E, N), where N is 

the set of nodes in the Layer-A and E is a set of node pairs, (Ai, Aj), indicating a com-
munication medium between node Ai and node Aj, where 1  i, j  nA. 

 There are cA (cA > 2CmA+CdA) paths from sender node to destination nodes. 
 The cA disjoint paths between the sender nodes to destination nodes can be predefined. 
 These cA paths from sender node to destination nodes are node-disjoint paths. 
 Each intermediate node on these cA paths should not be passed through more than once. 
Steps: 
1. The sender node Ai (1  i  nA) transmits initial vi to the destination node through cA 

node-disjoint paths. 
2. If the node-disjoint path from sender node to destination node goes through any dor- 

mant communication media, then the transmits initial vi is replaced by 0. 
3. If the node-disjoint path from sender node to destination node goes through any dor- 

mant faulty node or if the sender node suffers from dormant faults, then the transmits 
initial vi is replaced by 0. 

4. The nodes in the destination node take the majority value from the same node-disjoint paths 
and construct the vector Vi = [vpath 1, vpath 2, …, v path cA-1, …, v path cA] for cA > 2CmA+CdA. 

5. The nodes in the destination node apply the function VMAJ on the values of vector Vi. 
The function VMAJ(V) 
Begin 
if the majority value is 0 and the number of value 0 is greater than or equal to cA(nA1)/3 

then output the value 0                                          /* case 1*/ 
else begin 
count the non-0 value 
if the majority value is k, where 1 ≤ k ≤ (nA1)/3 

output the value k                                             /*case 2*/ 
if the majority value is the non-k value, where 0≤ k≤ (nA1)/3, m{0,1} 



SHU-CHING WANG, SHUN-SHENG WANG AND KUO-QIN YAN 

 

212

 

output the value m                                             /*case 3*/ 
if the majority value is not existed 
output the value 0                                             /*case 4*/ 

end 
end. 

Fig. 2. The proposed protocol VC. 
 

 

(a) An example of cA-connected network (nA = 
6, cA = 4). 

(b) The sender node A1 uses VC to transmit mes- 
sage to destination node A4.  

Fig. 3. An example of VC. 
 

In the Interactive Consistency Process, the primary work of Layer-A’s nodes is to 
collect the user’s service requests, and then the request vector of the interactive con-
sistency can be obtained to trigger the nodes in Layer-B to perform the service request. 
In a cloud-computing environment, each node in Layer-A receives the various requests 
from users, and the nodes in Layer-B’s service block provide services to the users. 
Hence, each node of Layer-A may receive different service requests from users. Each 
node in Layer-A uses the service request as the initial value to execute OCCP to obtain 
the common vector DECA. Then, each node of Layer-A forwards the element of vector 
DECA to the nodes in the service block of Layer-B. However, the specific service request 
is to be confirmed by the nodes of same service block in the Agreement Process. Each 
node in the service block of Layer-B receives the element from the nodes of Layer-A, 
and then the majority value of the received element values is taken. Finally, the con-
sistency value is obtained by each fault-free node. The proposed protocol OCCP is pre-
sented in Fig. 4. 

When OCCP is initiated by the nodes of Layer-A, each node of Layer-A requires  
= (nA–1)/3+1 rounds to receive enough values to reach interactive consistency in the 
Interactive Consistency Process. In the first round of Message Exchange Phase in Inter-
active Consistency Process, each node of Layer-A parallel transmits its initial value to 
other nodes in Layer-A by using VC, and then receives the value by using VC and stores 
it in the root of its mg-tree. The mg-tree is a tree structure which is used to store the re-
ceived messages. Subsequently, each node of Layer-A parallel transmits the values at 
level (r1) by using VC in the corresponding mg-tree to other nodes in Layer-A. In the 
Decision Making Phase, each node of Layer-A reorganizes its mg-tree into a corre-
sponding ic-tree. The ic-tree is a tree structure that is used to store a received message 
without repeated node names. 

Finally, all fault-free nodes use function VOTE to remove the faulty influence from 



REACHING OPTIMAL INTERACTIVE CONSISTENCY IN A FALLIBLE CLOUD COMPUTING ENVIRONMENT 213

faulty nodes to obtain the common value. The function VOTE only counts the non-value 
0 (excluding the last level of the ic-tree) for all vertexes at the rth level of an ic-tree, 
where 1 ≤ r ≤ (nA1)/3+1. The condition 1, condition 4, and condition 5 in the function 
VOTE are similar to conventional majority vote. The condition 2 is used to remove the 
influence by a malicious faulty node. The condition 3 is used to solve the case of dual 
failure mode and describes the existence of an absentee. When the function VOTE is 
applied to the root of each corresponding ic-tree, and then a vector DECA with nA ele-
ments is obtained. Each element of DECA is mapped to a specific application that will be 
executed in the corresponding service block of Layer-B. 

In Layer-B, each service block provides a specific application, and some service 
blocks maybe provide the same applications. All nodes in the same service block provide 
the same application. However, each element of the vector DECA is mapped to a specific 
service in a service block of Layer-B. Therefore, nodes in the same service block will 
receive the mapped element from the nodes of Layer-A. The node of Layer-B that 
receives the element of DECA represents the same application for all nodes in the same 
service block. In the Agreement Process of OCCP, each node in the same service block 
of Layer-B receives the element from each node of Layer-A with the vector DECA. 
However, the maximal number of allowable faulty nodes in Layer-A cannot exceed (nA– 
1)/3. Hence, each node in same service block of Layer-B can receive at least nA(nA–1) 
/3 correct values. The amount of correct values is greater than the amount of faulty 
values. Therefore, when each node takes the majority value from the received values, 
each node in the same service block of Layer-B can obtain the common correct value. 

 
OCCP (Optimal Cloud Consistency Protocol) 
The nodes of Layer-A execute Interactive Consistency Process. 
The nodes of Layer-B’s service block execute Agreement Process. 
Interactive Consistency Process (for the node Ai in the Layer-A with initial value vi; 1  i  

nA, where nA is the number of nodes in Layer-A, for nA > 3) 
Pre-Execute.  

Compute the number of rounds required  = (nA–1)/3+1 
Message Exchange Phase: 
If r = 1 
then: 

1) Each node Ai parallel broadcasts its initial value vi to other nodes in 
Layer-A by using VC. 

2) Each node receives and stores the nA values sent from nA nodes of Lay-
er-A in the corresponding root of its mg-tree by using VC. 

3) If the initial value vi received from node Ai is “0”, then using the value 
“0” to replace the value “0”. 

For 1< r ≤ , 
do: 

1) Each node uses VC to parallel transmit the function VMAJ values at 
level r1 in the corresponding mg-tree to other nodes in Layer-A, if the 
VMAJ value at level r1 is k, then replace the value k+1 as the trans-
mitted value, where 0 ≤ k ≤ (nA1)/3. 

2) Each receiver node stores the VMAJ values in the corresponding verti-
ces at level r of its mg-tree. 

Decision Making Phase: 
Step 1: Reorganize each mg-tree into a corresponding ic-tree by deleting the verti-

ces with repeated node names. 



SHU-CHING WANG, SHUN-SHENG WANG AND KUO-QIN YAN 

 

214

 

Step 2: Using function VOTE with the root i of each node’s ic-tree and obtaining 
the common value VOTE(i).  

VOTE() = begin 
if the  is a leaf 
then output the value                           /* condition 1*/ 
else begin 

if the number of value 0 is 3*((nA1)/3r+1)+[(nA1) mod 3] 

output the value                           /* condition 2*/ 
if the majority value is k, where 1 ≤ k ≤ (nA-1)/3 

output the value k-1                                     /* condition 3*/ 
if the majority value is the non-k value, where 0 ≤ k ≤ (nA1)/3, 

output the majority value m, m{0,1}          /* condition 4*/ 
if the majority value is not existed 

output the default value                     /* condition 5*/ 
end 

end. 
Agreement Process (for the node Bij in the service block Bj of Layer-B, 1  i  nBj where nBj 
is the number of nodes in service block Bj of Layer-B) 
Step 1: All nodes in the same service block Bj of Layer-B receive the element value of 

DECA that transmits from the nodes in Layer-A for the specific application needs. 
Step 2: Each node of same service block Bj in Layer-B takes a majority value of the re-

ceived element values and the consistency value v is obtained. 
Fig. 4. Protocol OCCP. 

4. AN EXAMPLE OF EXECUTING OCCP AND VC 

The example of executing the OCCP based on a hybrid dual fallible cloud-compu- 
ting environment is discussed in this section. An example of Layer-A of a cloud-comput- 
ing environment is shown in Fig. 5 (a). 

The nodes in Layer-A receive the service request. The protocol, for this example, 
two rounds (=(nA–1)/3+1=(5–1)/3+1=2, where nA is the number of nodes in Layer- 
A) are required to exchange the messages. In this example, there are five nodes in Lay-
er-A, where each node receives the user’s service request. Fig. 5 (b) is the initial value of 
each node in Layer-A. Each node receives different service requests from different users, 
e.g., A1 receives the mail service request and A2 receives the video service request, etc. 
However, some nodes in Layer-A may receive the same requests. During the first round 
of Message Exchange Phase, each node of Layer-A parallel transmits the initial value by 
using VC to all nodes of Layer-A and stores the received nA(=5) values in the corre-
sponding root of each mg-tree, as shown in Fig. 5 (c). In the second round, each node 
parallel transmits the values in the root of the corresponding mg-tree by using VC to 
other nodes in Layer-A and stores the received values in level 1 of the nA(=5) correspon- 
ding mg-trees. The progression of nodes A1 and A4 during Message Exchange Phase is 
shown in Figs. 5 (d) and (f). 

Subsequently, in the Decision Making Phase, the mg-tree is reorganized into the ic- 
tree by deleting those vertices with repeated node names. The corresponding ic-tree of 



REACHING OPTIMAL INTERACTIVE CONSISTENCY IN A FALLIBLE CLOUD COMPUTING ENVIRONMENT 215

Fig. 5. (c) The mg-tree of each node in Layer-A at the first round of Message Exchange Phase. 

nodes A1 and A4 is shown in Figs. 5 (e) and (g). Then, function VOTE is applied on the 
ic-tree root of each node to take the majority value, as shown in Figs. 5 (h) and (i). Even- 
tually, the common consistency value DECA of nodes A1 and A4 is obtained. 

All nodes in the service block of Layer-B receive the element of DECA from the 
nodes of Layer-A by broadcast network, as shown in Fig. 5 (j). However, the nodes of 
the service block in Layer-B execute Agreement Process. For example, all nodes in B3 
receive the element value of DECA that is transmitted from the nodes in Layer-A for the 
specific application needs. If the nodes in Layer-A send the E-mail service request with 
elements of DECA to all nodes in B3, then all nodes in B3 receive the element of DECA 
that is transmitted from Layer-A’s nodes, as shown in Fig. 5 (k). Subsequently, all nodes 
in the B3 must take a majority value from the received element values, as shown in Fig. 5 
(l). Finally, the common values through the Agreement Process with each fault-free node 
can be obtained. 

 

 

 

 
Fig. 5. (b) The initial value of 

each node in Layer-A. 

 
 

A1 A2 A3 A4 A5 
1 1 0 1 0 

Fig. 5. (a) Example of Layer-A.     

 level 0 Root Using VC 
A1 1 1 ←(1,1,0,1,0)

 2 1 ←(1,1,0,1,0)
 3 0 ←(0,0,1,0,1)
 4 1 ←(1,1,0,1,0)
 5 0 ←(0,0,0,0,0)

    
 level 0 Root Using VC 
A2 1 1 ←(1,1,0,1,0)

 2 1 ←(1,1,0,1,0)
 3 1 ←(1,1,1,1,1)
 4 1 ←(1,1,0,1,0)
 5 0 ←(0,0,0,0,0)

    
 level 0 Root Using VC 
A3 1 1 ←(1,1,0,1,0)

 2 1 ←(1,1,0,1,0)
 3 1 ←(1,1,0,1,1)
 4 1 ←(1,1,0,1,0)
 5 0 ←(0,0,0,0,0)

 

 

 

level 0 Root Using VC 
A4 1 1 ←(1,1,0,1,0) 

2 1 ←(1,1,0,1,0) 
3 0 ←(0,0,1,0,1) 
4 1 ←(1,1,0,1,0) 
5 0 ←(0,0,0,0,0) 

level 0 Root Using VC 
A5 1 1 ←(1,1,0,1,0) 

2 1 ←(1,1,0,1,0) 
3 1 ←(1,1,1,1,1) 
4 1 ←(1,1,0,1,0) 
5 0 ←(0,0,0,0,0) 



SHU-CHING WANG, SHUN-SHENG WANG AND KUO-QIN YAN 

 

216

 

 
    Fig. 5. (d) The final mg-tree of A1. Fig. 5. (e) The ic-tree of A1 by Decision Making Phase. 

 

 

 
   Fig. 5. (f) The final mg-tree of A4. Fig. 5. (g) The ic-tree of A4 by Decision Making Phase



REACHING OPTIMAL INTERACTIVE CONSISTENCY IN A FALLIBLE CLOUD COMPUTING ENVIRONMENT 217

VOTE(1)= majority(val(12), val(13),val(14),val(15))= majority(1, 0, 1, 1)= 1 
VOTE(2)= majority(val(21),val(23),val(24),val(25))= majority(1, 1, 1, 1)= 1 
VOTE(3)= majority(val(31),val(32),val(34),val(35))= majority(0, 1, 0, 1)= 0 
VOTE(4)= majority(val(41),val(42),val(43),val(45))= majority(1, 1, 1, 1)= 1 
VOTE(5)= majority(val(51),val(52),val(53),val(54))= majority(1, 1, 0,, 1)= 1 

DECA=(1,1,0,1, 1) 
Fig. 5. (h) The common value VOTE(i) by A1 in Decision Making g Phase. 

 

VOTE(1) = majority(val(12),val(13),val(14),val(15)) = majority(1, 1, 1, ) = 1 
VOTE(2) = majority(val(21),val(23),val(24),val(25)) = majority(1, 1, 1, ) = 1 
VOTE(3) = majority(val(31),val(32),val(34),val(35)) = majority(0, 1, 0, ) = 0 
VOTE(4) = majority(val(41),val(42),val(43),val(45)) = majority(1, 1, 0, ) = 1 
VOTE(5) = majority(val(51),val(52),val(53),val(54)) = majority(, , 1,, ) =  

DECA=(1,1,0,1, ) 
Fig. 5. (i) The common value VOTE(i) by A4 in Decision Making Phase. 

 

 
Fig. 5. (j) Example of the nodes in Layer-A forwarding the value to service block B3 of Layer-B. 

 

A1 1 A1 1 A1 1 A1 1 A1 1 
A2 1 A2 1 A2 1 A2 1 A2 1 
A3 0 A3 0 A3 1 A3 0 A3 0 
A4 1 A4 1 A4 1 A4 1 A4 1 
A5 1 A5 1 A5 1 A5 1 A5 1 

B31 B32 B33 B34 B35 
Fig. 5. (k) Each node of B3 receives element of DECA from Layer-A’s node. 

 

 majority   majority  
B31= (1,1,0,1,1) => MAJ1=1 B34= (1,1,0,1,1) => MAJ4=1 
B32= (1,1,0,1,1) => MAJ2=1 B35= (1,1,0,1,1) => MAJ5=1 
B33= (1,1,1,1,1) => MAJ3=1    

Fig. 5. (l) The common value of each node in service block B3. 
Fig. 5. The example of executing the OCCP. 

 



SHU-CHING WANG, SHUN-SHENG WANG AND KUO-QIN YAN 

 

218

 

5. THE CORRECTNESS AND COMPLEXITY OF OCCP 

The following lemmas and theorems are used to prove the correctness and complex-
ity of OCCP. 

5.1 Correctness of OCCP 

To prove the correctness of our proposed protocol, a vertex  is called common if 
each fault-free node has the same value for . That is, if vertex  is common, then the 
value stored in vertex  of each fault-free node’s mg-tree or ic-tree is identical. When 
each fault-free node has a common initial value of node Ai in the root of an ic-tree, if the 
root Ai of an ic-tree in a fault-free node is common and the initial value received from the 
node Ai is stored in the root of the tree structure, then a consistency is reached because 
the root is common. Thus, the constraints, (Consistency) and (Validity), can be rewritten 
as: 

(Consistency’): Root i is common, and 
(Validity’):   VOTE(i)=vi for each fault-free node, if the node Ai is fault-free. 

To prove that a vertex is common, the term common frontier is defined as follows: 
When every root-to-leaf path of the tree (an mg-tree or an ic-tree) contains a common 
vertex, the collection of the common vertices forms a common frontier. In other words, 
every fault-free node has the same messages collected in the common frontier if a com-
mon frontier does exist in a fault-free node’s tree structure (mg-tree or ic-tree); subse-
quently, using the same majority voting function to compute the root value of the tree 
structure, every fault-free node can compute the same root value because the same input 
(the same collected messages in the common frontier) and the same computing function 
will cause the same output (the root value). 

Since OCCP can solve the IC problem, the correctness of OCCP should be exam-
ined by the following two terms. 

 
(1) Correct vertex: Vertex i of a tree is a correct vertex if node Ai (the last node name in 

the name list of vertex i) is fault-free. In other words, a correct vertex is a place to 
store the value received from a fault-free node. 

(2) True value: For a correct vertex i in the tree of a fault-free node, val(i) is the true 
value of vertex i. In other words, the stored value for a correct vertex is called the 
true value. 
 
By the definition of a correct vertex, its stored value is received from the fault-free 

node, and a fault-free node always transmits the same value to all nodes; therefore, the 
correct vertices of such an mg-tree are common. After reorganizing the mg-tree into its 
corresponding ic-tree by deleting the vertices with repeated node names, the values 
stored on the correct vertices of an ic-tree shall be the same. As a result, all the correct 
vertices of an ic-tree are also in common [4]. Again, by the definition of a correct vertex, 
a common frontier does exist in the ic-tree inasmuch as Consistency’ and Validity’ are 
true, regardless of whether the source node is fault-free or faulty if the IC problem has 
been solved. 



REACHING OPTIMAL INTERACTIVE CONSISTENCY IN A FALLIBLE CLOUD COMPUTING ENVIRONMENT 219

Lemma 1: The message(s) through dormant faulty nodes and dormant faulty communi-
cation media can be detected by fault-free destination node. 
 
Proof: The message(s) from dormant faulty components can be detected if the protocol ap- 
propriately encodes a transmitted message by Manchester code before transmission [7, 8]. 
 
Theorem 1: The fault-free destination node can receive the message(s) from sender node 
without influence from any faulty components between the sender node and destination 
node if cA > 2CmA + CdA. 
 
Proof: By Lemma 1, the influence from dormant faulty components between any pair of 
sender node and destination node can be removed in each round of message exchange, 
and the influences by the malicious faulty components between any pairs of nodes in 
Layer-A in each round of message exchange if cA > 2CmA+CdA can be ruled out. The rea-
son is that the fault-free sender node sends cA copies of a message to fault-free destina-
tion nodes. In the worst case, a fault-free destination node can receive cACdA messages 
transmitted by the fault-free sender node. Due to the message(s) from dormant faulty 
components can be detected; in addition, the cACdA > 2CmA can also be obtained. There-
fore, a fault-free destination node can decide which the correct messages are by taking 
the majority value.  
 
Lemma 2: The fault-free destination node can detect the dormant faulty sender node by VC. 
 
Proof: If the number of value 0 is greater than or equal to cA(nA1)/3 then the sender 
node is in dormant fault. The reason is that there are at most (nA1)/3 malicious faulty com- 
ponents in the network, hence there are at most (nA1)/3 non-0 value in the vector Vi.  
 
Theorem 2: The fault-free node can detect all dormant faulty nodes in the network. 
 
Proof: In the protocol OCCP, there are (nA1)/3+1 rounds of message exchange in 
Interactive Consistency Process, where nA ≥ 4, so there are at least two rounds of mes-
sage exchange in the Message Exchange Phase. Each fault-free node can receive the 
message from node Ai in the first round of message exchange by using VC, and receive 
other nodes message(s) in the second round of message exchange by using VC. Without 
node Ai, each node can receive all other nodes’ message(s) in the network after two 
rounds of message exchange by using VC. According to the Lemma 2, each fault-free 
node can detect all dormant faulty nodes in the network.  
 
Lemma 3: All correct vertices of an ic-tree are common. 
 
Proof: After reorganization, no repeatable vertices are in an ic-tree. At the level (nA1)/ 
3+1 or above, the correct vertex  has at least 2(nA1)/3 +1 children in which at least 
(nA1)/3+1 children are correct. The true value of these (nA1)/3+1 correct vertices is 
in common, and the majority value of vertex  is common. The correct vertex  is 
common in the ic-tree, if the level of  is less then (nA1)/3 +1. As a result, all correct 
vertices of the ic-tree are common.  



SHU-CHING WANG, SHUN-SHENG WANG AND KUO-QIN YAN 

 

220

 

Lemma 4: A common frontier exists in the ic-tree. 
 
Proof: There are (nA1)/3 +1 vertices along each root-to-leaf path of an ic-tree in 
which the root is labeled by the name of node Ai, and the others are labeled by a se-
quence of node names. Since at most (nA1)/3 nodes can be failed, there are at least 
one vertex is correct along each root-to-leaf path of the ic-tree. By Lemma 3, the correct 
vertex is common, and the common frontier exists in each fault-free node’s ic-tree.  
 
Lemma 5: Let  be a vertex;  is common if there is a common frontier in the subtree 
rooted at . 
 
Proof: If the height of  is 0, and the common frontier ( itself) exists, and then  is 
common. If the height of  is r, the children of  are all in common by using induction 
hypothesis with the height of the children at r1, then the vertex  is common.  
 
Corollary 1: The root is common if a common frontier exists in the ic-tree. 
 
Theorem 3: The root of a fault-free node’s ic-tree is common. 
 
Proof: By Lemma 3, Lemma 4, Lemma 5 and Corollary 1, the theorem is proved.  
 
Theorem 4: Protocol OCCP solves the IC problem in a cloud computing. 
 
Proof: To prove the theorem, it has to show that OCCP meets the Consistency’ and Va-
lidity’. 

(Consistency’): Root i is common. By Theorem 3, (Consistency’) is satisfied.  
(Validity’): VOTE(i) = v for all fault-free nodes, if the initial value of the node Ai is 

vi, say v = vi. 

Since most of nodes are fault-free, they use VC to transmit the message to all others. 
The value of correct vertices for all fault-free nodes’ mg-tree is v. When the mg-tree is 
reorganized to an ic-tree, the correct vertices still exist. As a result, each correct vertices 
of the ic-tree is common (Lemma 3), and its true value is v. By Theorem 3, this root is 
common. The computed value VOTE(i) = v is stored in the root for all fault-free nodes. 
(Validity’) is satisfied. 

 
5.2 Complexity of OCCP 
 

The complexity of OCCP is evaluated in terms of (1) the minimal number of rounds, 
and (2) the maximum number of allowable faulty components. Theorems 5 and 6 below 
will show that the optimal solution is reached. 

 
Theorem 5: The maximum number of allowable faulty components by OCCP is TF = 
TFA + TFB. TFA is the total number of allowable faulty nodes in Layer-A and TFA = fmA+fdA, 
where fmA is the total number of allowable malicious faulty nodes, fdA is the total number 
of allowable dormant faulty nodes in Layer-A, and nA > (nA-1)/3+2fmA+fdA. TFB is the to- 



REACHING OPTIMAL INTERACTIVE CONSISTENCY IN A FALLIBLE CLOUD COMPUTING ENVIRONMENT 221

tal number of allowable faulty nodes in Layer-B and TFB =



ng

j
Bjn

1

)1( . 
 
Proof: Siu et al. indicate the constraint of BA problem for node faults only as n  >  (n1) 
/3+2fm+fd, and the unit they focus on is the node [11]. However, the fault status of our 
assumption is also that nodes are faulty. Hence, the constraint of the maximum number 
of allowable faulty nodes can be applied to our study. Therefore, n  >  (n1)/3+2fm+fd in 
Siu et al., is implied to nA > (nA1)/3+2fmA+fdA in a hybrid dual fallible cloud-computing 
environment with nA nodes of Layer-A. The constraint is rewritten as nA > (nA-1)/3+2fmA 

+fdA, and the total number of allowable faulty components by OCCP in Layer-A is fmA 
malicious faulty nodes and fdA dormant faulty nodes, which is maximal if nA >(nA1)/3+ 
2fmA+fdA. 

In addition, there are gn service blocks in Layer-B. Each service block has Bij nodes, 
where 1 ≤ j ≤ gn. However, when a fault-free node of service block Bj in Layer-B exists, 
then the specific application can possibly be carried out. Therefore, the fault tolerant ca- 

pability of Layer-B is 



ng

j
Bjn

1

)1(  where nBj is the number of nodes in service block Bj of  

Layer-B and there are gn service blocks in Layer-B. 
In conclusion, the maximum number of allowable faulty components of OCCP is TF 

= TFA + TFB, where TFA is the total number of allowable faulty nodes in Layer-A and TFB 
is the total number of allowable faulty nodes in Layer-B.  

 
Theorem 6: OCCP requires (nA–1)/3+2 rounds to solve the IC problem in a hybrid 
dual fallible cloud-computing environment, and (nA–1)/3+2 is the minimum number of 
rounds required to exchange messages. 
 
Proof: Because message passing is required only in the Message Exchange Phase, the 
Message Exchange Phase is time consuming. Wang et al. pointed out that (n–1)/3+1 
rounds are the minimum number of rounds to send sufficient messages to achieve con-
sistency in an n-node fallible distributed system [11]. However, in a hybrid dual fallible 
cloud-computing environment, the nodes and communication media maybe in dormant 
or malicious fault simultaneously. In addition, each node in the hybrid dual fallible 
cloud-computing environment must exchange messages with other nodes. Therefore, a 
constraint on the minimum number of rounds can be applied to the study. However, in a 
hybrid dual fallible cloud-computing environment, there are nA nodes in Layer-A, OCCP 
needs (nA–1)/3+1 rounds to exchange message. In addition, in the Decision Making 
Phase, each node in Layer-A sends the specific element of DECA to the nodes of a spe-
cific application executed service block in Layer-B. Therefore, an additional round of 
message exchange is required. In conclusion, the minimum number of rounds of OCCP 
is (nA–1)/3+2. Moreover, the number rounds required is optimal.  

6. CONCLUSIONS 

The IC problem is fundamental in a distributed system, and has been extensively 
studied. Network topology is an important issue related to consistency. However, cloud 
computing is a new concept for distributed systems. It has greatly encouraged distributed 



SHU-CHING WANG, SHUN-SHENG WANG AND KUO-QIN YAN 

 

222

 

system design and practice to support user-oriented services. In this paper, the OCCP 
protocol is proposed to make all fault-free nodes reach consistency. This protocol can 
use a minimal number of rounds of message exchange and tolerate a maximal number of 
allowable faulty components in a hybrid dual fallible cloud-computing environment. The 
IC problem for dormant or malicious faulty nodes and communication media in a cloud- 
computing environment is revisited and the fault-tolerance capacity is enhanced by OCCP. 

REFERENCES 

1. S. Bera, S. Misra, and J. P. C. Rodrigues, “Cloud computing applications for smart 
grid: A survey,” IEEE Transactions on Parallel and Distributed Systems, Vol. 26, 
2015, pp. 1477-1494.    

2. M. Fischer, “The consensus problem in unreliable distributed systems (a brief sur-
vey),” Lecture Notes in Computer Science, 1983, pp. 127-140.   

3. P. Kumar and S. K. Gupta, “Abstract model of fault tolerance algorithm in cloud 
computing communication networks,” International Journal on Computer Science 
and Engineering, Vol. 3, 2011, pp. 3283-3290.    

4. L. Lamport, R. Shostak, and M. Pease “The Byzantine generals problem,” ACM 
Transactions on Programming Languages and Systems, Vol. 4, 1982, pp. 382-401.  

5. V. Mauch, M. Kunze, and M. Hillenbrand, “High performance cloud computing,” 
Future Generation Computer Systems, Vol. 29, 2012, pp. 1408-1416.    

6. F. J. Meyer and D. K. Pradhan, “Consensus with dual failure modes,” IEEE Trans-
actions on Parallel and Distributed Systems, Vol. 2, 1991, pp. 214-222.   

7. M. Newman, Networks: An Introduction, Oxford University Press, Inc., NY, USA 
2010.    

8. N. Oliferand and V. Olifer, Computer Network: Principles, Technologies and Pro-
tocols for Network Design, John Wiley & Sons, 2006.   

9. D. Puthal, B.P.S. Sahoo, S. Mishra, and S. Swain, “Cloud computing features, issues, 
and challenges: A big picture,” in Proceedings of International Conference on Com- 
putational Intelligence and Networks, 2015, pp. 116-123.  

10. M. N. Rajkumar and P. M. B. Mansingh, “An efficient and secure storage using 
delegated access control in multi-cloud environment,” International Journal of Soft- 
ware & Hardware Research Engineering, Vol. 1, 2013, pp. 38-42.  

11. H. S. Siu, Y. H. Chin, and W. P. Yang, “A note on consensus on dual failure 
modes,” IEEE Transactions on Parallel and Distributed System, Vol. 7, 1996, pp. 
224-230.     

12. S. S. Wang and S. C. Wang, “The consensus problem with dual failure nodes in a 
cloud computing environmen” Information Sciences, Vol. 279, 2014, pp. 213-228.   

13. S. S. Wang, K. Q. Yan, and S. C. Wang, “Achieving efficient agreement within a 
dual-failure cloud-computing environment,” Expert Systems with Applications, Vol. 
38, 2011, pp. 906-915.      
 
 
 
 



REACHING OPTIMAL INTERACTIVE CONSISTENCY IN A FALLIBLE CLOUD COMPUTING ENVIRONMENT 223

Shu-Ching Wang (王淑卿) received the B.S. degree in Com- 
puter Science from Feng-Chia University, the M.S. degree in Elec-
trical Engineering from National Chen-Kung University, and Ph.D. 
degree in Information Engineering from National Chiao-Tung 
University, Taiwan. Currently, she is a Professor with the Depart-
ment of Information Management, Chaoyang University of Tech-
nology, Taiwan. Her current research interests include distributed 
computing, cloud computing, and Internet of Things. Wang is one 
of the corresponding authors. 

 
 
 

Shun-Sheng Wang (王順生) received his Ph.D. degree in En- 
gineering from Ohio State University, USA. Currently, he is an 
Associate Professor with the Department of Industrial Engineering 
and Management, Chaoyang University of Technology, Taiwan. 
His current research interests include distributed system, fault tol-
erant, and cloud computing. Wang is one of the corresponding 
authors. 

 
 

 
 

Kuo-Qin Yan (嚴國慶) received the B.S. and M.S. degrees in 
Electrical Engineering from Chung Cheng Institute of Technology 
and the Ph.D. degree in Computer Science from National Tsing- 
Hua University, Taiwan. Currently, he is a Professor with the De-
partment of Business Administration, Chaoyang University of 
Technology, Taiwan. His current research interests include distrib-
uted data processing, parallel processing, fault tolerant computing, 
mobile computing, and ubiquitous computing. Yan is one of the 
corresponding authors. 

 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


