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In this paper, we build neural-network model-based automatic speech recognition (ASR)
systems incrementally for performance improvement. First, we add an adversarial text dis-
criminator module to train the speech recognition model to correct typos in recognition
results. Experiments show that the character error rate (CER) and word error rate (WER) of
the ASR system achieved 12.3% and 31.4%. Second, we insert a pre-trained speech synthe-
sis (text-to-speech, TTS) module to the ASR model. When we exploit a pre-trained TTS in
ASR training, the CER and WER are reduced from 12.6% and 31.7% to 10.8% and 24.4%,
demonstrating that pre-trained TTS can improve ASR. Finally, we include both pre-trained
TTS and text discriminator in ASR training. The performance of this ASR system is fur-
ther improved, achieving the CER and WER of 9.9% and 22.7% respectively. On Formosa
Speech Recognition Challenge task using Taibun Han-ji transcription, the proposed method
also achieves better CER than a system based on hybrid DNN-HMM chain model.

Keywords: automatic speech recognition, text to speech, adversarial text discriminator,
DNN-HMM chain model, formosa speech recognition challenge

1. INTRODUCTION

Classical speech recognition systems are often based on hidden Markov model
(HMM) [1] and Gaussian mixture model (GMM) [2]. Subsequently, deep neural net-
works (DNN) are exploited to estimate the posterior probabilities, which are integrated
into HMM for decoding. Recent ASR systems include features such as end-to-end (E2E)
models, encoder-decoder framework, self-attention mechanism, and block-synchronous
decoding for streaming speech recognition. Indeed, end-to-end models are well-known to
the research community, e.g. connectionist temporal classification (CTC) [3], attention-
based models [4-7], recurrent neural network transducer (RNN-T) [8], and the hybrid
CTCl/attention [9-11] architectures.

In recent years, GAN [12] models have tremendous impact on computer graphics
and image processing. GAN is an architecture comprises a generator and a discriminator.
Playing adversarial roles in model training, both the generator and the discriminator parts
can be better trained. In particular, CycleGAN [13] uses two generators in the model
architecture. The two generators first convert the input from domain X to domain Y, and
then convert back to domain X from domain Y. It uses two discriminators to identify
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whether an image is genuine or artificial (i.e. from the generator). Instead of the image
domains, we apply the ideas to the domains of text and speech, and modify the system
architecture to incorporate adversarial training.

In this study, we begin with state-of-the-art conformer models [6] for speech recog-
nition baseline systems. Transformer [5] is an end-to-end architecture that replaces re-
current neural network (RNN) with self-attention mechanism. Conformer is essentially
transformer with convolution stems to better extract contextual information. Furthermore,
we use the streaming conformer encoder with contextual block processing [14] and block-
wise synchronous beam search [15] towards real-time recognition output.

On the conformer models, we propose the integration of adversarial methods in ASR
model training for speaker-dependent scenarios. We first introduce an adversarial text dis-
criminator, and the architecture is called ASR-ADV. The motivation of using a text dis-
criminator is to reduce spelling errors. The second integration is a pre-trained TTS model,
and the architecture is called ASR-TTS. Combination of TTS and ASR models forms a
cycle from text to text via speech or from speech to speech via text. The ASR model can
be improved if we demand the speech after the cycle is similar to the original speech.
Note that similar ideas have been proposed [16]. Finally, we integrate text discriminator
and TTS in conformer ASR model, called ASR-TTS-ADYV, for further improvement.

The rest of this paper is organized as follows. In Section 2, we present the E2E
model and training methods. In Section 3, we explain our experimental setup and the
dataset used. In Section 4, we analyze and discuss the experimental results. In Section 5,
we draw conclusion for this work.

2. METHODS

We make incremental improvements on the conformer baseline ASR system. Four
models, namely ASR, ASR-ADV, ASR-TTS, and ASR-TTS-ADYV, are introduced below.

2.1 Text Preprocessing

The preprocess block is a module for word segmentation, since pauses need to be
added for the pre-trained TTS to work. We use the Jieba toolkit [17] to preprocess the
input text to word sequence add pauses between words.

2.2 ASR End-to-End Model

The end-to-end ASR model is based on conformer encoder and transformer decoder,
and the architecture is shown in Fig. 1. The input acoustic feature is a sequence of 80-dim
mel-spectrogram. The input sequence is downsampled with a 2-layer subsampling CNN
with stride 2. The CNN kernel size is 3 and the number of channels is 256. The encoder
consists of 12-layer conformer architecture. Furthermore, the conformer architecture pro-
cesses signal with split-and-add macaron method [18] to extract information.

The decoder consists of 6-layer transformer architecture. The decoder receives the
encoder output X, and the prefix of the output sequence. Given the prefix output sequence
and X,, the posterior probability of the entire output sequence Y is

Pe2e(Y|Xe) = Hpe2e(Yu+l Y1, Xe) )
u
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Fig. 1. The end-to-end ASR architecture; The encoded output is received by the transformer decoder
and the connectionist temporal classification (CTC) module.

Pe2e (Yu+1 ‘Yl:mXe) = SOftmaX(ZdWatt + batt) 2)

where Z, is the decoder output, Wy € R%t*ddic and by, € R%ie are attention weight matrix
and bias for computing Y11, and dyy and dg;c are decoder output and dictionary size.

2.3 Streaming Method

We use contextual block processing and blockwise synchronous beam search meth-
ods for a streaming ASR system. Contextual block processing divides all input frames
into blocks. Each block divides the internal frames into past, current, and future parts.
The current block can refer to the past and future blocks. It has an inheritance mechanism
allowing the contextual embedding to be passed to the next block. The attention-based
decoder often predicts the end-of-sequence token prematurely or predicts duplicated to-
kens [9]. The case of duplicated tokens happens because the attention mechanism of
the decoder processes a position that has already been attended. The end-of-sequence is
prematurely predicted because the attentions reach the place where the encoder block is
insufficient. Therefore, blockwise synchronous beam search with block boundary detec-
tion (BBD) mechanism is adopted to determine whether the next token predicted by the
current block is reliable. If BBD determines that it is unreliable, it will discard the cur-
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Fig. 2. Example of blockwise synchronous beam search with block boundary detection (BBD) me-
chanism. During decoding, BBD is used to judge whether the output hypothesis is reliable. In the
process, it can be seen the duplicated token is predicted in the second block. Therefore, the token is
determined to be unreliable and the decoder will skip to the next block to continue decoding.

rently predicted token and skip to the next block to continue decoding. Example of BBD
processing is shown in Fig. 2.

2.4 ASR Training and Decoding

All systems introduced in this paper are based on the architecture of ASR combined
with CTC. Greedy Search, which means every step taken must be the best, is used in
the CTC decoding. That is, the symbol with the highest output probability in each time
step is directly taken as the final result. Secondly, consecutive repeated characters and the
blank symbols are removed to obtain the final prediction result after CTC decoding. An
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Fig. 3. Example of CTC decoding process; Each input frame will get a token after being predicted
by CTC, and finally the continuously repeated token and blank (-) symbol will be removed.

example of the CTC decoding process is shown in Fig. 3.

CTC joint training effectively speeds up the learning and allows the model to con-
verge faster [10, 11]. The CTC module calculate the CTC loss based on the posterior
probability of the target output given input as follows,

C = softmax (X, Wee + Dete )

T
p(n|X€) :tI:IIC[t77r[t]]7 (3)
Potc(Y[Xe) = Z p(m|Xe).
mep1(Y)

where X, € RT*% ig the encoder output, in which 7 is the number of frames and d, is
feature dimension. Wy and b¢. are matrix and bias for the linear transformation on X,
to be the argument of the softmax function for character probabilities. C[r,7[t]] is the
probability of output symbol 7[¢] for the ¢-th frame of X,. Given X,, the probability of
output path 7 is the product of the probability of output 7[¢] at frame z. B~ (Y) = {n|Y =
B(m)} represents all output paths for sequence Y. The posterior probability of all possible
paths is accumulated for the probability of output sequence Y given X,. The ASR loss
function is combined with negative log probability from the decoder and CTC.

Loss = —t10g pese (Y X)) — (1 — o) log pee (Y [ Xe) )

where pc is posterior probabilities predicted by the CTC module, and « is a hyperpa-
rameter to control the ratio of end-to-end and CTC.

During decoding, we compute the sum of log probabilities from the transformer
decoder and CTC in the inference stage. We use the decoding method “Rescoring” [19].
Rescoring uses the two-pass method. The first pass uses beam search to obtain a complete
set of hypotheses only in consideration of the sequence probability of the transformer
decoder in the beam search process. The second pass rescores the hypotheses using the
probabilities of the CTC and the transformer decoder. The CTC probabilities are obtained
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Fig. 4. The architecture of adversarial text discriminator. The adversarial text discriminator is used
to determine whether the input text is ground truth or the output recognized by the ASR.

through the CTC forward algorithm. The final result of rescoring is

Y= m}gmax{l log pere(Y[Xe) + (1 — A) log perc (Y |X,) } 5)
ey*

where A > 0 is a hyper-parameter, and y* is a set of output hypotheses.
2.5 Adversarial Text Discriminator

We use a simple classifier as our adversarial text discriminator, which is shown in
Fig. 4, to distinguish whether it is ground truth (natural text) or ASR output. Since the
output of the adversarial text discriminator is binary, our loss function is based on the
binary cross entropy (BCE) function defined by

1 ¢ . . . .
BCE(0,T) = — 3 (Tli] -log(Oi]) + (1 = T[i]) -log(1 — O[i])) (6)
i=1
where O and T are the output prediction and the ground-truth label. The generator loss
and discriminator loss are defined by

Lossg = BCE(D(Textyg, 1)) 7
Lossp = 1/2(BCE(D(Textys),0) + BCE (D(Textgr), 1)) (8)

where Text,s, and Textgy are the discriminator output for ASR output text and ground-
truth text, respectively. Note the discriminator output is the probability of ground truth.
During training, Lossg is passed to the ASR model and Lossp is passed to the adversarial
text discriminator.
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Fig. 5. The architecture of ASR-ADV. In ASR-ADYV, we use an adversarial text discriminator,
which discriminates whether the input is the output of ASR model or ground-truth text and return
the adversarial recognition loss to the ASR model to train.

2.6 ASR-ADYV Architecture

ASR model is trained with adversarial loss incurred by adversarial text discriminator,
which determines whether the input is ASR output text or ground-truth text. This allows
the ASR model to output hypothesis more correctly. The ASR-ADV model architecture
is shown in Fig. 5. In the ASR-ADV architecture, the loss function is

Lasr-adv = Last + Lossg &)

where L, is the ASR loss, and is expressed in Eq. (4), and Loss¢ is the adversarial reco-
gnition loss, which is returned to the ASR model for training, and is expressed in Eq. (7).

2.7 ASR-TTS Architecture

We use a pre-trained TTS module in the overall model for ASR system. In the TTS
part, we mark the pronunciation of Mandarin characters with English pinyin and numbers
as the input. In order to convert the input Mandarin character sequence to pinyin form,
we include a pinyin block for preprocessing.

The ASR-TTS model is shown in Fig. 6. When adding a pre-trained TTS module
to the overall model, we freeze the TTS parameters during training. The ASR output is
converted to mel-spectrogram by the pre-trained TTS. We use the TTS loss

Lossys = MAE(TTS(Pinyin(Textys)), M) (10)

where Text, is the ASR output, and My is the ground-truth mel-spectrogram. That is, the

mean absolute error (MAE) between the synthesized mel-spectrogram and the ground-

truth mel-spectrogram is back-propagated to modify the learning of parameters.
Combining the TTS loss, the overall loss function for ASR-TTS architecture is

Lasr-tts = Lase + Lossys (11)

where L, is the ASR loss, which is expressed as Eq. (4), and Lossys is the TTS loss.
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Fig. 6. Block diagram of proposed ASR-TTS system. TTS receives ASR output and synthesizes
mel-spectrogram, which is compared with the ground truth mel-spectrogram. Pinyin block, which
is just a huge dictionary, converts the output of ASR from Mandarin characters to English Pinyin
and numbers to mark the pronunciation.

2.8 ASR-TTS-ADYV Architecture

CycleGAN is proposed for domain adaptation through two generators and two dis-
criminators. Let the two domains be Domain X and Domain Y. Generator Gxoy converts
image in Domain X to image in Domain Y and Gy,x does the domain conversion in the
opposite direction. Discriminators Dy and Dy check the quality of the images generated
by the generators. CycleGAN wants not only that the image y" generated by Gxoy with x
to be an image in Domain Y, but also that the image x’ generated by Gy,x with y’ to have
the same content as the input image x. The same is true for the opposite direction. That is

Gxay (x) =)', Gyax(y)) =x"~x, and Gyxx(y) =%, Gxoy(x') =)' =y. (12

We integrate ASR-ADV and ASR-TTS with the ideas of CycleGAN. The integrated
method is called ASR-TTS-ADV. Seeing speech as domain X and text as domain Y, we
treat ASR as Gxoy and TTS as Gy,x. Fig. 7 is the model architecture of ASR-TTS-ADV.
In the ASR-TTS-ADV architecture, our loss function consists of three parts

Ligr-ts-adv = LosSys + LSSy + Lossg (13)

where Lossys, Loss,sr and Lossg are respectively TTS loss, ASR loss, and adversarial loss.
The cycle consistency loss performs only the calculation from domain X to domain Y and
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Fig. 7. The architecture of ASR-TTS-ADV. ASR recognizes the text from the input mel-spectro-
gram, TTS synthesizes the corresponding mel-spectrogram from the output recognized by ASR,
and compare the corresponding mel-spectrogram with the groung-truth. The adversarial text dis-
criminator is used to determine whether the input is the output of ASR or the text of ground truth.

Table 1. We divide the Biaobei dataset into training, validation and test sets.

Dataset Utterances  Hours
Biaobei-train 8,000 9.39
Biaobei-val 1,000 1.22
Biaobei-test 1,000 1.24

back to domain X, which is Eq. (7). The adversarial loss can be calculated by synthesizing
the corresponding mel-spectrogram of the ASR output through the pre-trained TTS and
calculating the similarity with the ground-truth mel-spectrogram, which is Eq. (10).

3. EXPERIMENTS

We implement the proposed ASR model architectures with the open-source toolkit
of ESPnet2 [20]. In this section, we describe the datasets and the parameter settings of
ASR, pre-trained TTS and adversarial text discriminator.

3.1 Data

The Biaobei dataset [21] contains 10,000 text-audio pairs for a total duration of 12
hours. It is a Mandarin corpus with a single female speaker. We divide Biaobei data into
training, validation, and test sets with 80%, 10%, and 10% ratios, as shown in Table 1.
We use a vocabulary of size 4,108 for Biaobei dataset.

In this work, we also apply the proposed ASR-ADV to the Formosa Speech Recog-
nition Challenge 2020 (FSR-2020) Han-ji task, a speaker-independent ASR built and
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Table 2. The content of the data sets provided by the FSR-2020 challenge. The training
sets are TAT-Voll-train-lavalier and PTS-5.0, and the test set is FSR-2020_final-test.

data set # of utterances  # of speakers  duration (hours)
TAT-Vol1-train-lavalier 17,516 80 31.44
PTS-5.0 23,363 - 52.71
FSR-2020_final-test 6,991 - 19.57

tested with data from multiple speakers, to improve the end-to-end models we devel-
oped for FSR-2020 [22]. FSR-2020 is a competition of speech recognition systems for
Taiwanese Hokkien speech. The tasks are divided into three categories according to the
symbols for output text, namely Traditional Chinese, Han-j1, or Tai-16 pinyin. FSR-2020
provides TAT-Voll-train-lavalier training set with Han-ji and Tai-16 pinyin transcription.
This dataset is speech data recorded from 80 speakers. It consists of 23,104 pairs of text
and audio with total duration of approximately 41.76 hours. FSR-2020 also provides the
PTS_TW-train dataset from Taiwan Public Television Service Foundation (PTS). It con-
tains 95 audio files with Han-j1 transcription. As the audio files in PTS_TW-train tend to
be very long, they are automatically segmented, by CTC-Segmentation, to extract short
sound clips. The extracted data set is called PTS-5.0, which contains 23,363 pairs of text
and audio. FSR-2020_final-test consists of 6,991 pairs of text and audio, with a total dura-
tion of approximately 19.57 hours. A summary of the FSR-2020 data sets relevant to this
work is given in Table 2. We use a vocabulary of size 4,106 for FSR-2020 Han-jt task.

3.2 Experimental Setup

We use speed perturbation [23] and SpecAugment [24] for data augmentation. The
speed perturbation [23] changes the speed of the audio signal. We generate three versions
of the audio signal with speed factors 0.9, 1.0, and 1.1. SpecAugment [24] performs data
augmentation directly on the mel-spectrogram rather than performing on the audio signal.
It causes deformation to the mel-spectrogram such as time shift. It also randomly selects
a starting point in the frequency or time and mask a segment of mel-spectrgram.

Our end-to-end ASR architecture consists of a 12-layer encoder and a 6-layer of
decoder. The kernel size of depth-wise convolution and point-wise convolution in the
conformer are 15 and 1. The parameter {N;, N, N, } in the contextual blockwise process-
ing is set to {16,16,8}, overlapping half of the input between adjacent blocks [14, 15].
For the contextual embedding vector, we take the average of all frames in each block as
the initial value and use position encoding to distinguish the sequence of the block [14].
The hyperparameter o in ASR loss function is 0.3. The Adam optimizer [25] with square
root learning rate scheme is used in training. The hyperparameter A in decoding is 0.6,
and the beam size is 10.

The adversarial text discriminator uses two fully connected layers each with 128 neu-
rons and ReLLU for non-linear activation. A final linear combination and sigmoid function
is used to obtain the output probability. The parameters are trained with Adam optimizer
with square root learning rate scheme. Furthermore, we summarize the system training
architectures in this paper in Table 3. Note that TTS is a pre-trained module.
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Table 3. Model architectures for training of the proposed systems.

System Text Discriminator ~ TTS

ASR - -

ASR-ADV v -

ASR-TTS - v

ASR-TTS-ADV v v
4. RESULTS

First, we present the performance in error rates of the proposed architectures of ASR,
ASR-ADYV, ASR-TTS and ASR-TTS-ADV on Biaobei dataset. The results show the ad-
vantages of the proposed adversarial models. Then, we present the results of proposed
methods on the FSR-2020 Han-ji task. The proposed systems not only improves over our
own non-adversarial models, but also slightly outperforms the participating systems using
the hybrid DNN-HMM models, a.k.a. the chain models.

4.1 ASR-ADV

The adversarial text discriminator determines input text as hypotheses or ground
truth, and returns an adversarial loss during training. ASR-ADV enhances ASR by text
discriminator, so it can improve the problem of spelling errors. A test example is provided
in Table 4. In this example, ASR-ADV corrects the original ASR errors. Specifically, the
output segment Z ‘& 3% P in ASR is corrected to £ ‘& 3F Il in ASR-ADV. Note the
out-of-vocabulary (OOV) rate in our Biaobei-test dataset is 0.40%.

4.2 ASR-TTS

We also propose to use TTS in ASR model architecture, which is ASR-TTS, to re-
duce the recognition errors caused by the pronunciation and pause problems. The goal
of ASR-TTS is for the TTS part to synthesize the same mel-spectrogram as the ground
truth. The idea is to train ASR to better output ground-truth pronunciation and segmenta-
tion. ASR-TTS produces output with correct pauses, which enable the decoder to decode
words with correct semantics. At the same time, it also helps to output correct tonal pro-
nunciation. In Table 4, the outputs of ASR and ASR-ADV are both 4 & # (I6ng chang),
while the output of ASR-TTS is 7% #) (r6ng chang). It can be seen that the addition
of pre-trained TTS allows the original output of ASR: l6ng chédng to be correctly iden-
tified as rong chang. Not only does this fix the typo in the output, but also makes the
semantics correct and avoids the appearance of incomprehensible words. In Table 5 the
output of ground truth and ASR-TTS in the second column are both #2 K (gi hud), which
is a falling-rising tone, while the output of ASR identifies incorrect output 7 X (qf hud),
which is a rising tone. We observe that the mel-spectrogram synthesized by pre-trained
TTS is more capable of correcting the pronunciation errors of similar initials and solving
the problem of tone recognition.
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Table 4. Comparison of system outputs.

System Text Output
ground truth dodt o B AR R BURF £F M TRE ER o
ASR Yok 0 AR AE BER BUR A EP] HER6Y F o
ASR-ADV dodb o AR A8 BB HUR £ FIPI R B oo
ASR-TTS dost o AR AE BB HUF £4 P TR B oo
ASR-TTS-ADV 4wt » 1% 4% 8B BUF L4 4 TRy Edt o

Table 5. Comparison of system outputs.

System Text Output
ground truth ALK TE fLsc iy o
ASR Bk B AT i e
ASR-ADV Ae KB ALt Tif o
ASR-TTS TS BT LR

ASR-TTS-ADV A& K B {izh #i% o

Table 6. Comparison of four systems of character and word error rate.

System CER(%) WER(%)
ASR 12.6 31.7
ASR-ADV 12.3 314
ASR-TTS 10.8 24.4
ASR-TTS-ADV 9.9 22.7

4.3 ASR-TTS-ADV

ASR-ADV system initially improves the problem of typos from the ASR system.
In the ASR-TTS system, not only pre-trained TTS can solve the pronunciation problem,
but also the ASR system can have better word segmentation performance. In the end,
we integrate the pre-trained TTS and adversarial text discriminator into the ASR system
and turn it into an ASR-TTS-ADV system, which retains the advantages of ASR-TTS and
ASR-ADYV, such as the ability to solve the problems of pronunciation, word segmentation,
and spelling errors. While Tables 4 and 5 show the outputs of ASR-TTS-ADV and ASR-
TTS are the same as ground truth, Table 6 shows consistent decreases in CER and WER
as the system continues to improve.

4.4 FSR-2020 Han-j1 Task

We also apply the proposed method on FSR-2020 Han-ji task. The performance is
presented in Fig. 8. The blue bars are the official results of the participating teams on the
final test dataset. The red bar is the performance of the proposed ASR-ADV on the same
dataset. Achieving a character error rate of 35.8%, the proposed system has outperformed
our system (P22) without adversarial training [22]. Furthermore, the improved CER is
slightly better than the first-place system (T21 [26]) based on hybrid DNN-HMM chain
model using a Kaldi recipe at that time. Note the OOV rate in this task is 0 as we used
characters as units for ASR output tokens.
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Fig. 8. The ASR-ADV system is compared with the character error rates of participating teams of
FSR-2020 Han-jT task.

5. CONCLUSION

We apply ideas inspired by CycleGAN to improve ASR system. We introduce the ad-
versarial text discriminator and TTS to incur adversarial loss and consistency loss to guide
the training of ASR model parameters. Experiments of the proposed methods on Man-
darin and Taiwanese speech recognition show significant improvements on error rates.

In the future, we want to explore variants of GANs in order to improve the ASR-
TTS-ADV system. Our next step might be to try out dual training [27] to make ASR and
TTS systems compete against each other during training to make both modules better.
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