
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 40, 359-373 (2024)
DOI: 10.6688/JISE.202403 40(2).0010

Training Speech Recognition Model with Speech Synthesis
and Text Discriminator

HOU-AN LIN AND CHIA-PING CHEN
Department of Computer Science and Engineering

National Sun Yat-sen University
Kaohsiung, 804 Taiwan

E-mail: m093040066@nsysu.edu.tw; cpchen@cse.nsysu.edu.tw

In this paper, we build neural-network model-based automatic speech recognition (ASR)
systems incrementally for performance improvement. First, we add an adversarial text dis-
criminator module to train the speech recognition model to correct typos in recognition
results. Experiments show that the character error rate (CER) and word error rate (WER) of
the ASR system achieved 12.3% and 31.4%. Second, we insert a pre-trained speech synthe-
sis (text-to-speech, TTS) module to the ASR model. When we exploit a pre-trained TTS in
ASR training, the CER and WER are reduced from 12.6% and 31.7% to 10.8% and 24.4%,
demonstrating that pre-trained TTS can improve ASR. Finally, we include both pre-trained
TTS and text discriminator in ASR training. The performance of this ASR system is fur-
ther improved, achieving the CER and WER of 9.9% and 22.7% respectively. On Formosa
Speech Recognition Challenge task using Taibun Hàn-jı̄ transcription, the proposed method
also achieves better CER than a system based on hybrid DNN-HMM chain model.

Keywords: automatic speech recognition, text to speech, adversarial text discriminator,
DNN-HMM chain model, formosa speech recognition challenge

1. INTRODUCTION

Classical speech recognition systems are often based on hidden Markov model
(HMM) [1] and Gaussian mixture model (GMM) [2]. Subsequently, deep neural net-
works (DNN) are exploited to estimate the posterior probabilities, which are integrated
into HMM for decoding. Recent ASR systems include features such as end-to-end (E2E)
models, encoder-decoder framework, self-attention mechanism, and block-synchronous
decoding for streaming speech recognition. Indeed, end-to-end models are well-known to
the research community, e.g. connectionist temporal classification (CTC) [3], attention-
based models [4–7], recurrent neural network transducer (RNN-T) [8], and the hybrid
CTC/attention [9–11] architectures.

In recent years, GAN [12] models have tremendous impact on computer graphics
and image processing. GAN is an architecture comprises a generator and a discriminator.
Playing adversarial roles in model training, both the generator and the discriminator parts
can be better trained. In particular, CycleGAN [13] uses two generators in the model
architecture. The two generators first convert the input from domain X to domain Y, and
then convert back to domain X from domain Y. It uses two discriminators to identify

Received October 16, 2022; revised December 27, 2022 & February 16, 2023; accepted March 4, 2023.
Communicated by Jen-Tzung Chien.

359

360 HOU-AN LIN AND CHIA-PING CHEN

whether an image is genuine or artificial (i.e. from the generator). Instead of the image
domains, we apply the ideas to the domains of text and speech, and modify the system
architecture to incorporate adversarial training.

In this study, we begin with state-of-the-art conformer models [6] for speech recog-
nition baseline systems. Transformer [5] is an end-to-end architecture that replaces re-
current neural network (RNN) with self-attention mechanism. Conformer is essentially
transformer with convolution stems to better extract contextual information. Furthermore,
we use the streaming conformer encoder with contextual block processing [14] and block-
wise synchronous beam search [15] towards real-time recognition output.

On the conformer models, we propose the integration of adversarial methods in ASR
model training for speaker-dependent scenarios. We first introduce an adversarial text dis-
criminator, and the architecture is called ASR-ADV. The motivation of using a text dis-
criminator is to reduce spelling errors. The second integration is a pre-trained TTS model,
and the architecture is called ASR-TTS. Combination of TTS and ASR models forms a
cycle from text to text via speech or from speech to speech via text. The ASR model can
be improved if we demand the speech after the cycle is similar to the original speech.
Note that similar ideas have been proposed [16]. Finally, we integrate text discriminator
and TTS in conformer ASR model, called ASR-TTS-ADV, for further improvement.

The rest of this paper is organized as follows. In Section 2, we present the E2E
model and training methods. In Section 3, we explain our experimental setup and the
dataset used. In Section 4, we analyze and discuss the experimental results. In Section 5,
we draw conclusion for this work.

2. METHODS

We make incremental improvements on the conformer baseline ASR system. Four
models, namely ASR, ASR-ADV, ASR-TTS, and ASR-TTS-ADV, are introduced below.

2.1 Text Preprocessing

The preprocess block is a module for word segmentation, since pauses need to be
added for the pre-trained TTS to work. We use the Jieba toolkit [17] to preprocess the
input text to word sequence add pauses between words.

2.2 ASR End-to-End Model

The end-to-end ASR model is based on conformer encoder and transformer decoder,
and the architecture is shown in Fig. 1. The input acoustic feature is a sequence of 80-dim
mel-spectrogram. The input sequence is downsampled with a 2-layer subsampling CNN
with stride 2. The CNN kernel size is 3 and the number of channels is 256. The encoder
consists of 12-layer conformer architecture. Furthermore, the conformer architecture pro-
cesses signal with split-and-add macaron method [18] to extract information.

The decoder consists of 6-layer transformer architecture. The decoder receives the
encoder output Xe and the prefix of the output sequence. Given the prefix output sequence
and Xe, the posterior probability of the entire output sequence Y is

pe2e(Y |Xe) = ∏
u

pe2e(Yu+1|Y1:u,Xe) (1)

TRAINING ASR WITH TTS AND TEXT DISCRIMINATOR 361

Fig. 1. The end-to-end ASR architecture; The encoded output is received by the transformer decoder
and the connectionist temporal classification (CTC) module.

pe2e(Yu+1|Y1:u,Xe) = softmax(ZdWatt +batt) (2)

where Zd is the decoder output, Watt ∈Rdatt×ddic and batt ∈Rddic are attention weight matrix
and bias for computing Yu+1, and datt and ddic are decoder output and dictionary size.

2.3 Streaming Method

We use contextual block processing and blockwise synchronous beam search meth-
ods for a streaming ASR system. Contextual block processing divides all input frames
into blocks. Each block divides the internal frames into past, current, and future parts.
The current block can refer to the past and future blocks. It has an inheritance mechanism
allowing the contextual embedding to be passed to the next block. The attention-based
decoder often predicts the end-of-sequence token prematurely or predicts duplicated to-
kens [9]. The case of duplicated tokens happens because the attention mechanism of
the decoder processes a position that has already been attended. The end-of-sequence is
prematurely predicted because the attentions reach the place where the encoder block is
insufficient. Therefore, blockwise synchronous beam search with block boundary detec-
tion (BBD) mechanism is adopted to determine whether the next token predicted by the
current block is reliable. If BBD determines that it is unreliable, it will discard the cur-

362 HOU-AN LIN AND CHIA-PING CHEN

Fig. 2. Example of blockwise synchronous beam search with block boundary detection (BBD) me-
chanism. During decoding, BBD is used to judge whether the output hypothesis is reliable. In the
process, it can be seen the duplicated token is predicted in the second block. Therefore, the token is
determined to be unreliable and the decoder will skip to the next block to continue decoding.

rently predicted token and skip to the next block to continue decoding. Example of BBD
processing is shown in Fig. 2.

2.4 ASR Training and Decoding

All systems introduced in this paper are based on the architecture of ASR combined
with CTC. Greedy Search, which means every step taken must be the best, is used in
the CTC decoding. That is, the symbol with the highest output probability in each time
step is directly taken as the final result. Secondly, consecutive repeated characters and the
blank symbols are removed to obtain the final prediction result after CTC decoding. An

TRAINING ASR WITH TTS AND TEXT DISCRIMINATOR 363

Fig. 3. Example of CTC decoding process; Each input frame will get a token after being predicted
by CTC, and finally the continuously repeated token and blank (-) symbol will be removed.

example of the CTC decoding process is shown in Fig. 3.
CTC joint training effectively speeds up the learning and allows the model to con-

verge faster [10, 11]. The CTC module calculate the CTC loss based on the posterior
probability of the target output given input as follows,

C = softmax(XeWctc +bctc),

p(π|Xe) =
T

∏
t=1

C[t,π[t]],

pctc(Y |Xe) = ∑
π∈β−1(Y)

p(π|Xe).

(3)

where Xe ∈ RT×dc is the encoder output, in which T is the number of frames and dc is
feature dimension. Wctc and bctc are matrix and bias for the linear transformation on Xe
to be the argument of the softmax function for character probabilities. C[t,π[t]] is the
probability of output symbol π[t] for the t-th frame of Xe. Given Xe, the probability of
output path π is the product of the probability of output π[t] at frame t. β−1(Y) = {π|Y =
β (π)} represents all output paths for sequence Y . The posterior probability of all possible
paths is accumulated for the probability of output sequence Y given Xe. The ASR loss
function is combined with negative log probability from the decoder and CTC.

Lasr =−α log pe2e(Y |Xe)− (1−α) log pctc(Y |Xe) (4)

where pctc is posterior probabilities predicted by the CTC module, and α is a hyperpa-
rameter to control the ratio of end-to-end and CTC.

During decoding, we compute the sum of log probabilities from the transformer
decoder and CTC in the inference stage. We use the decoding method ”Rescoring” [19].
Rescoring uses the two-pass method. The first pass uses beam search to obtain a complete
set of hypotheses only in consideration of the sequence probability of the transformer
decoder in the beam search process. The second pass rescores the hypotheses using the
probabilities of the CTC and the transformer decoder. The CTC probabilities are obtained

364 HOU-AN LIN AND CHIA-PING CHEN

Fig. 4. The architecture of adversarial text discriminator. The adversarial text discriminator is used
to determine whether the input text is ground truth or the output recognized by the ASR.

through the CTC forward algorithm. The final result of rescoring is

Ŷ = argmax
Y∈y∗

{λ log pe2e(Y |Xe)+(1−λ) log pctc(Y |Xe)} (5)

where λ ≥ 0 is a hyper-parameter, and y∗ is a set of output hypotheses.

2.5 Adversarial Text Discriminator

We use a simple classifier as our adversarial text discriminator, which is shown in
Fig. 4, to distinguish whether it is ground truth (natural text) or ASR output. Since the
output of the adversarial text discriminator is binary, our loss function is based on the
binary cross entropy (BCE) function defined by

BCE(O,T) =
1
n

n

∑
i=1

(T [i] · log(O[i])+(1−T [i]) · log(1−O[i])) (6)

where O and T are the output prediction and the ground-truth label. The generator loss
and discriminator loss are defined by

LossG = BCE(D(Textasr,1)) (7)

LossD = 1/2(BCE(D(Textasr),0)+BCE(D(TextGT),1)) (8)

where Textasr and TextGT are the discriminator output for ASR output text and ground-
truth text, respectively. Note the discriminator output is the probability of ground truth.
During training, LossG is passed to the ASR model and LossD is passed to the adversarial
text discriminator.

TRAINING ASR WITH TTS AND TEXT DISCRIMINATOR 365

Fig. 5. The architecture of ASR-ADV. In ASR-ADV, we use an adversarial text discriminator,
which discriminates whether the input is the output of ASR model or ground-truth text and return
the adversarial recognition loss to the ASR model to train.

2.6 ASR-ADV Architecture

ASR model is trained with adversarial loss incurred by adversarial text discriminator,
which determines whether the input is ASR output text or ground-truth text. This allows
the ASR model to output hypothesis more correctly. The ASR-ADV model architecture
is shown in Fig. 5. In the ASR-ADV architecture, the loss function is

Lasr-adv = Lasr +LossG (9)

where Lasr is the ASR loss, and is expressed in Eq. (4), and LossG is the adversarial reco-
gnition loss, which is returned to the ASR model for training, and is expressed in Eq. (7).

2.7 ASR-TTS Architecture

We use a pre-trained TTS module in the overall model for ASR system. In the TTS
part, we mark the pronunciation of Mandarin characters with English pinyin and numbers
as the input. In order to convert the input Mandarin character sequence to pinyin form,
we include a pinyin block for preprocessing.

The ASR-TTS model is shown in Fig. 6. When adding a pre-trained TTS module
to the overall model, we freeze the TTS parameters during training. The ASR output is
converted to mel-spectrogram by the pre-trained TTS. We use the TTS loss

Losstts = MAE(T T S(Pinyin(Textasr)),Mg) (10)

where Textasr is the ASR output, and Mg is the ground-truth mel-spectrogram. That is, the
mean absolute error (MAE) between the synthesized mel-spectrogram and the ground-
truth mel-spectrogram is back-propagated to modify the learning of parameters.

Combining the TTS loss, the overall loss function for ASR-TTS architecture is

Lasr-tts = Lasr +Losstts (11)

where Lasr is the ASR loss, which is expressed as Eq. (4), and Losstts is the TTS loss.

366 HOU-AN LIN AND CHIA-PING CHEN

Fig. 6. Block diagram of proposed ASR-TTS system. TTS receives ASR output and synthesizes
mel-spectrogram, which is compared with the ground truth mel-spectrogram. Pinyin block, which
is just a huge dictionary, converts the output of ASR from Mandarin characters to English Pinyin
and numbers to mark the pronunciation.

2.8 ASR-TTS-ADV Architecture

CycleGAN is proposed for domain adaptation through two generators and two dis-
criminators. Let the two domains be Domain X and Domain Y . Generator GX2Y converts
image in Domain X to image in Domain Y and GY 2X does the domain conversion in the
opposite direction. Discriminators DX and DY check the quality of the images generated
by the generators. CycleGAN wants not only that the image y′ generated by GX2Y with x
to be an image in Domain Y , but also that the image x′ generated by GY 2X with y′ to have
the same content as the input image x. The same is true for the opposite direction. That is

GX2Y (x) = y′, GY 2X (y′) = x′′ ≈ x, and GY 2X (y) = x′, GX2Y (x′) = y′′ ≈ y. (12)

We integrate ASR-ADV and ASR-TTS with the ideas of CycleGAN. The integrated
method is called ASR-TTS-ADV. Seeing speech as domain X and text as domain Y, we
treat ASR as GX2Y and TTS as GY 2X . Fig. 7 is the model architecture of ASR-TTS-ADV.
In the ASR-TTS-ADV architecture, our loss function consists of three parts

Lasr-tts-adv = Losstts +Lossasr +LossG (13)

where Losstts, Lossasr and LossG are respectively TTS loss, ASR loss, and adversarial loss.
The cycle consistency loss performs only the calculation from domain X to domain Y and

TRAINING ASR WITH TTS AND TEXT DISCRIMINATOR 367

Fig. 7. The architecture of ASR-TTS-ADV. ASR recognizes the text from the input mel-spectro-
gram, TTS synthesizes the corresponding mel-spectrogram from the output recognized by ASR,
and compare the corresponding mel-spectrogram with the groung-truth. The adversarial text dis-
criminator is used to determine whether the input is the output of ASR or the text of ground truth.

Table 1. We divide the Biaobei dataset into training, validation and test sets.
Dataset Utterances Hours
Biaobei-train 8,000 9.39
Biaobei-val 1,000 1.22
Biaobei-test 1,000 1.24

back to domain X, which is Eq. (7). The adversarial loss can be calculated by synthesizing
the corresponding mel-spectrogram of the ASR output through the pre-trained TTS and
calculating the similarity with the ground-truth mel-spectrogram, which is Eq. (10).

3. EXPERIMENTS

We implement the proposed ASR model architectures with the open-source toolkit
of ESPnet2 [20]. In this section, we describe the datasets and the parameter settings of
ASR, pre-trained TTS and adversarial text discriminator.

3.1 Data

The Biaobei dataset [21] contains 10,000 text-audio pairs for a total duration of 12
hours. It is a Mandarin corpus with a single female speaker. We divide Biaobei data into
training, validation, and test sets with 80%, 10%, and 10% ratios, as shown in Table 1.
We use a vocabulary of size 4,108 for Biaobei dataset.

In this work, we also apply the proposed ASR-ADV to the Formosa Speech Recog-
nition Challenge 2020 (FSR-2020) Hàn-jı̄ task, a speaker-independent ASR built and

368 HOU-AN LIN AND CHIA-PING CHEN

Table 2. The content of the data sets provided by the FSR-2020 challenge. The training
sets are TAT-Vol1-train-lavalier and PTS-5.0, and the test set is FSR-2020 final-test.

data set # of utterances # of speakers duration (hours)
TAT-Vol1-train-lavalier 17,516 80 31.44
PTS-5.0 23,363 – 52.71
FSR-2020 final-test 6,991 – 19.57

tested with data from multiple speakers, to improve the end-to-end models we devel-
oped for FSR-2020 [22]. FSR-2020 is a competition of speech recognition systems for
Taiwanese Hokkien speech. The tasks are divided into three categories according to the
symbols for output text, namely Traditional Chinese, Hàn-jı̄, or Tâi-lô pinyin. FSR-2020
provides TAT-Vol1-train-lavalier training set with Hàn-jı̄ and Tâi-lô pinyin transcription.
This dataset is speech data recorded from 80 speakers. It consists of 23,104 pairs of text
and audio with total duration of approximately 41.76 hours. FSR-2020 also provides the
PTS TW-train dataset from Taiwan Public Television Service Foundation (PTS). It con-
tains 95 audio files with Hàn-jı̄ transcription. As the audio files in PTS TW-train tend to
be very long, they are automatically segmented, by CTC-Segmentation, to extract short
sound clips. The extracted data set is called PTS-5.0, which contains 23,363 pairs of text
and audio. FSR-2020 final-test consists of 6,991 pairs of text and audio, with a total dura-
tion of approximately 19.57 hours. A summary of the FSR-2020 data sets relevant to this
work is given in Table 2. We use a vocabulary of size 4,106 for FSR-2020 Hàn-jı̄ task.

3.2 Experimental Setup

We use speed perturbation [23] and SpecAugment [24] for data augmentation. The
speed perturbation [23] changes the speed of the audio signal. We generate three versions
of the audio signal with speed factors 0.9, 1.0, and 1.1. SpecAugment [24] performs data
augmentation directly on the mel-spectrogram rather than performing on the audio signal.
It causes deformation to the mel-spectrogram such as time shift. It also randomly selects
a starting point in the frequency or time and mask a segment of mel-spectrgram.

Our end-to-end ASR architecture consists of a 12-layer encoder and a 6-layer of
decoder. The kernel size of depth-wise convolution and point-wise convolution in the
conformer are 15 and 1. The parameter {Nl ,Nc,Nr} in the contextual blockwise process-
ing is set to {16,16,8}, overlapping half of the input between adjacent blocks [14, 15].
For the contextual embedding vector, we take the average of all frames in each block as
the initial value and use position encoding to distinguish the sequence of the block [14].
The hyperparameter α in ASR loss function is 0.3. The Adam optimizer [25] with square
root learning rate scheme is used in training. The hyperparameter λ in decoding is 0.6,
and the beam size is 10.

The adversarial text discriminator uses two fully connected layers each with 128 neu-
rons and ReLU for non-linear activation. A final linear combination and sigmoid function
is used to obtain the output probability. The parameters are trained with Adam optimizer
with square root learning rate scheme. Furthermore, we summarize the system training
architectures in this paper in Table 3. Note that TTS is a pre-trained module.

TRAINING ASR WITH TTS AND TEXT DISCRIMINATOR 369

Table 3. Model architectures for training of the proposed systems.
System Text Discriminator TTS
ASR – –
ASR-ADV ✓ –
ASR-TTS – ✓
ASR-TTS-ADV ✓ ✓

4. RESULTS

First, we present the performance in error rates of the proposed architectures of ASR,
ASR-ADV, ASR-TTS and ASR-TTS-ADV on Biaobei dataset. The results show the ad-
vantages of the proposed adversarial models. Then, we present the results of proposed
methods on the FSR-2020 Hàn-jı̄ task. The proposed systems not only improves over our
own non-adversarial models, but also slightly outperforms the participating systems using
the hybrid DNN-HMM models, a.k.a. the chain models.

4.1 ASR-ADV

The adversarial text discriminator determines input text as hypotheses or ground
truth, and returns an adversarial loss during training. ASR-ADV enhances ASR by text
discriminator, so it can improve the problem of spelling errors. A test example is provided
in Table 4. In this example, ASR-ADV corrects the original ASR errors. Specifically, the
output segment 煮 管部門 in ASR is corrected to 主 管部門 in ASR-ADV. Note the
out-of-vocabulary (OOV) rate in our Biaobei-test dataset is 0.40%.

4.2 ASR-TTS

We also propose to use TTS in ASR model architecture, which is ASR-TTS, to re-
duce the recognition errors caused by the pronunciation and pause problems. The goal
of ASR-TTS is for the TTS part to synthesize the same mel-spectrogram as the ground
truth. The idea is to train ASR to better output ground-truth pronunciation and segmenta-
tion. ASR-TTS produces output with correct pauses, which enable the decoder to decode
words with correct semantics. At the same time, it also helps to output correct tonal pro-
nunciation. In Table 4, the outputs of ASR and ASR-ADV are both籠長的 (lǒng cháng),
while the output of ASR-TTS is 冗長的 (rǒng cháng). It can be seen that the addition
of pre-trained TTS allows the original output of ASR: lǒng cháng to be correctly iden-
tified as rǒng cháng. Not only does this fix the typo in the output, but also makes the
semantics correct and avoids the appearance of incomprehensible words. In Table 5 the
output of ground truth and ASR-TTS in the second column are both起火 (qı̌ huǒ), which
is a falling-rising tone, while the output of ASR identifies incorrect output齊火 (qı́ huǒ),
which is a rising tone. We observe that the mel-spectrogram synthesized by pre-trained
TTS is more capable of correcting the pronunciation errors of similar initials and solving
the problem of tone recognition.

370 HOU-AN LIN AND CHIA-PING CHEN

Table 4. Comparison of system outputs.
System Text Output
ground truth 如此， 便 能繞開政府主管部門冗長的 審批。
ASR 如此， 便 能繞開政府煮管部門籠長的 審批。
ASR-ADV 如此， 便 能繞開政府主管部門籠長的 審批。
ASR-TTS 如此， 便 能繞開政府主管部門冗長的 審批。
ASR-TTS-ADV 如此， 便 能繞開政府主管部門冗長的 審批。

Table 5. Comparison of system outputs.
System Text Output
ground truth 起火 點 位於 河邊。
ASR 齊火 點 位於 河邊。
ASR-ADV 起火點 位於 河邊。
ASR-TTS 起火 點 位於 河邊。
ASR-TTS-ADV 起火 點 位於 河邊。

Table 6. Comparison of four systems of character and word error rate.
System CER(%) WER(%)
ASR 12.6 31.7
ASR-ADV 12.3 31.4
ASR-TTS 10.8 24.4
ASR-TTS-ADV 9.9 22.7

4.3 ASR-TTS-ADV

ASR-ADV system initially improves the problem of typos from the ASR system.
In the ASR-TTS system, not only pre-trained TTS can solve the pronunciation problem,
but also the ASR system can have better word segmentation performance. In the end,
we integrate the pre-trained TTS and adversarial text discriminator into the ASR system
and turn it into an ASR-TTS-ADV system, which retains the advantages of ASR-TTS and
ASR-ADV, such as the ability to solve the problems of pronunciation, word segmentation,
and spelling errors. While Tables 4 and 5 show the outputs of ASR-TTS-ADV and ASR-
TTS are the same as ground truth, Table 6 shows consistent decreases in CER and WER
as the system continues to improve.

4.4 FSR-2020 Hàn-jı̄ Task

We also apply the proposed method on FSR-2020 Hàn-jı̄ task. The performance is
presented in Fig. 8. The blue bars are the official results of the participating teams on the
final test dataset. The red bar is the performance of the proposed ASR-ADV on the same
dataset. Achieving a character error rate of 35.8%, the proposed system has outperformed
our system (P22) without adversarial training [22]. Furthermore, the improved CER is
slightly better than the first-place system (T21 [26]) based on hybrid DNN-HMM chain
model using a Kaldi recipe at that time. Note the OOV rate in this task is 0 as we used
characters as units for ASR output tokens.

TRAINING ASR WITH TTS AND TEXT DISCRIMINATOR 371

Fig. 8. The ASR-ADV system is compared with the character error rates of participating teams of
FSR-2020 Hàn-jı̄ task.

5. CONCLUSION

We apply ideas inspired by CycleGAN to improve ASR system. We introduce the ad-
versarial text discriminator and TTS to incur adversarial loss and consistency loss to guide
the training of ASR model parameters. Experiments of the proposed methods on Man-
darin and Taiwanese speech recognition show significant improvements on error rates.

In the future, we want to explore variants of GANs in order to improve the ASR-
TTS-ADV system. Our next step might be to try out dual training [27] to make ASR and
TTS systems compete against each other during training to make both modules better.

REFERENCES

1. L. R. Rabiner, “A tutorial on hidden Markov models and selected applications in
speech recognition,” Proceedings of the IEEE, Vol. 77, 1989, pp. 257-286.

2. D. Povey et al., “The subspace Gaussian mixture model – A structured model for
speech recognition,” Computer Speech & Language, Vol. 25, 2011, pp. 404-439.

3. A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Connectionist temporal
classification: labelling unsegmented sequence data with recurrent neural networks,”
in Proceedings of the 23rd International Conference on Machine Learning, 2006, pp.
369-376.

4. W. Chan, N. Jaitly, Q. V. Le, and O. Vinyals, “Listen, attend and spell,” arXiv Pre-
print, 2015, arXiv:1508.01211.

5. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,
and I. Polosukhin, “Attention is all you need,” Advances in Neural Information Pro-
cessing Systems, Vol. 30, 2017.

6. A. Gulati et al., “Conformer: Convolution-augmented transformer for speech recog-
nition,” arXiv Preprint, 2020, arXiv:2005.08100.

7. Y. Peng, S. Dalmia, I. Lane, and S. Watanabe, “Branchformer: Parallel MLP-atten-
tion architectures to capture local and global context for speech recognition and
understanding,” in Proceedings of International Conference on Machine Learning,
2022, pp. 17 627-17 643.

372 HOU-AN LIN AND CHIA-PING CHEN

8. A. Graves, “Sequence transduction with recurrent neural networks,” arXiv Preprint,
2012, arXiv:1211.3711.

9. S. Watanabe, T. Hori, S. Kim, J. R. Hershey, and T. Hayashi, “Hybrid CTC/attention
architecture for end-to-end speech recognition,” IEEE Journal of Selected Topics in
Signal Processing, Vol. 11, 2017, pp. 1240-1253.

10. S. Kim, T. Hori, and S. Watanabe, “Joint CTC-attention based end-to-end speech
recognition using multi-task learning,” in Proceedings of IEEE International Confer-
ence on Acoustics, Speech and Signal Processing, 2017, pp. 4835-4839.

11. T. Nakatani, “Improving transformer-based end-to-end speech recognition with con-
nectionist temporal classification and language model integration,” in Proceedings of
Interspeech, 2019.

12. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.
Courville, and Y. Bengio, “Generative adversarial nets,” Advances in Neural Infor-
mation Processing Systems, Vol. 27, 2014.

13. J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image translation
using cycle-consistent adversarial networks,” in Proceedings of IEEE International
Conference on Computer Vision, 2017, pp. 2223-2232.

14. E. Tsunoo, Y. Kashiwagi, T. Kumakura, and S. Watanabe, “Transformer ASR with
contextual block processing,” in Proceedings of IEEE Automatic Speech Recognition
and Understanding Workshop, 2019, pp. 427-433.

15. E. Tsunoo, Y. Kashiwagi, and S. Watanabe, “Streaming transformer ASR with block-
wise synchronous beam search,” in Proceedings of IEEE Spoken Language Technol-
ogy Workshop, 2021, pp. 22-29.

16. M. K. Baskar et al., “EAT: Enhanced ASR-TTS for self-supervised speech recog-
nition,” in Proceedings of IEEE International Conference on Acoustics, Speech and
Signal Processing, 2021, pp. 6753-6757.

17. J. Sun, “Jieba Chinese word segmentation tool,” https://github.com/fxsjy/jieba, 2012.
18. Y. Lu, Z. Li, D. He, Z. Sun, B. Dong, T. Qin, L. Wang, and T.-Y. Liu, “Understand-

ing and improving transformer from a multi-particle dynamic system point of view,”
arXiv Preprint, 2019, arXiv:1906.02762.

19. T. Hori, S. Watanabe, and J. R. Hershey, “Joint CTC/attention decoding for end-to-
end speech recognition,” in Proceedings of the 55th Annual Meeting of the Associa-
tion for Computational Linguistics, Vol. 1, 2017, pp. 518-529.

20. S. Watanabe et al., “ESPNet: End-to-end speech processing toolkit,” arXiv Preprint,
2018, arXiv:1804.00015.

21. BiaoBei (Beijing) Technology, “Chinese standard Mandarin speech corpus,” https://
www.data-baker.com/open source.html, 2017.

22. H.-P. Lin, “Improving speech recognition systems for low-resource languages with
hidden speaker information,” https://hdl.handle.net/11296/p2yng3, 2021.

23. T. Ko, V. Peddinti, D. Povey, and S. Khudanpur, “Audio augmentation for speech
recognition,” in Proceedings of Interspeech, 2015, pp. 3586-3589.

24. D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph, E. D. Cubuk, and Q. V. Le,
“SpecAugment: A simple data augmentation method for automatic speech recogni-
tion,” arXiv Preprint, 2019, arXiv:1904.08779.

25. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv Pre-
print, 2014, arXiv:1412.6980.

TRAINING ASR WITH TTS AND TEXT DISCRIMINATOR 373

26. H.-B. Liang, C.-Y. Li, and H.-Y. Lee, “The NTU ASR system for formosa speech
recognition challenge 2020,” in Proceedings of Speech Signal Processing Workshop,
2021.

27. Y. Ren, X. Tan, T. Qin, S. Zhao, Z. Zhao, and T.-Y. Liu, “Almost unsupervised text
to speech and automatic speech recognition,” in Proceedings of International Con-
ference on Machine Learning, 2019, pp. 5410-5419.

Hou-An Lin obtained the BS degree in Applied Mathe-
matics from Feng Chia University and earned the MS degree in
Computer Science and Engineering from National Sun Yat-sen
University in 2020 and 2023. His research focuses on speech
recognition, including code-switching speech recognition sys-
tems and training speech recognition systems using speech syn-
thesis and text discriminators.

Chia-Ping Chen received the BS degree in Physics from
National Taiwan University, the MS degree in Physics from Na-
tional Tsing-Hua University, and the MS and Ph.D. degrees in
Engineering from the University of Washington at Seattle. Since
2005, he has been a member of the faculty of the Department
of Computer Science and Engineering of National Sun Yat-sen
University, Kaohsiung, Taiwan. His research interests mainly fo-
cus on spoken language technology and applications, including
speech recognition, speech synthesis, speaker recognition, and
acoustic sound event detection.

