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We present a novel speech enhancement method based on locally linear embedding
(LLE). The proposed method works as a post-filter to further suppress the residual noises
in the enhanced speech signals obtained by a speech enhancement system to attain im-
proved speech quality and intelligibility. We design two types of LLE-based post-filters:
the direct LLE-based post-filter (called the DL post-filter) and the LLE-based difference
compensation post-filter (called the LDC post-filter). The key technique of the proposed
post-filters is to apply the LLE-based feature prediction method, which integrates the
LLE algorithm, a classical manifold learning method, with the exemplar-based feature
prediction method, to predict either the spectral features of the clean speech from those
of the enhanced speech (for DL) or the spectral difference of {clean speech; noisy speech}
from that of {enhanced speech; noisy speech} (for LDC). As a result, for DL, the pre-
dicted clean speech signals can be directly reconstructed from the predicted clean spec-
tral features. On the other hand, for LDC, the predicted clean spectral features are ob-
tained by compensating the spectral features of the noisy speech with the predicted
clean-noisy spectral difference, and then the predicted clean speech signals can be recon-
structed accordingly. Experimental results demonstrate the effectiveness of the proposed
post-filters for two representative speech enhancement methods, namely the deep de-
noising autoencoder (DDAE) and the minimum mean-square-error (MMSE) spectral es-
timation methods.

Keywords: speech enhancement, locally linear embedding, post-filter/postfilter, exem-
plar-based, manifold learning

1. INTRODUCTION

Speech enhancement has been used as a fundamental unit in a wide range of voice-
based applications, such as assistive hearing devices [1, 2], hands-free communication [3,
4], automatic speech recognition [5-7], and speaker recognition [8, 9]. Traditionally,
speech enhancement algorithms were derived based on the statistical characteristics of
speech and noise signals. A class of approaches design a filter to suppress the noise
components in the input noisy speech. Well-known examples include spectral subtraction
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[10], Wiener filter [11], Kalman filtering [12], and minimum mean-square-error (MMSE)
spectral estimation [13]. Another successful class is the subspace-based approaches,
which split a noisy speech signal into two subspaces, one for the clean speech signal and
the other for the noise comments, and then suppress the noise parts to reconstruct the
clean speech signal. Notable subspace techniques include singular value decomposition
(SVD) [14] and principal component analysis (PCA) [15, 16]. The class of speech mod-
el-based techniques is derived by considering both human speech production models and
speech reduction functions to perform noise reduction. Successful examples include the
harmonic model [17, 18], the linear prediction (LP) model [19, 20], and the hidden Mar-
kov model (HMM) [21, 22].

More recently, machine-learning based speech enhancement approaches, such as
sparse coding [23], nonnegative matrix factorization (NMF) [24, 25], and artificial neural
networks based approaches, such as deep neural network (DNN) [7, 26], deep denoising
auto-encoder (DDAE) [27-29], recurrent neural network [30, 31], and convolutional
neural network (CNN) [32], have attracted great attention. Although these previously
developed speech enhancement algorithms already yield good performances in many
conditions, two issues are still not perfectly addressed, i.e., residual noise and speech
distortions are still noticeable in enhanced speech signals. To address these two issues,
we propose a novel locally linear embedding (LLE)-based post-filter for speech enhance-
ment.

Our proposed method is inspired by the success of our previous work that integrated
the LLE algorithm [33], a manifold learning algorithm that characterizes the intrinsic
geometric structure of high dimensional data, with the exemplar-based spectral conver-
sion method (called the LLE-based feature prediction method hereafter) for speaker
voice conversion [34]. In this study, we employ the LLE-based feature prediction method
in speech enhancement. The intuitive way is to employ LLE-based feature prediction
directly to predict the spectral features of clean speech (called the clean spectral features
hereafter) from the spectral features of noisy speech (called the noisy spectral features
hereafter). Due to its natural limitation, however, LLE-based feature prediction could not
achieve satisfactory performance in speech enhancement when working alone in our pre-
liminary experiments, especially under low signal-to-noise ratio (SNR) noisy conditions.
Therefore, we adopt it as a post-filter for speech enhancement processed speech to fur-
ther remove the residual noise components.

Specifically, two types of post-filters based on the LLE-based feature prediction
method are presented in this paper: the direct LLE-based (DL) post-filter [35] and the
LLE-based difference compensation (LDC) post-filter. The proposed post-filters can be
divided into offline and online stages. In the DL post-filter, the offline stage involves
preparing the paired enhanced spectral features (obtained by a speech enhancement sys-
tem) and clean spectral features (also called exemplars) for dictionary construction while
the online stage involves performing the LLE-based feature prediction method to predict
the clean spectral features from the enhanced spectral features. To overcome the discon-
tinuity problem existing in the predicted clean spectral features, the maximum likelihood
parameter generation algorithm [36] is applied after the LLE-based feature prediction
method. On the other hand, in the LDC post-filter, the offline stage involves preparing
the paired differences: the spectral difference of {enhanced speech; noisy speech} and
the spectral difference of {clean speech; noisy speech}, while the online stage involves
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performing the LLE-based feature prediction method (followed by the maximum likeli-
hood parameter generation (MLPG) algorithm) to predict the clean-noisy spectral differ-
ence from the enhanced-noisy spectral difference and compensating the noisy spectral
features with the predicted clean-noisy spectral difference. In this study, we evaluate the
effectiveness of the proposed post-filters on a supervised speech enhancement system,
i.e., the DDAE-based speech enhancement system [29], and an unsupervised speech en-
hancement system, i.e., the minimum mean-square-error (MMSE) spectral estimation-
based speech enhancement system [13].

The remainder of this paper is organized as follows. The proposed LLE-based post-
filters for speech enhancement are described in detail in Section 2. Experimental setup
and results are presented in Section 3. Finally, Section 4 gives the conclusions.

2. THE PROPOSED LLE-BASED POST-FILTERS FOR SPEECH
ENHANCEMENT

In this section, we first describe the LLE-based feature prediction method in Section
2.1, which is the core technique adopted in the proposed post-filters, and then present the
direct LLE-based (DL) post-filter and the LLE-based difference compensation (LDC)
post-filter in Sections 2.2 and 2.3, respectively. Finally, a comparison between the DL
and LDC post-filters is given in Section 2.4.

2.1 The LLE-Based Feature Prediction Method

As mentioned previously, the LLE-based feature prediction method integrates the
LLE algorithm with the exemplar-based feature prediction method. Before we start to
describe the LLE-based feature prediction method, we first briefly review the LLE algo-
rithm [33].

The LLE algorithm addresses the problem of nonlinear dimensionality reduction by
computing the low-dimensional neighborhood preserving embeddings of high-dimen-
sional data. Let each high-dimensional input data point be sampled from an underlying
low-dimensional manifold, and a sufficient number of data be provided, LLE assumes
that the manifold is locally linear, and each data point and its neighbors lie on or close to
a locally linear patch of the manifold. A manifold can be visualized as a collection of
overlapping locally linear patches if the neighborhood size is small and the manifold is
sufficiently smooth. Under this condition, the local geometry of a patch (i.e., the local
geometry in the neighborhood of each data point) can be characterized by the reconstruc-
tion weights that reconstruct each data point from its neighbors. Then, the same recon-
struction weights are used for computing the low-dimensional embedding such that the
local geometry of the patch is preserved in the low-dimensional embedding space. The
LLE algorithm for dimensionality reduction has three steps:

(a) Finding K nearest neighbors for each data point.

(b) Computing the reconstruction weights that best (linearly) reconstruct each data point
from its K nearest neighbors found in step (a).

(c) Estimating the low-dimensional embedding for each data point by applying the re-
construction weights obtained in step (b).
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Fig. 1. Overview of the run-time prediction stage of the LLE-based feature prediction method.

The steps (a), (b), and (c) involve identifying each locally linear patch, charactering
the local geometry of each locally linear patch, and preserving the local geometry in the
low-dimensional embedding space, respectively. Next, we describe the LLE-based fea-
ture prediction method.

Fig. 1 gives an overview of the run-time prediction stage of the LLE-based feature pre-
diction method. In Fig. 1, given a sequence of input source feature vectors {u;e R" Xl}le,
the LLE-based feature prediction method is applied to predict a corresponding target
feature vector from each source feature vector independently in a sample-by-sample
manner. Accordingly, a sequence of predicted feature vectors {v,eR" Xl}le can be ob-
tained. u; and Vv; are the ith source and predicted feature vectors, respectively; F is the
dimensionality of features; and / is the number of input source/predicted feature vectors.

Specifically, suppose that the paired source and target dictionaries, consisting of the
source and target feature vectors (also called exemplars) respectively, have been con-
structed in the offline stage. Then, the LLE-based feature prediction method for an input
source feature vector u; conducts the following three steps:

(a) Finding K nearest neighbors (measured by the Euclidean distance) of u; from the
source dictionary.

(b) Computing the reconstruction weight vector that best (linearly) reconstructs u; from
its K nearest neighbors found in step (a).

(c) Estimating the corresponding target feature vector by linearly combining K target
exemplars (paired with the K nearest neighbors of ;) in the target dictionary with the
reconstruction weight vector obtained in step (b).

The steps (a) and (b) involve identifying the locally linear patch and charactering
the local geometry of the locally linear patch, respectively, as described in steps (a) and
(b) of the LLE algorithm for dimensionality reduction. On the other hand, the step (c)
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involves estimating the target features by preserving the local geometry of the source
features, as opposed to estimating the low-dimensional embedding in step (c) of the LLE
algorithm for dimensionality reduction.

We implement steps (b) and (c) of the LLE-based feature prediction method as fol-
lows. In step (b), the reconstruction weight vector is computed by minimizing the recon-
struction error & subject to the constraint 1'w; = 1 (for the purpose of translational invar-
iance) as:

&=l — Awi’, s.t. 1'w; = 1, (1)

where A;e R™X is a matrix (a subset of the source dictionary) composed of K nearest
neighbors of u;, i.e., A; = [a;), ..., Ay, ..., 2;x], Where a,-‘keRFXl is the kth nearest neigh-
bor of u;; w;e R¥! is the reconstruction weight vector for u;; 1eR®! is a vector whose
elements are all ones; and the superscript 7 denotes transposition of the vector. Note that
A; can be obtained in step (a). Solving w; by minimizing & subject to the constraint is a
constrained least square problem, and the closed-form solution can be found in [37]. A
more efficient way to obtain w; is to solve the linear system of equations in advance:

G,‘W,‘ = 1, (2)
where G;e R¥¥ is the local Gram matrix for u;:
G;=(A;—ul T)T(Ai —ul T)- (3)

Then, the reconstruction weight vector is rescaled to satisfy the constraint 1"w; =1. The
detailed derivations of the solution can be found in [37].

In step (c), with the assumption that the source and target feature vectors share a
similar local geometry in their respective feature spaces (manifolds) the predicted feature
vector V; can be obtained by

{’i =Bw,, 4

where the reconstruction weight vector w; is obtained in step (b); B,e R is a matrix (a

subset of the target dictionary) corresponding to A,, and is composed of K target exem-
plars, i.e., B;=[b;1, ..., b, ..., bx], where b,,e R"™" is the kth target exemplar in B, cor-
responding to (paired with) a, .

Once the sample-by-sample prediction process is finished, a sequence of predicted
feature vectors {\7,»}]1.:l can be obtained.

2.2 The Direct LLE-Based Post-Filter

Fig. 2 gives an overview of the DL post-filter. The natural idea is to directly apply
the LLE-based feature prediction method to perform post-filtering for speech enhance-
ment, i.e., predicting the clean spectral features from the enhanced spectral features.
There are two stages in DL post-filtering: the offline and online stages. The offline stage
mainly involves the construction of the paired dictionaries while the online stage per-
forms post-filtering for speech enhancement. In the following, we describe the DL post-
filter in detail.
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Fig. 2. Overview of the offline and online stages of the proposed direct LLE-based (DL) post-filter.
“SE system”, “SFE”, and “LLE-based FP”” modules denote “speech enhancement system”,
“spectral feature extraction”, and “LLE-based feature prediction”, respectively.

(A) The Offline Stage
As shown in Fig. 2, the paired enhanced and clean dictionaries are constructed in the
following steps:

(a) Preparing three speech corpora: the clean speech, the corresponding noisy speech,
and the corresponding enhanced speech corpora, where the enhanced speech corpus
is obtained by applying a well-established speech enhancement system/method to the
noisy speech corpus while the noisy speech corpus is obtained by artificially adding
noises with different SNRs to the clean speech corpus (which will be described in
detail in Section 3).

(b) Extracting the enhanced and clean spectral feature vectors from the enhanced and
clean speech corpora, respectively. Note that each enhanced or clean spectral feature
vector is composed of multi-dimensional static, delta, and delta-delta features.

(¢) Constructing the paired dictionaries from the enhanced and clean spectral feature
vectors.

Note that after conducting step (b), the statistics (i.e., the precision matrix) to be
used by the MLPG algorithm [36] in the online stage is estimated from the clean spectral

features. The MLPG algorithm will be described later.

Let SeR* and SeR** (as shown in Fig. 2) be the enhanced and clean diction-
aries, and be composed of the enhanced and clean spectral feature vectors (or called ex-
emplars) as S = [51, e §m . §N] and S = [§1, .A..,§,,, ...,§N], respectively, where the
numbers of exemplars in both dictionaries are N; S, € R***! is the nth enhanced exem-
plar in the enhanced dictionary, and is composed of the L-dimensional static s, € R**',
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~ o o A A ~ T
delta AV's, e R™!, and delta-delta A?'s, € R™! features as S, =| 57, AVs",A®§”

(for n=1~N). Likewise, S, € R*"" is the nth clean exemplar in the clean dictionary, and
is cgmposed of the L-dimensional static s, € R*, delta A"V g,, e R¥! and delta-delta
AP s, e R¥! features as S, = [EHT LAVST APST ]T (for n=1~N).
(B) The Online Stage

In Fig. 2, a well-established speech enhancement system is applied to an input noisy
speech to obtain the enhanced speech in advance. Then, spectral feature extraction is
performed to obtain the sequence of enhanced spectral feature vectors {S, Rwl};,
where T is the number of speech frames of the enhanced speech, and S, is the enhanced
spectral feature vector at frame ¢, which is composed of the L-dimensional static §; € RE
delta AV§, € RY! and delta-delta A®§, e RY! features, i.e., S, = [§£ A(l)ég A(2)§ﬁT. Then,
the LLE-based feature prediction method is applied to predict the clean spectral feature
vectors {S] e R3LX1}TF1 from the enhanced spectral feature vectors {S,}TF1 independently
in a frame-by-frame manner, where S| is the predicted clean spectral feature vector at
frame ¢. Note that the paired enhanced and clean dictionaries are used in the LLE-based
feature prediction method.

To overcome the discontinuity problem existing in the predicted clean spectral fea-
tures given by the LLE-based feature prediction method, the MLPG algorithm is applied

to the predicted clean spectral feature vectors {S]} TH to generate a sequence of final pre-

dicted static clean spectral feature vectors {s; € RLXI}[T:I, where s; is the final predicted

static clean spectral feature vector at frame 7. Next, we describe the MLPG algorithm in
detail.

(C) The MLPG Algorithm

Since the LLE-based feature prediction method is performed in a frame-by-frame
manner, the discontinuity problem exists. As suggested in our previous work [34, 35], the
MLPG algorithm can effectively handle the discontinuity problem.

The MLPG algorithm [36] applied to the LLE-based feature prediction method is
given as

s' = (M'AM)'M'AS’, (5)

where s’ = [(s))’, ..., (s)', ..., (s))"]" € R*™! is a sequence of final predicted static clean
spectral feature vectors; M € R**™ 7 is a weighting matrix used for appending the dy-
namic features to the static ones [36]; 8’ = [(S))7, ..., ), ..., 8D e R*™ is a se-
quence of predicted clean spectral feature vectors obtained by the LLE-based feature
prediction method; A = diag[Ay, ..., A, ..., Af] € RALTSLT s the global precision matrix,
where A, € R*3L is the precision matrix at frame ¢, which is assumed to be diagonal and
is estimated from the clean speech corpus (clean spectral feature vectors). Note that A,
=...=A=..=Arn

2.3 The LLE-Based Difference Compensation Post-Filter

Because the DL post-filter directly predicts the clean spectral features from the en-
hanced spectral features without utilizing the spectral information of the noisy speech,
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the performance of post-filtering may depend heavily on the capability of the preceding
speech enhancement system. Alternatively, we propose the LDC post-filter to cope with
this problem. Fig. 3 gives an overview of the LDC post-filter, which includes the offline
and online stages.

Online Stage

Noisy Speech Enhanced Speech

Bt ST > e

Offline Stage
e
Clean

Speech SFE
Corpus

[958 s

DCN Dictionary

- (3L-by-N)

Noisy
Speech SFE
Corpus o
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System
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Fig. 3. Overview of the offline and online stages of the proposed LLE-based difference compensa-
tion (LDC) post-filter. “SE system”, “SFE”, and “LLE-based FP”” modules denote “speech
enhancement system”, “spectral feature extraction”, and “LLE-based feature prediction”,
respectively. “Static FE” module in the online stage extracts the static component y, from

the feature vector Y, (for =1~7).

DEN Dictionary
(3L-by-N)

(A) The Offline Stage
As shown in Fig. 3, the paired difference dictionaries (called the DEN and DCN
dictionaries, respectively) are constructed in the following steps:

(a) Preparing three speech corpora: the clean speech, the corresponding noisy speech,
and the corresponding enhanced speech corpora.

(b) Extracting the clean, noisy, and enhanced spectral features from the clean, noisy, and
enhanced speech corpora, respectively. Note that each clean, noisy, or enhanced
spectral feature vector is composed of multi-dimensional static, delta, and delta-delta
features.



LOCALLY LINEAR EMBEDDING FOR POST-FILTERING IN SPEECH ENHANCEMENT 1477

(c) Computing the spectral difference of {enhanced speech; noisy speech} (called the
DEN features hereafter) and that of {clean speech; noisy speech} (called the DCN
features hereafter).

(d) Constructing the paired DEN and DCN dictionaries from the paired DEN and DCN
features.

Note that before conducting step (b), it is essential to normalize the energy of each
enhanced speech utterance to match that of the corresponding clean speech utterance
beforehand. In other words, we make the energy of each enhanced speech utterance
match the energy of the clean speech component of the corresponding noisy speech ut-
terance. Then, we perform steps (b)-(d). In this way, we avoid the mismatch between the
DEN and DCN features caused by the energy mismatch between the enhanced speech
and the clean speech component of the noisy speech. The necessity of this strategy has
been confirmed in our preliminary results.

Additionally, after conducting step (c), we also calculate the statistics (i.e., the pre-
cision matrix) of the DCN features to be used by the MLPG algorithm in the online
stage. .

Let D e R** and D € R***" be the DCN and DEN dictionaries, and be composed
of the DCN and DEN feature vectors (or called exemplars) as D=[D,,...,D,,...D,]
and l_)=[I_)1,~--,
tionaries are NV,

~-,ﬁN], respectively, where the numbers of exemplars in both dic-
e R*is the nth DCN exemplar in the DCN dictionary, and is cal-

ﬁn"
D,
culated as S, —Y,, where S, is the nth clean spectral feature vector as described previ-

ously, and S_(n is the nth noisy spectral feature vector, and is composed of the L-dimen-
sional static y, e R™", delta AVy, e R"", and_delta-delta Ay, € R™" features as
Y, =[¥,.A"y,.A%y, ]T (for n=1~N). Likewise, D, € R***" is the nth DEN exemplar in
the DEN dictionary, and is calculated as S, —Y,, where S, is the nth enhanced spectral
feature vector as defined previously (for n=1~N).

(B) The Online Stage

In Fig. 3, a well-established speech enhancement system is applied to the noisy
speech to obtain the enhanced speech in advance. Then, spectral feature extraction is per-
formed to obtain the sequence of enhanced spectral feature vectors {@,} Ll. Meanwhile,
we also extract the sequence of noisy spectral feature vectors {Y; € RLXI}ZT:I, where Y, is
the noisy spectral feature vector at frame ¢, and is composed of the L-dimensional static
y, € R delta Ay, e R™, and delta-delta A%y, € R features as Y, = [ytT, A(l)y[T,
A(z)y[T]T (for =1~T). Note that before extracting the noisy spectral feature vectors, we
should make the energy of the enhanced speech utterance match the energy of the clean
speech component of the corresponding noisy speech utterance for the same reason de-
scribed early in the offline stage. Since the clean speech is not available during the online
stage, we cannot apply the same procedure adopted in the offline stage. Alternatively, we
first apply voice activity detection (VAD) to the enhanced speech to determine the time
slots of noise and speech, which are then used to predict the SNR level of the given noisy
speech. With the predicted SNR, we normalize the energy of the input noisy speech such
that the energy of the clean speech component of the noisy speech matches the energy of
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the enhanced speech. The necessity of this strategy has been confirmed in our prelimi-
nary results.

Next, we obtain the DEN feature vectors by calculating the spectral difference of
{enhanced speech; noisy speech} as {D, = S, - Y,}TH, where D; is the DEN feature vector
at frame ¢. Then, the LLE-based feature prediction method is applied to predict the DCN
feature vectors {i), € le}TFl, from the DEN feature vectors {D,}TF1 independently in a
frame-by-frame manner, where D, is the predicted DCN feature vector at frame ¢. Note
that the paired DEN and DCN dictionaries are used in the LLE-based feature prediction
method.

To overcome the discontinuity problem, the MLPG algorithm is applied to {i),}TF1
in the same way as it is applied in the DL post-filter. As a result, a sequence of predicted
static DCN feature vectors {21, € RM}TH can be obtained, where d, is the predicted static

DCN feature vector at frame .
Finally, we obtain a sequence of final predicted static clean spectral feature vectors
{s§}TFl by compensating the noisy “static” spectral feature vectors {yt}TFl with the pre-

dicted static DCN feature vectors {d,}TFl as {s;= d, + yit

=1
2.4 Comparison between DL and LDC

The main difference between the DL and LDC post-filters in the offline stage is the
construction of the dictionaries. Specifically, since the enhanced speech under different
noise types, SNR levels and distortions link to the same ground-truth clean speech, the
many-to-one issue may occur in DL. Nevertheless, after we introduce the noisy speech
information to get the DEN and DCN features, the DEN-DCN paired exemplars become
a one-to-one case. Therefore, the paired DEN and DCN dictionaries in LDC can reduce
the uncertainty of the paired enhanced and clean dictionaries in DL. In the online stage,
DL directly predicts the clean spectral features from the enhanced ones while LDC pre-
dicts the clean-noisy spectral difference and compensates the input noisy spectral fea-
tures with the predicted clean-noisy difference to generate the final predicted clean spec-
tral features. As a result, LDC-processed speech may retain more speech details from the
noisy speech.

3. EXPERIMENTS

We conducted two sets of experiments to evaluate the effectiveness of the proposed
LLE-based post-filters. In this section, we first describe the experimental setup in Section
3.1. Then, in Section 3.2, we present the evaluation results of applying the LLE-based
post-filters to a DDAE-based speech enhancement system [29], which is a representative
supervised speech enhancement system. Finally, in Section 3.3, we present the evaluation
results of applying the LLE-based post-filters to a MMSE spectral estimation-based
speech enhancement system [13], which is a representative unsupervised speech en-
hancement system.

3.1 Experimental Setup

Our experiments were conducted on the Mandarin hearing in noise test (MHINT)
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sentences [38], which contained 300 utterances pronounced by a male native Mandarin
speaker recorded in a clean condition room. The maximum, minimum, and average dura-
tions of the utterances were around 4.4, 1.9, and 3 seconds, respectively. Speech signals were
recorded in a 16 kHz/16 bit format.

In Section 3.2, we compared the following three systems:

o DDAE: The baseline DDAE-based speech enhancement system integrated with the
MLPG algorithm [29].

e DDAE-DL: The system that applies the DL post-filter to DDAE for further suppress-
ing residual noises in enhanced speech signals obtained by DDAE.

e DDAE-LDC: The system that applies the LDC post-filter to DDAE for further sup-
pressing residual noises in enhanced speech signals obtained by DDAE.

Specifically, for the DDAE system, the first 250 utterances of the MHINT dataset
were used for training the DDAE model, and the remaining 50 utterances were used for
testing. The noisy speech data were obtained by artificially adding noises (car and
two-talker noises recorded in a real environment) to the clean speech utterances. The
SNRs ranged from —10 to 20 dB with a 5 dB interval. As a result, for each noise type,
1750 noisy speech utterances paired with the corresponding clean speech utterances were
generated as the training set. The DDAE model consisted of seven hidden layers with
1200, 300, 300, 514, 300, 300, and 1200 hidden nodes, respectively. Two DDAEs, one
for the car noise and the other for the two-talker noise, were obtained by the training data.
For signal analysis, the frame length and the frame shift were 32 and 16 milliseconds,
respectively. The Hamming window was used in the framing process. Each frame of
speech was converted to a “static” feature vector with 257-dimensional log-power spec-
tral features, based on a 512-point discrete short-time Fourier transform analysis. The
immediately preceding and following contextual feature vectors were then appended to
the current one to form the final spectral feature vector, whose dimension was 771 (257 x
3). During spectral feature generation, the MLPG algorithm was adopted to overcome the
discontinuity issue as described in [29].

A five-fold cross validation was performed to evaluate DDAE-DL based on the 50
utterances in the test set. In each run, we constructed the paired enhanced and clean dic-
tionaries using 40 utterances and tested performance using the remaining 10 utterances.
The rationale behind this setup is that the proposed post-filters are supposed to support
all existing speech enhancement systems. In other words, the training data for these
speech enhancement systems should not be assumed available, and the post-filters should
be developed independently. The dictionaries were built using the data at -10, 0, and 10
dB SNRs. Thus, for each noise type, there were 120 clean and the corresponding en-
hanced utterances (obtained by DDAE) to build the paired dictionaries. The dictionaries
contained about 24,000 exemplars for each run. The signal analysis part was the same as
that used in DDAE, except that the power spectra of each frame were normalized to
unit-sum, and the normalizing factor was saved to be used in the reconstruction step.
Then, logarithms were applied to the normalized power spectra. The static, delta, and
delta-delta features were used, and thus the dimensionality of a final vector was 771 (257
x 3). After performing DDAE-DL, the predicted log normalized power spectra were re-
verted back to the (linear) normalized power spectra, which were then compensated back
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to the power spectra by the normalizing factor. The number of nearest neighbors, namely
K in (1)-(4), for the LLE-based feature prediction method applied in DL was set to 1024
empirically. For a fair comparison, the DDAE-LDC system adopted the same setup as
DDAE-DL.

In Section 3.3, we compared the following three systems:

o MMSE: The conventional MMSE spectral estimation-based speech enhancement sys-
tem [13].

o MMSE-DL: The system that applies the DL post-filter to MMSE for further suppress-
ing residual noises in enhanced speech signals obtained by MMSE.

o MMSE-LDC: The system that applies the LDC post-filter to MMSE for further sup-
pressing residual noises in enhanced speech signals obtained by MMSE.

Specifically, for the MMSE system, the “decision-directed” method is used for trac-
king of a priori SNR tracking. The signal analysis process was the same as that used in
DDAE. For the MMSE-DL and MMSE-LDC systems, the setup is the same as that in
DDAE-DL and DDAE-LDC, except that the enhanced dictionary and the enhanced-noisy
dictionary were constructed by the enhanced speech utterances obtained by MMSE ra-
ther than DDAE.

For all the systems mentioned above, we used an overlap-add method to synthesize
the waveform from the final estimated/enhanced spectral features with the phase infor-
mation of the original noisy speech.

3.2 Evaluation of the LLE-Based Post-Filters for DDAE

(A) Objective Evaluations

We used the following three metrics for objective evaluation: the perceptual evalua-
tion of speech quality (PESQ) [39], the short-time objective intelligibility measure (STOI)
[40], and the segmental signal-to-noise ratio improvement (SSNRI, in dB) [41]. The
ranges of PESQ and STOI scores are {—0.5 to 4.5} and {0 to 1}, where higher scores
indicate better speech quality and better intelligibility, respectively. On the other hand,
SSNRI represents the difference in the segmental SNR between the enhanced speech and
the noisy speech for measuring the degree of noise reduction. Therefore, the SSNRI
score of the noisy speech is 0 dB, and a higher SSNRI score of the enhanced speech in-
dicates that the noise in the noisy speech has been removed effectively. Tables 1 and 2,
respectively, show the objective evaluation scores obtained by DDAE, DDAE-DL, and
DDAE-LDC in the two-talker and car noises at different SNRs. The scores of the unpro-
cessed noisy speech are provided for reference.

We first compared the scores achieved by DDAE, DDAE-DL, and DDAE-LDC
with the scores of the noisy speech. From Table 1, we observe that generally all speech
enhancement systems could effectively handle the non-stationary noise (i.e., the two-
talker noise) with yielding higher PESQ and SSNRI scores over the noisy speech. With a
further analysis, we note that DDAE-LDC improved the STOI score over the noisy
speech at all SNRs except 10dB, while DDAE and DDAE-DL only improved the STOI
score at low SNRs. From Table 2, it is noted that all speech enhancement systems could
improve the SSNRI score when dealing with the stationary noise (i.e., the car noise).
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Meanwhile, DDAE-LDC could yield higher PESQ scores over the noisy speech at all
SNRs. However, it degraded the STOI score at high SNRs. On the other hand, DDAE
and DDAE-DL degraded PESQ and STOI scores at high SNRs. In summary, the results
from Tables 1 and 2 reveal that all speech enhancement systems can effectively handle
the two-talker and car noises except that DDAE and DDAE-DL tends to degrade the
speech quality and intelligibility in the car noise, particularly at high SNRs. However, the
improvements at low SNRs could be more valuable in many applications.

Table 1. PESQ, STOI, and SSNRI of DDAE, DDAE-DL, and DDAE-LDC evaluated on

the test set at different SNRs of the rwo-talker noise.

Noisy Speech DDAE DDAE-DL DDAE-LDC

PESQ STOI PESQ STOI SSNRI PESQ STOI SSNRI PESQ STOI  SSNRI
SNRIO 211 091 221 088 2.48 222 083 2.73 274 0.90 3.99
SNR6 181 086 205 086 5.76 211 082 6.08 244 088 7.04
SNR2 160 079 193 084 8.47 197  0.80 8.88 222 0.86 9.51
SNRO 155 075 183 083 9.66 186 079 1012 208 084 1057
SNR-2 143 070 175 081 1046 178 078  11.03 195 082 1129

SNR-6 1.32 0.60 1.61 0.78 11.38 1.59 0.75 12.13 1.74 0.78 11.39
SNR-10 1.28 0.51 1.47 0.72 11.51 1.42 0.69 12.53 1.56 0.73 11.12
Ave. 1.59 0.73 1.83 0.82 8.53 1.85 0.78 9.07 2.10 0.83 9.27

Table 2. PESQ, STOI, and SSNRI of DDAE, DDAE-DL, and DDAE-LDC evaluated on

the test set at different SNRs of the car noise.
Noisy Speech DDAE DDAE-DL DDAE-LDC
PESQ STOI PESQ STOI SSNRI PESQ STOI SSNRI PESQ STOI  SSNRI
SNRIO  2.61 0.95 196 085 5.04 203 0.80 5.73 310  0.90 7.59
SNR6 227 092 193 0.84 8.17 199  0.79 8.91 288 088  10.59
SNR2 196  0.87 189 083 1040 192 078 1137 259 08  12.63
SNRO 184 085 185 082 1140 186 078 1234 243  0.85  13.40
SNR-2 1.71 0.82 1.81 0.81 12.00 182 077  13.05 228 083  13.85
SNR-6 153 076 175 079 1234 1.71 0.75 1374 202 080  13.97
SNR-10 143 071 1.67 076 1222 1.60 072 13.90 1.82 075 13.45
Ave. 1.91 0.84 1.84 081 10.23 185 077 1129 244  0.84 1221

Next, we evaluated the effectiveness of the proposed DL and LDC post-filters by
comparing DDAE-DL and DDAE-LDC with DDAE. From the results in Tables 1 and 2,
we first observe that both DDAE-DL and DDAE-LDC achieved better SSNRI scores
than DDAE in both noise types at all SNRs, showing that the residual noises in the
DDAE enhanced speech can be further removed by the DL and LDC post-filters. Com-
paring DDAE-DL with DDAE, we observe that DDAE-DL obtained slightly higher
PESQ scores than DDAE in both noise types at high SNRs (i.e., 10 ~ -2 dB SNRs), sug-
gesting that the DL post-filter can provide additional speech quality improvements in
higher SNR conditions. However, we also observe that DDAE-DL was inferior to DDAE
in terms of STOI under all SNRs and noise types, suggesting that although the DL
post-filter can notably improve SSNRI and speech quality, it tends to deteriorate speech
intelligibility. On the contrary, comparing DDAE-LDC with DDAE, we note that
DDAE-LDC improved the PESQ and STOI scores over DDAE across different SNR
levels and noisy types. Consider that DDAE-DL cannot effectively improve the DDAE
enhanced speech under low SNR conditions, the results suggest that DDAE-LDC pos-
sesses a better ability to avoid distortions than DDAE-DL. With a further comparison,
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DDAE-LDC achieved better speech intelligibility, speech quality, and SSNRI scores in
most conditions than DDAE-DL. The results confirm that by reducing the uncertainty of
the paired dictionaries and maintaining speech details from the noisy speech, the LDC
post-filter can attain better enhancement performance than the DC post-filter. In sum-
mary, DDAE-LDC outperformed DDAE and DDAE-DL.

In addition to the above quantitative evaluation comparison, we provide the qualita-
tive comparison in Fig. 4, which presents the spectrograms of the clean, noisy and DIDAE,
DDAE-DL and DDAE-LDC enhanced speech. From the figure, we observe that although
all speech enhancement systems could effectively remove the noise components in the
spectrum domain, DDAE and DDAE-DL actually lost some speech details in the high-
frequency regions. DDAE-LDC, on the contrary, preserved most high-frequency-band
speech structures, and thus the spectrogram was closer to that of the clean speech. The
spectrogram analyses were actually consistent with the above objective evaluation results:
DDAE-LDC yields better speech quality, speech intelligibility, and noise reduction than
DDAE and DDAE-DL.

(©)
Fig. 4. Spectrograms of an utterance example; (a) original clean speech; (b) unprocessed mnoisy
speech; (¢) DDAE enhanced speech; (d) DDAE-DL enhanced speech, and (¢) DDAE-LDC
enhanced speech, in the car noise at SNR = 6 dB.

(B) Subjective Evaluations
From the results of objective evaluations, we could not clearly note the effectiveness
of the DL post-filter over DDAE (i.e., DDAE-DL slightly improved the PESQ and
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SSNRI scores over DDAE but degraded the STOI score). Therefore, we compared
DDAE-DL with DDAE by conducting the subjective noise reduction capability and
preference tests. In the noise reduction capability test, the subjects were asked to select
one from two utterances that was with a more notable noise reduction performance. Dur-
ing the preference test, the subjects were asked to select one from two utterances accord-
ing to the overall preference, including the speech quality, listening effort, and noise re-
duction capability.

The test utterances were generated under two noise types (i.e., the two-talker and car
noises) at three SNRs (i.e., —6, 0, and 6 dB). Note that —6dB and 6dB were not seen in
both DDAE training and dictionary construction of the DL post-filter. Fifteen pairs of
utterances were tested for each noise type and SNR combination. We conducted the AB
test, i.e., each pair of enhanced speech utterances by methods A and B were presented in
a random order to the subjects. Twelve subjects were involved in the tests. Figs. 5 and 6
show the results of the noise reduction capability test and the preference test, respectively.
From Fig. 5, we observe that DDAE-DL outperformed DDAE in all experimental condi-
tions. The result confirms that the residual noises in the DDAE enhanced speech signals
can be further removed by the DL post-filter through a spectral prediction process. The
result is consistent with the objective evaluation result in terms of SSNRI shown in Ta-
bles 1 and 2. From Fig. 6, we also observe that DDAE-DL achieved a significant gain
over DDAE in all experimental conditions. The result again demonstrates the effective-
ness of the DL post-filter for speech enhancement. It is worth mentioning that the main
factor considered in the preference test is the noise reduction capability according to the
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Fig. 5. Noise reduction capability test results for DDAE and DDAE-DL in two noise types (2 Talk:
the two-talker noise, Car: the car noise) at three SNRs (-6, 0, 6 dB). Error bars indicate the
95% confidence intervals.
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dence intervals.
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subjects’ responses. A possible reason is that the speech quality and listening effort of
both systems are similar to each other (cf. the scores of PESQ and STOI in Tables 1 and
2); therefore, the noise reduction capability becomes the most important factor for the
listening tests.

We further compared DDAE-DL with DDAE-LDC by conducting the subjective
preference test. Again, —6 dB and 6 dB SNR levels were not seen in the dictionary con-
structions of the LDC post-filter. Moreover, 15 pairs of enhanced speech were tested for
each condition, and 10 subjects were involved in the tests. The test results are listed in
Fig. 7. From the figure, we observe that DDAE-LDC outperformed DDAE-DL in all test
conditions. Specifically, DDAE-LDC provided remarkably higher scores under the sta-
tionary noise condition (i.e., the car noise) but achieved relatively smaller improvements
in the non-stationary noise case (i.e., the two-talker noise). Based on the interviews with
the subjects, we found that although the speech quality and listening effort were signifi-
cantly improved, DDAE-LDC brought unwanted noise to the enhanced speech, especial-
ly under low SNR and non-stationary noise conditions. The listening test result is con-
sistent with the objective evaluation result in terms of SSNRI that the improvements of
DDAE-LDC over DDAE-DL under the car noise with high SNR condition are more
prominent than the improvements under the two-talker noise with low SNR condition.

100
80

i L

6dB 0dB -6dB 6dB 0dB -6dB

D
o

Two-talker Car Avg.

DDAE-DL DDAE-LDC

Fig. 7. Preference test results for DDAE-DL and DDAE-LDC in two noise types (the car and two-
talker noises) at three SNRs (—6, 0, 6 dB). Error bars indicate the 95% confidence intervals.

3.3 Evaluation of the LLE-Based Post-Filters for MMSE

In Section 3.2, we have confirmed the effectiveness of integrating the LLE-based
post-filters with the DDAE-based speech enhancement system. In this section, we inves-
tigate the compatibility of the LLE-based post-filters with a conventional speech en-
hancement system, i.e., the MMSE spectral estimation-based speech enhancement system.
Tables 3 and 4 report the PESQ, STOI, and SSNRI scores obtained by MMSE, MMSE-
DL, and MMSE-LDC in the two-talker and car noises, respectively, at different SNRs.

We first compared the scores achieved by MMSE, MMSE-DL, and MMSE-LDC
with the scores of the noisy speech. From Table 3, we observe that generally all speech
enhancement systems yielded improvements in terms of SSNRI over the noisy speech
scores except that MMSE-LDC gave negative SSNRI scores in the two-talker noise at
high SNRs (i.e., 6~10dB). Moreover, we also observe that MMSE and MMSE-LDC
systems gave slightly higher PSEQ scores than the noisy speech in the two-talker noise at
high SNRs (i.e., 2~10 dB), and there were no obviously differences in the PESQ score



LOCALLY LINEAR EMBEDDING FOR POST-FILTERING IN SPEECH ENHANCEMENT 1485

among MMSE, MMSE-LDC, and the noisy speech at low SNRs. However, MMSE-DL
yielded lower PESQ scores than the noisy speech across all SNRs. Finally, all the three
speech enhancement systems tended to degrade the speech intelligibility with yielding
lower STOI scores than the noisy speech. In summary, the results from Table 3 reveal
that although all speech enhancement systems show their capability to improve SNR in
the non-stationary noise (i.e., the two-talker noise), they cannot effectively improve or
even may degrade the speech quality and speech intelligibility over the noisy speech.

Table 3. PESQ, STOI, and SSNRI of MMSE, MMSE-DL, and MMSE-LDC evaluated on
the test set at different SNRs of the rwo-talker noise.

Noise Speech MMSE MMSE-DL MMSE-LDC

PESQ STOI PESQ STOI SSNRI PESQ STOI SSNRI PESQ STOI SSNRI

SNR10 2.11 0.91 2.20 0.88 0.26 1.85 0.78 0.29 2.17 0.88 -1.51
SNR6 1.81 0.86 1.88 0.83 0.67 1.66 0.74 2.40 1.83 0.83 -0.55
SNR2 1.60 0.79 1.61 0.72 0.91 1.49 0.68 3.84 1.60 0.75 0.40
SNRO 1.55 0.75 1.55 0.69 0.92 1.39 0.65 4.25 1.53 0.72 0.67
SNR-2 1.43 0.70 1.44 0.62 0.96 1.32 0.60 4.69 1.42 0.67 0.74
SNR-6 1.32 0.60 1.27 0.51 0.97 1.25 0.55 4.64 1.32 0.58 0.77
SNR-10 1.28 0.51 1.27 0.43 1.08 1.17 0.46 4.20 1.25 0.50 0.91
Ave. 1.59 0.73 1.60 0.67 0.82 1.45 0.64 347 1.59 0.71 0.21

Table 4. PESQ, STOI, and SSNRI of MMSE, MMSE-DL, and MMSE-LDC evaluated on
the test set at different SNRs of the car noise.

Noise Speech MMSE MMSE-DL MMSE-LDC

PESQ STOI PESQ STOI SSNRI PESQ STOI SSNRI PESQ STOI SSNRI

SNR10 2.61 0.95 3.06 0.92 4.83 2.15 0.82 4.85 3.25 0.93 5.23
SNR6 2.27 0.92 2.70 0.89 6.01 2.02 0.80 7.43 2.95 0.90 6.98
SNR2 1.96 0.87 2.36 0.84 5.74 1.89 0.77 8.53 2.53 0.86 7.47
SNRO 1.84 0.85 221 0.81 5.55 1.82 0.76 8.88 2.38 0.83 7.65
SNR-2 1.71 0.82 2.05 0.79 5.38 1.75 0.74 9.21 2.15 0.81 7.46
SNR-6 1.53 0.76 1.79 0.73 3.72 1.55 0.69 8.33 1.84 0.76 6.17
SNR-10 1.43 0.71 1.59 0.66 2.95 1.41 0.64 7.58 1.61 0.70 5.05
Ave. 1.91 0.84 2.25 0.81 4.88 1.80 0.74 7.83 2.39 0.83 6.57

Next, we evaluated the effectiveness of the proposed DL and LDC post-filters by
comparing MMSE-DL and MMSE-LDC with MMSE in the two-talker noise. From Ta-
ble 3, we first observe that MMSE-DL outperformed MMSE in terms of SSNRI across
all SNR levels, indicating that the DL post-filter can effectively remove the residual
noises in the MMSE enhanced speech (consistent with the result in Table 1). On the con-
trary, MMSE-LDC gave lower SSNRI scores than MMSE, suggesting that the LDC
post-filter tends to introduce additional noise components to the MMSE enhanced speech
(different from the result in Table 1). We also observe that MMSE-DL generally yielded
lower STOI scores than MMSE, indicating that the DL post-filter tends to degrade the
speech intelligibility, and MMSE-LDC gave higher STOI scores than MMSE at most
SNR levels, indicating that the LDC post-filter can further improve the intelligibility of
the MMSE enhanced speech (consistent with the result in Table 1). On the other hand,
we observe that MMSE obtained the highest PESQ scores at most SNR levels, showing
that both LLE-based post-filters may degrade the speech quality (different from the result
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in Table 1). In summary, the results above reveal that the integration of the proposed
post-filters with MMSE is not as effective as the integration with DDAE in the two talker
noise (a non-stationary noise). The reason could be that the results of the post-filters
heavily depend on the performance (in terms of PESQ, STOI, and SSNRI) of the pre-
ceding speech enhancement system. Since MMSE could not handle the non-stationary
noise well, the post-filters could not provide further improvements. This can be verified
by comparing the objective results of DDAE in Table 1 with those of MMSE in Table 3.
Actually the results are expectable since our preliminary results also revealed that apply-
ing the proposed post-filters directly to the noisy speech (without enhancement) could
not achieve satisfactory speech enhancement performance.

Next, we evaluated the effectiveness of the proposed DL and LDC post-filters in the
car noise, which is relatively more stationary than the two-talker noise. From Table 4, we
first observe that both MMSE-DL and MMSE-LDC outperformed MMSE in terms of
SSNRI, suggesting that the proposed post-filters can effectively remove the residual
noises in the MMSE enhanced speech (consistent with the result in Table 2). Next, we
observe that MMSE-DL gave lower STOI scores than MMSE across all SNR levels,
indicating that the DL post-filter tends to degrade the speech intelligibility (consistent
with the result in Table 2). On the other hand, MMSE-LDC gave higher STOI scores
than MMSE, indicating that the LDC post-filter can further improve the speech intelligi-
bility (consistent with the result in Table 2). We also observe that MMSE-DL obtained
lower PESQ scores than MMSE across all SNR levels, showing that the DL post-filter
tends to degrade the speech quality (different from the result in Table 2). Meanwhile,
MMSE-LDC obtained higher PESQ scores than MMSE across all SNR levels, indicating
that the LDC post-filter can further improve the speech quality (consistent with the result
in Table 2). In summary, the results from Tables 3 and 4 reveal that applying the LDC
post-filter for MMSE is effective under the stationary noise condition. The result again
confirms that if the preceding speech enhancement system can handle the noisy speech
well, the LDC post-filter can further improve the speech enhancement performance. On
the other hand, although the DL post-filter can effectively remove the residual noises, it
tends to degrade the speech quality and intelligibility under both stationary and non-sta-
tionary noise types.

4. CONCLUSIONS

In this paper, we have proposed a novel LLE-based post-filtering approach with the
aim to further suppress the residual noises in the enhanced speech signals obtained by a
speech enhancement system. Two types of LLE-based post-filters have been presented:
the DL post-filter and the LDC post-filter. The DL post-filter improves the enhanced
speech (obtained by a speech enhancement system) by directly predicting the clean spec-
tral features from the enhanced spectral features while the LDC post-filter improves the
enhanced speech by predicting the spectral difference of {clean speech; noisy speech}
from that of {enhanced speech; noisy speech} and then compensating the noisy spectral
features with the predicted spectral difference. Our major findings are:

e Both of the proposed post-filters can further improve the supervised DDAE-based
speech enhancement system under different noise types and SNR levels. Particularly,
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the LDC post-filter achieve notable improvements over the DL post-filter due to the
fact that the LDC post-filter introduces the noisy speech information in the difference
prediction and compensation stages. As a result, the paired DEN and DCN dictionaries
in LDC can reduce the uncertainty of the paired enhanced and clean dictionaries in DL,
and the LDC-processed speech may retain more spectral details from noisy speech.

e The LDC post-filter can also improve the unsupervised MMSE spectral estimation-
based speech enhancement system, under the stationary noise type, e.g., the car noise,
with different SNR levels. However, it fails to improve the MMSE-based speech en-
hancement system under the non-stationary noise type, e.g., the two talker noise. On
the other hand, the DL post-filter can effectively remove the residual noises in the en-
hanced speech obtained by the MMSE-based speech enhancement system in different
noise types and SNR levels. However, it may notably degrade the speech quality and
speech intelligibility.

o Whether the proposed post-filters can further suppress the residual noises in the en-
hanced speech signals seems to depend on the capability/performance of the preceding
speech enhancement system.

For future work, we will evaluate the proposed LLE-based post-filters on more
speech enhancement systems and noise types. In the meanwhile, we will derive algo-
rithms to speed up the online nearest-neighbor searching for the LLE algorithm. Finally,
we plan to extend the current scenario (with specified target speaker) to a speaker inde-
pendent one.
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