
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 34, 943-960 (2018)
DOI: 10.6688/JISE.201807_34(4).0009

943

PVad: Privacy-Preserving Verification for Secure Routing
in Ad Hoc Networks

TENG LI, JIAN-FENG MA, CONG SUN AND NING XI

School of Cyber Engineering
Xidian University

Shaanxi, 710071 P.R. China
E-mail: litengxidian@gmail.com

Routing security has a great importance to the security of Mobile Ad Hoc Networks

(MANETs). There are various kinds of attacks when establishing the routing path be-
tween the source and destination. The adversaries attempt to deceive the source node and
get the privilege of data transmission. Then, they try to launch the malicious behaviors
such as passive or active attacks. Due to the characteristics of the MANETs, e.g. dynamic
topology, open medium, distributed cooperation, and constrained capability, it is difficult
to verify the behaviors of nodes and detect malicious nodes without revealing any priva-
cy. In this paper, we present PVad, an approach conducting privacy-preserving verifica-
tion in the routing discovery phase of MANETs. PVad tries to find the existing commu-
nication rules via the association rules instead of making the rules. PVad consists of two
phases, a reasoning phase deducing the expected log data of the peers, and a verification
phase using a Merkle Hash Tree to verify the correctness of the derived information
without revealing any privacy of nodes on the expected routing paths. Without deploying
any special nodes to assist the verification, PVad can detect multiple malicious nodes by
itself. To show that our approach can be used to guarantee the security of the MANETs,
we conducted our experiments in NS3 as well as the real router environment, with the
improvement of the detection accuracy by 4% on average compared to our former work.

Keywords: MANETs, detection, verification, privacy, diagnostics

1. INTRODUCTION

The Mobile Ad hoc Networks (MANETs) [1] are continuously self-configuring, in-
frastructure-less networks of mobile devices connected without wires. In such a network,
all mobile nodes collaborate with each other and establish routing in a self-organized
way. The primary goal of routing in MANETs is to establish a correct and efficient path
through which data can be efficiently and securely transmitted. The adversaries may
launch attacks in the routing discovery phase and perform malicious behaviors after they
get involved in the routing path. If the routing is initialized incorrectly or the messages
are forwarded through malicious adversaries, the entire network will be prone to be par-
alyzed.

To mitigate the security problems in MANETs, the prospective secure routing
mechanism of MANETs should also consider the following features. Self-organized.
Because there is no centralized node in MANETs, each node acts as both the host and
router [2]. It is necessary to have a decentralized verification to check the security in
MANETs without introducing a third party. Dynamic topology. Dynamic topology caus-
es wireless links to be established and broken immediately. An adversary can send spu-

Received August 29, 2017; revised November 1, 2017; accepted December 12, 2017.
Communicated by Xiaohong Jiang.

TENG LI, JIAN-FENG MA, CONG SUN AND NING XI

944

rious messages to the source node to sneak into the routing path. To protect MANETs
from the attacks, it is significant to impose a security mechanism on the routing discov-
ery phase. Coordinated attack. The adversaries launch attacks in a coordinated way, on
the same or different routing paths. Recent efforts that focus on detecting attackers on
the same routing path [3] become insufficient. A new strategy to deal with multiple-path
malicious behaviors is needed. Privacy Preserving. There is an inherent tension between
verification and privacy-preservation because the attack detection usually requires re-
vealing private log data of nodes [4, 5]. Recent work, such as PeerReview [6], detects
faults by collecting all information from each node, which cannot satisfy the privacy-
preserving requirement. Most importantly, we need a solution in MANETs to perform
the verification without revealing important private data.

Considering the above features, we present PVad (Privacy-Preserving Verification
for Secure Routing in Ad Hoc Networks), a mechanism which guarantees the security of
Ad Hoc Networks during the routing discovery phase. First, PVad can supervise MA-
NETs to choose a secure routing path from dynamically changing topologies in the rout-
ing discovery phase. Second, PVad conducts verification through the hosts in a self-or-
ganized manner without any help from a third party. The decentralized nodes cooperate
with each other to derive evidence from important routing logs according to the prede-
fined reasoning rules. After establishing a secure path and ensuring destination as a legal
host, PVad can detect the existence of malicious nodes on the routing path as well as the
exact position of them. Finally, PVad does not compromise our goal of protecting priva-
cy for each node. PVad combines reasoning and verification to combat adversaries de-
pending on the log evidence that we have already learned during the execution phase,
and we needn’t merge the whole log table from different routers.

The rest of the paper is organized as follows. We provide the overview and road-
map of our approach in Section 2. Then, we elaborate the reasoning and verification of
PVad in Section 3. In section 4, we present our implementation and evaluation that con-
sists of both NS3 simulations and real case studies. We depict related work in Section 5.
Finally, we conclude the paper in Section 6.

2. OVERVIEW AND ROADMAP

We consider an ad hoc network scenario in which the nodes connect with each oth-
er randomly. Only the message source is initially trusted and there might be more than
one malicious node during the routing path discovery phase.

In the routing discovery phase, the source node sends a routing request RREQ to its
neighbors [7]. The IP address of destination is mounted in the RREQ packet. Whenever
an intermediated node has the correct routing or it is the exact destination, it will reply
with a routing response RREP to the source node. Then, a routing path is established and
the sender will start data transmission through the established path. In the attacker sce-
nario, malicious nodes can send fake packets back to the source node in order to defraud
the right of routing data during the routing discovery [8]. For instance, a malicious node
can declare that it has the shortest and latest path to the destination by forging the RREP
packet, which is known as the first step of the black hole attack.

Therefore, the source node should verify the authenticity of the destination. Alt-

PRIVACY-PRESERVING VERIFICATION FOR SECURE ROUTING IN AD HOC NETWORKS 945

hough the routing path to the real destination has been established, we cannot ensure
whether the routing is expedited or if the destination received the messages the source
sent in case of intermediated malicious nodes. PVad can verify that each node partici-
pating in data transmission along the routing path is benign using the reasoning rules for
transmission and the privacy-preserving evidence from each node. Otherwise, a potential
attack may occur at some malicious nodes. The overview architecture of PVad is given
in Fig. 1.

(a) Destination verification.

 (b) Passive attack detection. (c) Active attack detection.

Fig. 1. The procedure of PVad.

Unlike ProTracer [9] that logged the information by its own debugging system, we
make use of logs that exist in the routers. First, we use the logs on the trusted source
node S to deduce the information that should be held by destination node D. We are not
sure whether D is benign or it received the messages we sent. PVad verifies D's real log
to check whether it can provide evidence to prove its correctness by using the Merkle
Hash Tree. Fig. 1 (a) shows the destination verification. If the result is true, we use the
information from the source and destination to verify whether the intermediated nodes
are well-behaved (Fig. 1 (b)). If the result is false, we just use the log of the destination
to deduce the logs of the intermediated routers (Fig. 1 (c)). In this way, we can finally
guarantee the security of the intermediated routers along the routing path and make sure
the whole path is healthy.

With PVad, we can first establish the correct routing path and find out the real des-
tination. Then, we can ensure the established routing path is secure and the malicious
intermediated nodes are detected. Unlike the previous study on minimum observer sets
[10] which trusts both the source and destination to deduce the information of the inter-
mediated routers, we choose to trust only the source node because we cannot get the in-

TENG LI, JIAN-FENG MA, CONG SUN AND NING XI

946

formation from the real destination from the beginning. The attacker model is more gen-
eral to allow the destination node to be malicious.

Except for guaranteeing the security of the routing process of MANETs, this paper
makes the following contributions:

1. Accuracy. Our approach should not regard a normal node as a malicious one, and we

can detect the exact malicious nodes as well as the general features of the attacks.
2. Early-protection. The mechanism should not realize that there are malicious nodes in

the routing path when some problems emerge during the data transmission or the net-
work is paralyzed. The detection is performed at the earliest routing discovery phase.

3. Non-third-party. The whole confidential reasoning and hash verification should be
accomplished without introducing any extra nodes or third party.

4. Privacy-preserving. The system should not reveal the confidential logs directly. Any
attempt to leak the confidentiality of the nodes is forbidden.

3. PVAD REASONING AND VERIFICATION

In this section we elaborate PVad in detail. We explain the confidential reasoning as
well as the privacy-preserving verification of PVad.

3.1 Finding the Rules in MANETs

In MANETs, the equipments link and communicate with each other in certain ways
which have been set before they send the messages. We need to find these communica-
tion rules instead of making them. Many approaches [11, 12] relied on rule-based pro-
cessing which improved the routers’ debugging ability, but it requires the operator to
have domain knowledge and involves a human operator to make the rules for the detec-
tion. Making the rules for the working routers is impossible in MANETs, and PVad tries
to find the existing rules for them. We use the Apriori algorithm to do the rule-mining
among the routers and we study the basic communication rules in the following section.

Association rules describe items that occur together frequently in a dataset and are
widely-used for market basket analysis. As the original definition [13], the problem of
association rule-mining is defined as: Let I = {i1, i2, …, in} be a set of attributes called
items. For example, sendRequest(@C, S, D, SEQ) can be one item. Let D = {t1, t2, ..., tm}
be a set of transactions called the database. Each transaction in D contains a subset of
items in I. A rule is defined as an implication of the form XY where X, YI and X ∩ Y
= ∅. Support supp(X) of an itemset X is defined as the proportion of transactions in the
data set which contains the itemset. The confidence of a rule is defined as

()
() =

()
.

supp X Y
conf X Y

supp X


 (1)

In our problem setting, each log message is one item. We get the logs from the .pcap
file of NS-3 [14] and the syslogs from the routers. In order to construct the transactions,
we use a sliding window W and the size of the window will influence the performance of

PRIVACY-PRESERVING VERIFICATION FOR SECURE ROUTING IN AD HOC NETWORKS 947

finding rules. We discuss the window size in our evaluation part. The logs in the same
time window are regarded as a transaction. In one such transaction, the log messages in
window W are considered as the items showing up. We find the rules of the routing dis-
covery phase in MANETs through the association rules and we set the threshold of the
confidence as 100%. conf(XY)=100% means that if X emerges, Y will also exist.

3.2 The Deduction Rules for PVad

We use NDlog to conduct the reasoning procession. NDlog is based on the Datalog
[15]. A Datalog program includes a set of declarative rules. Every rule has the form p :-
q1, q2, q3, ..., qn ..., which means as “q1, q2, q3, and qn implies p”. For instance, the rule
A(@X, S):- B(@X, P), S=2*P says that the left tuple A(@X, S) should be derived on
node X if there exists a tuple B(@X, P), and S=2*P. Commas separating the predicates in
the right side represent logical conjunctions. Datalog rules can refer to one another in a
recursive fashion. NDlog supports the location specifier as a store of information in each
rule. The specifier is represented as an @ symbol followed by an attribute.

We conduct the subsequent confidential deduction by using the rules in Table 1. In
these rules, C and R represent the sender’s and receiver’s storage place respectively. S
represents the sender, D means the receiver and SEQ represents the destination sequence
number which is used to determine the freshness of the routing information. R is the
storage place of the receiver and the intermediated router stores its messages in the place
of M. MSG is the message that the source node intends to send to the destination host. In
the phase of the routing discovery, MSG can be the HELLO message or other test mes-
sage to check whether the routing path is unblocked.

When a sender is to find a route, it first broadcasts a routing request, sendRequest
(@C, S, D, SEQ), to its neighbors. The request means S wants to find a routing path to D
whose sequence number is in SEQ and this request is logged at C. When the neighbors
get the request, getRequest(@M, S, D, SEQ), they compare their own IP with the re-
ceived one; if two values are different, the neighbors continue to broadcast the routing
request reqForward(@M, S, D, SEQ, STAUS). But if the two values are the same, this
means the destination is found, and the destination sends the reply to the source node
sendReply(@R, S, D, SEQ) (Rules 1-3). When the source node gets the reply and the
destination gets the request, it means that we found the destination (Rule 4). The predi-
cate findDest and findDest' have identical semantics, but the difference is only for the
storage place (Rule 5). Once the sender finds the destination, the data link is established
(Rule 6). After that, when the sender proposes the message sending request msgRe-
quest(@C, S, D, SEQ, MSG), the destination should authorize the request (Rule 7). After
authorization, the source node begins to send the messages and the intermediated routers
should forward the messages (Rule 8).

Except for the primary rules presented in Table 1, there are still auxiliary NDlog
rules to support the correct running of our whole reasoning process. For instance, due to
Rule 4 in Table 1, we know the following auxiliary rule holds: getRequest(@R, S, D,
SEQ):- findDest(@C, S, D, SEQ), getReply(@C, S, D, SEQ). We know Rule 1, and we
also imply that the following rule holds: sendRequest(@C, S, D, SEQ):- getRequest(@M,
S, D, SEQ).

TENG LI, JIAN-FENG MA, CONG SUN AND NING XI

948

Table 1. The deduction rules for PVad.
1. getRequest(@M, S, D, SEQ) :- sendRequest(@C, S, D, SEQ)

2. reqForward(@M, S, D, SEQ, STAUS)
:- getRequest(@M, S, D, SEQ)
 STAUS=‘YES/NO’

3. getReply(@C, S, D, SEQ)
:- reqForward(@M, S, D, SEQ, STAUS)
 sendReply(@R, S, D, SEQ)
 STAUS=‘NO’

4. findDest(@C, S, D, SEQ)
:- getReply(@C, S, D, SEQ)
 getRequest(@R, S, D, SEQ)

5. findDest’(@M, S, D, SEQ) :- findDest(@C, S, D, SEQ)

6. dataLink(@C, S, D, SEQ, STAUS)
:- findDest(@C, S, D, SEQ)
 sendRequest(@C, S, D, SEQ)

STAUS=‘YES/NO’

7. authSend(@R, S, D, SEQ, MSG)
:- dataLink(@C, S, D, SEQ, STAUS)
 msgRequest(@C, S, D, SEQ, MSG)
 STAUS=‘YES’

8. msgForward(@M, S, D, SEQ, MSG)
:- authSend (@R, S, D, SEQ, MSG)
 sendMsg(@C, S, D, SEQ, MSG)

3.3 Reasoning

With the above deduction rules, we can initiate the whole reasoning process. First,
we use the sender’s information to infer messages from the receiver to identify the desti-
nation node. For convenience, this phase is denoted by SD (source node deduces the
destination node), which consists of the reasoning of the following propositions:

sendReply(@C, S, D, SEQ)  sendRequest(@C, S, D, SEQ)
sendReply(@R, S, D, SEQ)

(r1)

getReply(@C, S, D, SEQ)  msgRequest(@C, S, D, SEQ)
sendReply(@R, S, D, SEQ)

(r2)

dataLink(@C, S, D, SEQ, ‘YES’)  msgRequest(@C, S, D, SEQ, MSG)
authSend(@R, S, D, SEQ, MSG)

(r3)

We use the messages of S stored at the place of C to infer information from the des-

tination stored at R. Combined with the basic rules and NDlog language, the expected
information of the receiver can be obtained. These messages should be on the destination
node according to the transmission mechanism. Then, a major problem is how we know
whether the receiver truly has such information. One simple solution is that we can go
through the log information of D and then we will know the result. However, this ap-
proach can violate the principle of privacy and we cannot achieve verifiability. Therefore,
how can we conduct a privacy-preserving verification which protects the privacy of an
individual log at the same time? Next, we will introduce the Merkle Hash Tree into our
method to realize the goal of privacy protection.

3.4 Privacy-Preserving Verification

In this section, we introduce the mechanism of privacy-preserving verification. We
use the Merkle Hash Tree [16] (MHT) to preserve the privacy during verification. MHT
is a tree in which every non-leaf node is labeled with the hash value of the labels of its

PRIVACY-PRESERVING VERIFICATION FOR SECURE ROUTING IN AD HOC NETWORKS 949

children nodes, and every leaf node is labeled with the hash value of real data. As a kind
of binary tree, the edges of MHT from every parent’s node to its two children are tagged
with 0 and 1 respectively; see Fig. 2. The purpose of verification is to ensure that the
expected actions or messages derived in the reasoning phase exist in the log of related
nodes. The process consists of four steps: encoding messages, tree building, hash calcu-
lating, and final verification.

Fig. 2. Merkle hash tree.

Before building the tree, we should first encode the information. Take the following

message encoding as an example. getRequest(@M, S1, D1, SEQ) can be encoded by spe-
cifying S1=“10”, D1=“1000”, SEQ=“101”. The message reqForward(@M, S2, D2, SEQ,
STAUS=‘NO’)can be encoded by specifying S2=“01”, D2=“0110”, SEQ=“010”, STAUS
(NO)=“0”. How many bits the variables, such as S1 and S2, cost for the message encod-
ing will depend on the number of nodes and number of variables. Our goal is to distin-
guish each message for different nodes by encoding the messages.

Next, it is the tree building process. After encoding the text message reqForward
(@M, S2, D2, SEQ, STAUS=‘NO’) as a string “0101100100”, we use it to build the tree.
Each router will build a Merkle Hash Tree using its log information. We label the node's
left child as 1 and right child as 0. With the string, we can build the tree, which is stored
as an array.

Then, we can calculate the hash value of each node i: Hi = H(node_num || bit_data ||
parent_num || string || parent_bit_data || Hleft_child || Hright_child). As an index of node array,
node_num specifies the array element w.r.t the current node. Similarly, parent_num
specifies the array element w.r.t the parent of the current node. bit_data and parent_it_
data are the value of the current node and parent node respectively, which can be either 0
or 1. When a node is the root of MHT, we define parent_bit_data of this node as ‘X’.
Hleft_child and Hright_child are the hash value of the left child and right child respectively.
They will be empty if the current node is a leaf node. We can calculate the hash value
from the leaf node to the root, and this value will be published. That means every node
may know the root hash value of any other nodes.

TENG LI, JIAN-FENG MA, CONG SUN AND NING XI

950

In the verification phase, the router S2 infers the information reqForward (@M, S2,
D2, SEQ, STAUS=‘NO’) of D2, then S2 will ask D2 whether you are the real destination
with such information. To answer the question, first, D2 uses the string “0101100100” to
find the leaf node in its own hash tree and then provides the leaf’s brother hash value and
the node_num, parent_num, parent_bit_data and string of the leaf for S2 during every
level of the tree. Then S2 can use these values to calculate the root hash of the tree from
the leaf to the root. If the latter equals the published value, the verification result is true.

After we have ensured that the destination node is the legal host, we move to the
intermediated router verification phase. To make sure the whole routing path is healthy
without malicious nodes, we need to verify the forwarding nodes, ensure that they trans-
mit the data according to the rules and eliminate the possibility of launching attacks such
as passive or active attacks. We have proved that the information of the destination node
is correct, and we can use the information on both S and D to conduct the following de-
duction. We call this process as S+DM (source node and destination node deduce in-
termediated routers). In this process we should reason the following propositions:

sendRequest(@C, S, D, SEQ)getRequest(@M, S, D, SEQ) (r4)
sendReply(@C, S, D, SEQ)  getRequest(@R, S, D, SEQ)

reqForward(@M, S, D, SEQ, ‘NO’)
(r5)

getReply(@C, S, D, SEQ)  getRequest(@R, S, D, SEQ)
findDest’(@M, S, D, SEQ)

(r6)

sendMsg(@C, S, D, SEQ, MSG)  authSend(@R, S, D, SEQ, MSG)
msgForward(@M, S, D, SEQ, MSG)

(r7)

Then, we use the Mekle Hash Tree to verify that the real logs of the intermediat-
ed routers comply with the expected log messages, e.g. reqForward (@M, S, D, SEQ,
STAUS).

If the logs of the destination are false, we should find out which intermediated rout-
ers influenced them and find out the passive attacker. We call this process as SM
(source node deduces the intermediated routers). In this process, we should reason the
following propositions:

sendRequest(@C, S, D, SEQ)reqForward(@M, S, D, SEQ) (r8)

sendRequest(@C, S, D, SEQ)getRequest(@M, S, D, SEQ, STAUS) (r9)

findDest(@C, S, D, SEQ)findDest’(@M, S, D, SEQ) (r10)
dataLink(@C, S, D, SEQ, ‘YES’)sendMsg(@C, S, D, SEQ, MSG)
 msgRequest(@C, S, D, SEQ, MSG)
 authSend(@R, S, D, SEQ, MSG)

(r11)

3.5 PVad Algorithm

We define S as the sender and D as the receiver, and mi represents the medial rout-
ers (m1, m2, ..., mn). The functions Reason() and MHT() in Algorithm 1 are used to reason
the expected logs and verify the logs.

PRIVACY-PRESERVING VERIFICATION FOR SECURE ROUTING IN AD HOC NETWORKS 951

Step 1: The sender uses its own logs to reason the expected logs (D) of the destination
with the rules. Then, the sender verifies the expected logs and the real logs of the desti-
nation with MHT. If the verification result is false, PVad jumps to step 3 for active attack
detection. Otherwise, PVad jumps to step 2 for passive attack detection.

Step 2: We use the log of S and D to reason the prospective results about the log of the
intermediated routers mi, and use the results to verify the real log of mi with the Merkle
Hash Tree. If a violation is found, there exist some faults and the router mi has the mali-
cious behavior. If all routers Ri are well-behaved, then the routing path was chosen.

Step 3: We use the log of S to reason and verify the logs of the intermediated routers to
find out the passive attackers.

Algorithm1: PVad Algorithm
Input: intermediated_route_list(m1, m2, m3, ..., mn) contains intermediated routers; C,
source’s logs; D, destination’s logs. Reason(tC, D) is the function that using the logs(C)
on the sender to deduce the logs on the destination (D). MHT(tD, tD) is the function
that using the MHT to verify the real logs and the expected logs.
Output: Return the detected malicious node.
1. =Reason(, D)

2. MHT(,);

3. if then

4. " is in the

D C

D Dresult

result

D

 
 





 good condition"

5. for to 1 do

6. Reason(,) ;

7. result=MHT(,);

8. if then

9. mi changed its own logs

i C D i

i i

i n

m

!result

  
 


  



;

10. else

11. CONTINUE;

12. end if

13. end for

14. else

15. for to 1 doi = n

16. Reason(,) ;

17. =MHT(,);

18. if then

19. BREAK;

20. else

21. CONTINUE;

22. end if

23.

i C i

i i

m

result

result

 
 

 


 end for

24. if 0 then

25. return " is the malicious node"

26. else

27. return " is the malicious node"

28. end if

29. end if

i

i ==

D

m

4. EVALUATION

In this section, we evaluate PVad through our experimental results. Specifically, our
goal is to answer the following research questions.

4.1 Experiment Setup

We did our experiments on NS-3 and a real router environment respectively. In

TENG LI, JIAN-FENG MA, CONG SUN AND NING XI

952

NS-3, we configured the nodes that ran the AODV protocols and we injected few mali-
cious nodes that dropped or tampered with the logs of the nodes. As for the real routers,
we launched attacks towards the routers in the link. To evaluate PVad’s performance, we
set our former work CRVad [17] and SyslogDigest [18] as the benchmarks. CRVad does
not use the algorithm to find the rules and is handled by operators, while SyslogDigest
focuses on the syslog analyses to do the anomaly detection. We show the performances
of our approach and the results of the comparison with these two works in this section.

4.2 Description of System Models

PVad uses an open source tool IRIS [19] to conduct the reasoning process, and
proves that the reasoning rules we inferred are correct. All of the reasoning results we
used have been written in NDlog and verified by IRIS. We build up multi-hop topology
among different nodes. In the simulation environment, we use the Logging Module of
NS3 to log sent and received messages. We use the tracking system in NS3 to get the
content of the log. In a real case environment, we get the syslogs from the real routers
and store them in the SQL server. Then, each node can use these kinds of log entries to
build up its own Merkle Hash Tree.

PVad can detect the misbehavior and identify the malicious nodes automatically.
First, PVad extracts the logs from .pcap files or SQL server. Second, Pvad uses the
Apriori algorithm to do the rule-mining among the logs. Third, for the source node,
PVad uses its logs with the corresponding rules to deduce the expected logs of the target
nodes (with the open source tool IRIS). Next, combining this with MHT, the source node
conducts provenance verification to confirm whether the real log entries match the ex-
pected ones. Finally, according to our algorithm, PVad returns the exact malicious nodes.

4.3 Factors Influencing the Reasoning Efficiency

We use IRIS to conduct our reasoning process. We first write the reasoning rules in
NDlog programs, and then extract the sending/receiving evidence from the logs. Ac-
cording to this evidence, the prospective truths which should be provided by the suspi-
cious nodes are reasoned out by using IRIS. The time and spatial cost of the reasoning of
each rule are given in Fig. 3.

Rule Number Rule Number

(a) Time cost of the reasoning. (b) Memory cost of the reasoning.
Fig. 3. The performance of reasoning.

M
em
or
y
Co
st
 (m
s)

M
em
or
y
Co
st
 (M
B)

PRIVACY-PRESERVING VERIFICATION FOR SECURE ROUTING IN AD HOC NETWORKS 953

The evidence which should exist in the nodes is reasoned before verification and we
just confirm this evidence to judge which node committed the attacks. We have observed
three main factors, which are reasoning steps, variables of the tuples and initial rules,
affecting the time and memory cost of PVad. From Fig. 3, we can see that the results of
the time and memory cost vary with the changing of these factors especially with the
variables of the tuples. As for the time cost, we can see strong relevance of the time cost
and variables from r1-r8. The reasoning steps and IRs (Initial Rules) have little influence
on the time costs. In memory cost, we can also see that the fewer the steps, the higher the
memory costs from r4-r5. According to the analysis, the variable number is the most
significant factor among these three parameters. The whole time and spatial cost is ac-
ceptable according to our experimental results.

4.4 Performance on Different Orders of Verification

In the wireless environment, the malicious nodes can behave differently for differ-
ent routing paths. They may act as a normal node on one path, but pretend to be a wanted
destination on another path after intercepting the reply message. Thus, the verifications
over a suspicious node may have different results. Only when we confirm that the node
is malicious for the first time, we can decide that the routing path with the malicious
node is unavailable. Therefore, the verification results vary randomly when we perform
the verification on different routing paths in different orders. If we can detect the mali-
cious node at the beginning, only a single path is verified. In the worst case, we should
check all of the potential routing paths to detect the maliciousness of the node. We also
evaluate the average cost when the verification order is randomly selected.

Number of Log (*103) Number of Log (*103)

(c) Msg code len = 4. (d) Msg code len = 6.

Number of Log (*103) Number of Log (*103)

(c) Msg code len = 8. (d) Msg code len = 10.
Fig. 4. Time cost of the verification.

Ti
m
e
Co
st
 (s
)

Ti
m
e
Co
st
 (s
)

Ti
m
e
Co
st
 (s
)

Ti
m
e
Co
st
 (s
)

TENG LI, JIAN-FENG MA, CONG SUN AND NING XI

954

We use NS3 to simulate the ad hoc network environment and let the nodes send and
receive packets. At the same time, the log file for each node will be created as a .pcap
file. Each node reads the file and uses the information to build up the Merkle Hash Tree
and conducts the verification phase. The time cost and memory cost of the verification,
including the cost for constructing the MHT, are given in Figs. 4 and 5 respectively. The
best-case scenario is when we only verify the destination once and then find the mali-
cious node immediately. The worst-case scenario means we verify the destination ac-
cording to different routing paths and find the malicious node last. The average-case
scenario means that we get the results of time and memory costs from general verifica-
tion. First, we can see from the results that time cost or memory increases as the message
code length and number of logs increase. Second, single verification can have a signifi-
cant reduction in the time cost as well as the memory cost. The overall cost is limited and
the results show that our approach is practical for use on real network logs.

Number of Log (*103) Number of Log (*103)

(c) Msg code len = 4. (d) Msg code len = 6.

Number of Log (*103) Number of Log (*103)

(c) Msg code len = 8. (d) Msg code len = 10.
Fig. 5. Memory cost of the verification.

4.5 Time Window Size Influencing the Accuracy of the Apriori Algorithm

During the rule learning phase, we need to collect the logs of different routers in

MANETs. Because the log entries have inherent time sequences, we should set the time
window size when we use the Apriori algorithm. In our experiment, we set the window
size from 0s to 120s and we compare the results we obtained with the former setting
rules with the following equation:

 = .
Correctly extracted rules

Accuracy
Total extracted rules

 (1)

Ti
m
e
Co
st
 (K
B)

Ti
m
e
Co
st
 (K
B)

Ti
m
e
Co
st
 (K
B)

Ti
m
e
Co
st
 (K
B)

PRIVACY-PRESERVING VERIFICATION FOR SECURE ROUTING IN AD HOC NETWORKS 955

When PVad learns the association rules, we need to set the time window size to
separate the log chunks. PVad runs the Apriori algorithm on the logs within the same
window size. Due to the results in Fig. 6, time window size influences the accuracy rule
learning. From the results, we achieved best accuracy rate among 50s to 80s and the log
entries increase dramatically after the time window of 80 seconds.

Fig. 6. Time window influences on Apriori accuracy.

4.6 Performance of Detecting Attacks on Real Routers

We also launched our experiment on the real routers that consist of Huawei, Cisco,

and Dlink. We launched an IP Spoofing Attack, SSL Attack, DOS Attack, ARP Spoof-
ing Attack, and Gateway Monitoring Attack towards the routers and these attacks can
influence the logs on the routers. We compared the results of PVad with our former work
CRVad [17] and SyslogDigest [18], which can also verify the correctness of the nodes in
MANETs. The precision and recall are calculated according to Eqs. (2) and (3). We col-
lected the key-value pairs of recall and precision. Then, we select the points which range
from 0.1 to 1 in the recall and draw the fitted curve in Fig. 7.

 =
Correctly detected attacks

Precision
Total inserted attacks

 (2)

Correctly detected attacks
Recall =

Total detected attacks
 (3)

As the Fig. 7 shows, PVad can achieve a better result than CRVad. The error sum of
the squares of PVad, CRVad and SyslogDigest are 0.0068, 0.0144 and 0.0257 respec-
tively, which are acceptable in our experiments. CRVad used the rules that were set by
the operators and it required the help of human experts to deal with these rules. There-
fore, in the real router environment, it can reduce the performance of the detection accu-
racy. SyslogDigest used the subtype tree to extract the templates from the raw logs and
learnt the events by using the association rule. We apply SyslogDigest to extract the
event and use the PCA algorithm [20] to detect the anomalies. During the construction of
the subtype tree, it is difficult for SyslogDigest to choose a proper parameter in pruning

TENG LI, JIAN-FENG MA, CONG SUN AND NING XI

956

the tree branches [21]. PVad mitigated this problem by using the machine learning algo-
rithm and it can learn the rules that existed in the Network. Besides, we construct the log
entries into the Merkle Hash Tree for verification and it can preserve the privacy of the
nodes, which do not have the problem of choosing the parameter in pruning the tree
branches as SyslogDigest. PVad can be more accurate than the two methods as shown in
our results.

Fig. 7. Comparison between PVad, CRVad and SyslogDigest on PR.

5. RELATED WORK

Reasoning: There is substantial work on reasoning attacks or bugs in the database
[22] and networks [23], but only a few papers consider the reasoning in a distributed and
automatic way for the routing field. SNP [12] explains its operators as to why the net-
work systems are in a certain state. ExSPAN [24] provides reasoning in the database
system. None of these papers consider the problem why such state or log entries do not
exist or are missed. Wu et al. [25] provide a method which answers why-not queries in
SDN with a negative reasoning link. The following work Y! [26] can also track the neg-
ative reasoning link in SDN and BGP. Both of the works should involve human opera-
tors but do not start automatically. SDN can get the information by the controller which
can collect the information among nodes without considering privacy. None of these
works considers the distributed environment and networks as we do here. In the network
literature, there is some prior work on tracking the faults in the routing system, such as
CRVad [17]. However, it cannot help the source avoid the malicious node in the routing
discovery phase.

Privacy: This line of work, started by PeerReview [6] detects faults by collecting all
observations about each node. There is an inherent tension between verification and pri-
vacy-preservation because the verification usually requires revealing private log entries
or packets of nodes [4]. To solve the privacy issue, NetReview [27] proposed to use the
hash chain to verify the correctness of the BGP and Hayajneh et al. [28] proposed a
lightweight public key authentication scheme for MSN systems. Papadimitriou et al. [10]
used reasoning combined with the zero knowledge proof to verify the correctness of the
nodes instead of trusting the MOS (minimal observer set) as credible information. How-

PRIVACY-PRESERVING VERIFICATION FOR SECURE ROUTING IN AD HOC NETWORKS 957

ever, the approach can be influenced by the malicious destination at the first step. In re-
cent work, such as Y! [26] and SNP [12], they can provide the tracing link to the misbe-
havior but they seldom consider the privacy preservation in the distributed system. None
of these works can achieve both privacy preservation as well as credible verification like
what we do in our work.

Network diagnostics: In the context of MANETs, there are a lot of papers focusing
on attack detection, such as [29, 30] which mainly solve the security issues after the link
is built, but most of them cannot prevent some malicious behavior in the routing discov-
ery phase. Several secure protocols [31, 32] have been proposed to guarantee the security
of the log, but they require that all nodes meet a certain criteria sharing a common secret
key and focus on only one kind of attack which is either an active or passive attack, but
cannot tackle both of them. Nakayama et al. [33] proposed an approach to detect the
malicious node based on dynamic learning, but their method should gather all of the
nodes’ information and finish the task in a central way. A few existing systems, such as
PeerPressure [34], EnCore [35], ClearView [36] and Shen et al. [37], used statistical
analysis or data mining to learn correct configuration values, performance models, or
system invariants. But none of them accurately capture the causality of the states of the
nodes or leverage causality to detect attacks. Our method is used to detect the malicious
nodes in a distributed way during the routing discovery phase as well as detect active and
passive attacks.

5. CONCLUSION

In this paper, we proposed an approach, PVad, to verify the nodes automatically
without introducing a third party. We emphasized privacy preservation during the rout-
ing establishing phase. PVad uses the Apriori algorithm to find the communication rules
in MANETs instead of making them. We used NDlog in reasoning expected information
and a Merkle Hash Tree to preserve the confidentialities of the destination and the inter-
mediated routers. According to PVad, we can eliminate both the fake destination and
malicious intermediated routers. PVad achieves the goal of verifying the routing path in
a self-organized manner without revealing any private data from the log of the nodes.
Our approach is scalable and practical for use in real MANETs.

REFERENCES

1. L. Abusalah, A. Khokhar, and M. Guizani, “A survey of secure mobile ad hoc rout-
ing protocols,” Communications Surveys & Tutorials, Vol. 10, 2008, pp. 78-93.

2. A. Nadeem and M. P. Howarth, “A survey of manet intrusion detection & preven-
tion approaches for network layer attacks,” Communications Surveys & Tutorials,
IEEE, Vol. 15, 2013, pp. 2027-2045.

3. H. Deng, W. Li, and D. P. Agrawal, “Routing security in wireless ad hoc networks,”
Communications Magazine, Vol. 40, 2002, pp. 70-75.

4. A. J. Gurney, A. Haeberlen, W. Zhou, M. Sherr, and B. T. Loo, “Having your cake
and eating it too: Routing security with privacy protections,” in Proceedings of the
10th ACM Workshop on Hot Topics in Networks, 2011, p. 15.

TENG LI, JIAN-FENG MA, CONG SUN AND NING XI

958

5. A. Chen, A. Haeberlen, W. Zhou, and B. T. Loo, “One primitive to diagnose them
all: Architectural support for internet diagnostics.” in EuroSys, 2017, pp. 374-388.

6. A. Haeberlen, P. Kouznetsov, and P. Druschel, “Peerreview: Practical accountability
for distributed systems,” ACM SIGOPS Operating Systems Review, Vol. 41, 2007,
pp. 175-188.

7. S.-J. Lee and M. Gerla, “Split multipath routing with maximally disjoint paths in ad
hoc networks,” in Proceedings of IEEE International Conference on Communica-
tions, Vol. 10, 2001, pp. 3201-3205.

8. C. Perkins, E. Belding-Royer, and S. Das, “Ad hoc on-demand distance vector (aodv)
routing,” Technical Report, No. RFC 3561. 2003.

9. S. Ma, X. Zhang, and D. Xu, “Protracer: Towards practical provenance tracing by
alternating between logging and tainting,” in Proceedings of Network and Distrib-
uted System Security Symposium, 2016, p. 15.

10. A. Papadimitriou, M. Zhao, and A. Haeberlen, “Towards privacy-preserving fault
detection,” in Proceedings of the 9th ACM Workshop on Hot Topics in Dependable
Systems, 2013, p. 6.

11. Y. Wu, M. Zhao, A. Haeberlen, W. Zhou, and B. T. Loo, “Diagnosing missing events
in distributed systems with negative provenance,” in ACM SIGCOMM Computer
Communication Review, Vol. 44, 2014, pp. 383-394.

12. W. Zhou, Q. Fei, A. Narayan, A. Haeberlen, B. T. Loo, and M. Sherr, “Secure net-
work provenance,” in Proceedings of the 23rd ACM Symposium on Operating Sys-
tems Principles, 2011, pp. 295-310.

13. R. Agrawal, T. Imielinśki, and A. Swami, “Mining association rules between sets of
items in large databases,” in ACM Sigmod Record, Vol. 22, 1993, pp. 207-216.

14. NS-3, “ns-3 software,” https://www.nsnam.org.
15. B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay, J. M. Hellerstein, P. Maniatis, R.

Ramakrishnan, T. Roscoe, and I. Stoica, “Declarative networking,” Communications
of the ACM, Vol. 52, 2009, pp. 87-95.

16. D. Williams and E. G. Sirer, “Optimal parameter selection for efficient memory in-
tegrity verification using merkle hash trees,” in Proceedings of the 3rd IEEE Inter-
national Symposium on Network Computing and Applications, 2004, pp. 383-388.

17. T. Li, J. Ma, and C. Sun, “Crvad: Confidential reasoning and verification towards
secure routing in ad hoc networks,” in Proceedings of International Conference on
Algorithms and Architectures for Parallel Processing, 2015, pp. 449-462.

18. T. Qiu, Z. Ge, D. Pei, J. Wang, and J. Xu, “What happened in my network: mining
network events from router syslogs,” in Proceedings of the 10th ACM SIGCOMM
Conference on Internet Measurement, 2010, pp. 472-484.

19. IRIS, “iris software,” https://sourceforge.net/projects/iris-reasoner/.
20. H. Abdi and L. J. Williams, “Principal component analysis,” Wiley Interdisciplinary

Reviews: Computational Statistics, Vol. 2, 2010, pp. 433-459.
21. T. Li, J. Ma, and C. Sun, “Dlog: diagnosing router events with syslogs for anomaly

detection,” Journal of Supercomputing, Vol. 74, 2018, pp. 845-867.
22. P. Buneman, S. Khanna, and T. Wang-Chiew, “Why and where: A characterization

of data provenance,” in Proceedings of International Conference on Database The-
ory, 2001, pp. 316-330.

PRIVACY-PRESERVING VERIFICATION FOR SECURE ROUTING IN AD HOC NETWORKS 959

23. A. Chen, Y. Wu, A. Haeberlen, W. Zhou, and B. T. Loo, “The good, the bad, and
the differences: Better network diagnostics with differential provenance,” in Pro-
ceedings of ACM Special Interest Group on Data Communication Conference, 2016,
pp. 115-128.

24. W. Zhou, Q. Fei, S. Sun, T. Tao, A. Haeberlen, Z. Ives, B. T. Loo, and M. Sherr,
“Net-trails: a declarative platform for maintaining and querying provenance in dis-
tributed systems,” in Proceedings of ACM International Conference on Management
of Data, 2011, pp. 1323-1326.

25. Y. Wu, A. Haeberlen, W. Zhou, and B. T. Loo, “Answering why-not queries in
software-defined networks with negative provenance,” in Proceedings of the 12th
ACM Workshop on Hot Topics in Networks, 2013, p. 3.

26. Y. Wu, M. Zhao, A. Haeberlen, W. Zhou, and B. T. Loo, “Diagnosing missing events
in distributed systems with negative provenance,” ACM SIGCOMM Computer Com-
munication Review, Vol. 44, 2015, pp. 383-394.

27. A. Haeberlen, I. C. Avramopoulos, J. Rexford, and P. Druschel, “Netreview: De-
tecting when interdomain routing goes wrong,” in Proceedings of the 6th USENIX
Symposium on Networked Systems Design and Implementation, 2009, pp. 437-452.

28. T. Hayajneh, B. J. Mohd, M. Imran, G. Almashaqbeh, and A. V. Vasilakos, “Secure
authentication for remote patient monitoring with wireless medical sensor networks,”
Sensors, Vol. 16, 2016, p. 424.

29. M. Mohanapriya and I. Krishnamurthi, “Modified dsr protocol for detection and
removal of selective black hole attack in manet,” Computers and Electrical Engi-
neering, Vol. 40, 2014, pp. 530-538.

30. W. Wang, G. Zeng, J. Yao, H. Wang, and D. Tang, “Towards reliable self-clustering
mobile ad hoc networks,” Computers and Electrical Engineering, Vol. 38, 2012, pp.
551-562.

31. W. Liu and M. Yu, “Aasr: authenticated anonymous secure routing for manets in
adversarial environments,” IEEE Transactions on Vehicular Technology, Vol. 63,
2014, pp. 4585-4593.

32. P. Papadimitratos and Z. J. Haas, “Secure routing for mobile ad hoc networks,” in
Proceedings of the SCS Communication Networks and Distributed Systems Model-
ing and Simulation Conference, 2002, pp. 193-204.

33. H. Nakayama, S. Kurosawa, A. Jamalipour, Y. Nemoto, and N. Kato, “A dynamic
anomaly detection scheme for aodv-based mobile ad hoc networks,” IEEE Transac-
tions on Vehicular Technology, Vol. 58, 2009, pp. 2471-2481.

34. H. J. Wang, J. C. Platt, Y. Chen, R. Zhang, and Y.-M. Wang, “Automatic miscon-
figuration troubleshooting with peerpressure,” in Proceedings of the 6th Symposium
on Operating Systems Design and Implementation, Vol. 4, 2004, pp. 245-257.

35. J. Zhang, L. Renganarayana, X. Zhang, N. Ge, V. Bala, T. Xu, and Y. Zhou, “En-
core: Exploiting system environment and correlation information for misconfigura-
tion detection,” ACM SIGPLAN Notices, Vol. 49, 2014, pp. 687-700.

36. J. H. Perkins, S. Kim, S. Larsen, S. Amarasinghe, J. Bachrach, M. Carbin, C. Pacheco,
F. Sherwood, S. Sidiroglou, G. Sullivan et al., “Automatically patching errors in de-
ployed software,” in Proceedings of the 22nd ACM Symposium on Operating Sys-
tems Principles, 2009, pp. 87-102.

37. K. Shen, C. Stewart, C. Li, and X. Li, “Reference-driven performance anomaly iden-

TENG LI, JIAN-FENG MA, CONG SUN AND NING XI

960

tification,” in ACM SIGMETRICS Performance Evaluation Review, Vol. 37, 2009,
pp. 85-96.

Teng Li (李腾) received the B.S. degree in Computer Science
and Technology from Xidian University, China in 2013. He is cur-
rently working toward the Ph.D. degree at the school of computer
science and technology, Xidian University, China. His current re-
search interests include wireless and mobile networks, distributed
systems and intelligent terminals with focus on security and priva-
cy issues.

Jian-Feng Ma (马建峰) received the ME and Ph.D. degree in

Computer Software and Communications Engineering from Xi-
dian University, in 1988 and 1995, respectively. He is now a Full
Professor and Ph.D. supervisor in Xidian University, member of
China Computer Federation. His main research interests include
information security, coding theory, and cryptography. He is a
member of the IEEE.

Cong Sun (孙聪) received the Ph.D. degree in Computer
Science from Peking University, in 2011. He is currently an Asso-
ciate Professor in the School of Cyber Engineering at Xidian Uni-
versity. His research interests include information flow security
and program analysis.

Ning Xi (习宁) received the B.S and M.S. degree in Com-
puter Science and Technology from Xidian University, China in
2008 and 2011. And now he is a Ph.D. student in Computer
Science and Technology, Xidian University. His major research is
in heterogeneous network convergence, service computing and
network security.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

