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With the popularity of the Internet, modern people increasingly rely on the Internet to
complete a large amount of work, making the security of the Internet more and more im-
portant. Among many threats to network security, Distributed Denial-of-Service (DDoS)
attacks have always been a problem that researchers want to solve. With the introduction
of software-defined networking (SDN), more and more detection methods have been pro-
posed. In this paper, we design a sketch-based method of data collection in the P4-based
data plane, which sends less data to controller than the Openflow-based data plane with
limited data size. Furthermore, our method collects data of both attackers and victims by
asymmetric characteristics of data flows, which contributes to the mitigation of DDoS at-
tacks by inserting rate-limited rules on the data plane. In experiments, our data collection
structure can reach the 0.9 or more F1 score, and the number of entries is appropriate, while
attack intensities are between 0Mbps to 500Mbps. In the evaluation section, we also present
the result of labeling data by the K-means algorithm on the control plane.
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1. INTRODUCTION

With the popularity of the Internet today, more and more services, such as financial
activities, public transformation, and social media, can or must be provided through the
Internet. People increasingly rely on the speed and convenience of the Internet. Moreover,
with the evolution of network technology, more and more tasks rely on the Internet. In
this case, network security has become an important issue nowadays. If there is no proper
defense mechanism, malicious people can easily crash the system, invade, obtain personal
information, etc.
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Fig. 1. Software-defined networking (SDN).

Among the threats to network security, Distributed Denial-of-Service (DDoS) at-
tacks have always been a big problem [1,2]. Although people have found ways to prevent
users from being attacked, the incidence of DDoS attacks is still increasing. By using
multiple computers to send numerous packets to one or more targets, services may be
interrupted or even suspended. Furthermore, DDoS attacks may cause economic losses
because they may cause bank servers to stop working. Therefore, to detect DDoS at-
tacks quickly and accurately, it is important to have a good method of measuring network
traffic.

Since the introduction of Software Defined Network (SDN), control centers was sep-
arated from switches as shown in Fig. 1 to measure the network. By applying SDN, net-
work administrators can use the controller to easily monitor and issue instructions to each
switch, which makes methods to measure the network sprung up [3, 4]. They can also
manage the logical architecture of the network by changing the flow table of each switch
without moving the hardware. Unlike traditional networks, the characteristics of SDN
allow researchers more flexibility to develop new methods to measure networks or detect
DDoS attacks.

In SDN technology, Programming Protocol-Independent Packet Processor (P4) al-
lows network administrators to define how the data plane works in their own way [5] as
shown in Fig. 2. With the flexibility of the data plane, researchers can choose what or
when to calculate in the switch. In addition, you can define your own data structure or
perform some calculations on the data plane, which also reduces the limitations of de-
veloping DDoS attack detection methods. Therefore, to design an efficient and highly
customized detection mechanism, it is a great idea to use P4 as a programming language.

There are some studies talking about the relationship between DDoS attacks and
defense mechanisms [6–8]. As far as we know, the previously proposed methods have
tried many different techniques, such as machine learning, neural network, and so on.
However, these mechanisms often try to collect data for each IP address, which can lead
to a large amount of memory usage. In addition, the bandwidth consumed by the data
conversion from the switch to the controller is also an issue. Another way is to use sketch-
based methods to count packets. By setting an appropriate hash function and number of
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Fig. 2. Protocol-independent packet processor (P4).

entries, memory usage can be reduced to an acceptable level.
Among existing sketch-based solution, ElasticSketch [9] uses a two-phase sketch to

collect DDoS flow and separate elephant flows from mouse flow and implements their
method on six platforms that includes P4 and OVS. However, ElasticSketch lacks ac-
curacy guarantees while recording too many flows and only records the information of
attackers.

In this paper, we design a sketch with a new data structure that can catch anomaly
flows with characteristics of traffic volume and asymmetries (the difference of flow that
an IP has sent and received). In our simulation, the sketch maintains the F1 score upper
than 0.9 while attack intensities are between 0Mbps to 500Mbps. We also present the
result of labeling data by the K-means algorithm on the control plane.

The remainder of the paper is organized as follows. In the next section, we describe
related detection methods in statistic-based, machine0based, and sketch-based. In Section
3, we present our sketch-based method, which includes a data structure, and how to insert
and eviction in this structure. In Section 4, we tune the parameter and test the validity of
our model. In the last section, we summarize this paper.

2. RELATED WORKS

This section describes related works in three aspects: statistic based, machine learn-
ing based and sketch based.

2.1 Statistic-based Method

By finding the probability of an event, one can infer whether the event is happening.
Several detection models are proposed based on entropy [10–12]. Entropy essentially
describes the “uncertainty” of random variables. Therefore, since DDoS attacks always
aim at one or several targets, calculating the entropy of the destination is a good way to
measure the dispersion of packets received by each IP address.

In [10], the authors deploy their model on edge switches. The model first collects
packets that go through each switch, then calculates the entropy of the destination IP
address. If the entropy is below a threshold, then the switch alarms the controller for a
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DDoS attack. In [11], the model calculates the entropy of the destination IP address on the
controller, but it requires switches to forward all the packets to the controller and causes
heavy bandwidth usage. For the model proposed in [12], the entropy should stay under
the threshold for a fixed period to alarm for DDoS attacks. Researches above use entropy
as an important feature with different ways of defining thresholds. Despite the sensitivity,
we can not find which IP address is actually sending malicious packets with the entropy
of the destination IP address. Moreover, further analysis is also needed to find out which
IP address is attacked. Therefore, it is quite not enough to use entropy alone for detection.

In [13], the authors proposed a cross-plane detection model with two-phase analysis.
For coarse-grained detection, they use traffic volume and asymmetry to detect potential
DDoS attacks. However, they set the threshold with Pauta criterion, which is based on
an assumption that these variables follow the normal distribution. Nevertheless, there is
no evidence that these variables follow the distribution. In addition, the article does not
mention accurately which fine-grained analysis should the control plane apply.

Statistic-based methods do not need too much calculating resource. However, most
methods are based on assumptions such as distribution, which may vary due to the net-
work environment. On the other hand, with the advancement of machine learning tech-
niques, some other researchers try to apply them to their DDoS detection model.

2.2 Machine-Learning-Based Method

For another category, researchers use machine learning for detection model [14–17].
Among many machine learning techniques, support vector machine (SVM) is a popular
method due to its small classification error. In [14], the authors use sFlow to collect data,
sample packets with a fixed ratio and send the sampled packets to the controller. For
feature selection, decision trees are used to eliminate less important features. Finally, an
SVM classifier will be used to detect whether there is an attack. In [15], the model only
let suspicious traffic forward packets to the controller and the authors tried a few methods
such as logistic regression and SVM. In [16], the authors proposed a new way to collect
information. That is, sending traffic data along with Packet In to prevent overloading the
bandwidth. They claim to use their method and sampling method according to the net-
work scale. In addition, the model calculates the entropy of source IP address, destination
IP address, source port, and destination port, and puts them into an SVM classification
model. The model proposed in [17] maintains a blacklist for preliminary filtering. Packets
whose source IP address is not on the blacklist will be further processed and classified.
The authors tried several classification methods, namely SVM, Naive Bayes, K-Nearest,
and multi-layer perception, which SVM performs the best in most experiments.

Overall, machine-learning-based methods usually have nice accuracy, especially
SVM. However, the computing complexity often causes the algorithms to spend more
time than others. Furthermore, using complex mechanisms causes the algorithms un-
available to run on switches, meaning all data should be forwarded to the controller, which
causes serious bandwidth overload.

2.3 Sketch-Based Method

Sketch-based data structures have been used to find frequent items, such as count
sketch [18, 19], or count-min sketch [20, 21]. Sketch-based methods do not always as-
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sign a single counter for each item, instead, they use hash functions to make each entry
available to record information of multiple items. After recording, they approximate an
item’s features such as frequency by extracting information from multiple entries that are
related to the specific item. Given the actual size of sketches, some sketch-based methods
have restricted error bounds and can be shown with numerical analysis. Recently, new
kinds of sketches are proposed to gather information from the network [9, 22]. Benefit-
ing from the few sizes needed and the ability to record information, researchers apply
sketch-based data structure to collect traffic data to run the detection model subsequently.
For instance, in [23], the authors develop a mechanism using count sketch to approximate
IP address frequency. With the programmability of P4, they can easily define several
arrays on switches for sketching. Additionally, they estimate the entropy of source and
destination IP address with the approximated frequency while reducing the computing
complexity by using the Ternary Content Addressable Memory (TCAM) table, which is
pre-computed so that the model only needs to look up instead of calculating. Finally, the
estimated entropy is then used for characterizing network traffic and subsequent detection.

In [22], the authors aim to collect information of heavy hitter in the network and
start from improving Space-Saving algorithm [24]. The mechanism is also implemented
on P4 for self-defined switch behavior. By applying hash functions, the number of mem-
ory access drops significantly while high accuracy remained. In addition, a multi-table
technique is included for decreasing collision rate. In [9], the authors introduce another
mechanism called Ostracism in their data structure. An IP address can occupy a bucket,
but also can be expelled by other IP addresses if they have sent enough packets more than
the occupying one. After a phase of traffic, the one that stays in the bucket should more
likely be the heavy hitter, since IP addresses that send a few packets should be expelled
by it. We think the mechanism is very useful to filter the heavy hitters so that we’ll use it
as a part of our method. Also, the sketch is reversible so that heavy hitters’ id is already
shown without further queries.

In general, sketch-based network measuring methods often spend less memory space
than others. To develop an efficient measuring method beneficial to a DDoS attack, we
refer to the researches mentioned above. In spite of the accuracy of finding heavy hitters
in [9, 22], both piece of research did not consider asymmetry of packets. According to
previous research [25], using asymmetry features can improve the effect of predicting a
DDoS attack, compared to only using volume features. Therefore, we extend the sketch-
based data structure reference from Elastic Sketch [9] to record more information. In
addition, we design the formula for evaluating traffic volume and asymmetry used in
our model, in order to improve the data collection process. We use an F1 score as the
metric for measuring effectiveness, expecting our method can preserve information about
a DDoS attackers/victims more accurately and have a higher F1 score.

3. PROPOSED SCHEME

In this section, we first introduce our data structure in Subsection 3.1. After that,
we describe how the counting is done when packets arrive at a switch in Subsection 3.2.
Finally, we introduce eviction and the thresholds we use in Subsection 3.3.
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Fig. 3. Operations for source IP address.

3.1 Data Structure

In this subsection, we introduce the data structure of our model. We plan to make
the data structure work on SDN switches and use P4 as our programming language. The
data structure records the information when switches forward data packets. The core idea
of our model is Ostracism and two important features of DDoS detection: volume and
asymmetry. We show how these idea is realized in our model in the next subsection. As
shown in Figs. 3 and 4, the data structure is essentially an extended hash table. The table
is associated with a hash function h(.) for hashing the IP addresses of incoming packets.
Each table entry consists of several fields, which records the IP address (ip), packets sent
by the IP address (send), packets received by the IP address (recv), packets sent by other
IP addresses (oth+), and packets received by other IP addresses (oth-).

3.2 Insertion

For each packet going through a switch, our model first hashes the source IP address
and records the information in the data structure. Given the source IP address ipsrc, and
assume that it is hashed to an entry E = (ipa,send,recv,oth+,oth−). According to ipsrc
and ipa, there are three cases and examples are shown above in Fig. 3:

• Case 1: If E is empty, then we insert a record (ipsrc,1,0,0,0) to the entry.
• Case 2: If E is not empty and ipsrc = ipa, then we increment the field send, meaning

that ipa has sent one more packet.
• Case 3: If E is not empty and ipsrc ̸= ipa, then we increment the field oth+, meaning

that there is a packet sent by an IP address different from ipa.

After the operations are done with the source IP address, the model will hash the
destination IP address of the packet, given ipdst , and do similar operations. However,
since we are recording the information about IP addresses receiving packets in this step,
the fields modified will be different from above. Assume that ipdst is hashed to another
bucket E ′ = (ipb,send,recv,oth+,oth−). According to ipdst and ipb, there are also three
cases, examples are shown above in Fig. 4:

• Case 1: If E ′ is empty, then we insert a record (ipdst ,0,1,0,0) to the entry.
• Case 2: If E ′ is not empty and ipdst = ipb, then we increment the field recv, mean-

ing that ipb has received one more packet.
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Fig. 4. Operations for Destination IP Address

• Case 3: If E ′ is not empty and ipdst ̸= ipb, then we increment the field oth−,
meaning that there is a packet received by an IP address different from ipb.

With the operations described above, we can record the packet volume and asymme-
try not only of a single IP address but also of other IP addresses hashed to the same entry.
The model will decide whether an eviction should be done with the information. In the
next subsection, we’ll introduce the standard for judging it, and how evictions are done.

3.3 Eviction

We have already shown how we record information from the network. Now we
describe how the model preserves the IP addresses we want among numerous users in
the network. Since we are using a sketch-based model and several IP addresses will
be hashed to the same entry, we want the data structure to save the IP addresses which
have the highest asymmetry of sending/receiving packets. We will call them asymmetric
IP addresses in the rest of the paper for convenience. Since each entry is empty after
initialization, any IP address hashed to the entry can occupy the fields, including those
that might send/receive only a few packets. Therefore, eviction is needed as a mechanism
for the asymmetric IP addresses to replace other IP addresses.

Given an IP address of incoming packet ipi, and it is hashed to an entry E =
(ip,send,recv,oth+,oth−). The model will decide if an eviction is needed when E is
not empty and ipi ̸= ip, that is, case 3 when introducing operations in the previous sub-
section. Whether ipi is a source or destination IP address, thresholds for the decision are
the same. Now we introduce the thresholds we use for decision.

First, for the entry E, we count T = send+recv+oth++oth−. If T < Tthr, where Tthr
is a predefined threshold, then eviction will not happen. This threshold ensures that each
IP address will have enough time to show its trend without being replaced immediately
after occupying an entry. In addition, the threshold makes sure that eviction won’t happen
too often since it involves some memory access and may cause burdens on switches. On
the other hand, if T ≥ Tthr, the model will go on and calculate another two thresholds, α

and β .
α and β are the thresholds that filter the features of IP addresses for the model.
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Among them, α can be expressed as

α =

∣∣∣∣ send − recv
oth+−oth−

∣∣∣∣ . (1)

It calculates the difference of packets ip sent/received, divided by the difference of packets
sent/received by other IP addresses, and uses its absolute value as a reference for the
asymmetry of ip. If α is smaller than a predefined threshold, i.e. α < αthr, it means that
other IP addresses hashed to E have more asymmetric packet sending/receiving than ip.
For example, when the first IP hashed in the table is benign, an attacker arouses a DoS
attack by another IP. Cause the difference of other+ and other− is becoming bigger and
making α smaller, which means that the asymmetric of the not recorded IP in a hashed
table is more significant than the recorded IP. In this case, eviction will be executed.

β is another threshold that can be expressed as

β =
send + recv
oth++oth−

. (2)

It calculates total packets associated with ip and is divided by total packets of other IP
addresses. This represents the volume of the current IP address relative to others, and
there is also a correspondingly predefined threshold βthr. If β < βthr, meaning other IP
addresses cause more traffic than ip does. For example, the first IP hashed in the table
only transit a few packets then stop the connection, causing the sum of other+ and other−

is becoming bigger while the sum of ”send” and ”recv” is a fixed value. In this case, β

will become smaller, which means that the volume of the not recorded IP in a hashed table
is more significant than the recorded IP. In this case, eviction will be executed, too.

To summarise the overall algorithm of our method, we show a macroscopic flow
chart below in Fig. 5. When a packet passes through the P4 switch, we update the same
hashed table by the source IP (ipsrc) and the destination IP (ipdst ), respectively, of the
packet. Depending on the IP, there are the four updating cases shown in the sub-flowchart
including

1. being the first IP hashed into the row
2. being the IP recorded in the row
3. being the IP not recorded and going to evict the origin IP, and
4. being the IP not recorded but not going to evict the recorded IP.

The corresponding method of each case marks on the upper left of the sub-flowchart in
Fig. 5. Notably, the updating methods of the destination IP and source IP are the same.

Here we show an example to describe how an eviction is done in Fig. 6. Assume
we set the thresholds Tthr = 10, αthr = 0.6, and βthr = 0.6. A packet is going through
a switch and the model hashes the source IP address ipi to an entry E = (ip,3,1,4,2).
Then according to the operations introduced previously, the model increments the oth+

field, making it E = (ip,3,1,5,2), and check if an eviction is needed. It first calculates T ,
makes sure that T ≥ Tthr. Then it checks α and β , which calculations are shown in the
figure. By following the flowchart, the model infers that eviction is needed.

It is easy to execute an eviction. First, the new incoming IP address (ipi) replaces
the original one (ip). Then, since ipi is a source IP address, the model fills 1 in the send



TRAFFIC ASYMMETRY FOR DETECTING DDOS ATTACK 1273

Fig. 5. Overall flowchart of our method.

Fig. 6. Eviction example.

field and lets the other fields set to 0. Note that if ip is a destination IP address, the model
will set the recv field to 1 and others 0. The replacement means that the model stops
considering ip as an asymmetric IP address, and make ipi its new candidate Finally, after
the eviction is done, the entry E = (ip,3,1,5,2) becomes E = (ipi,1,0,0,0).

By recording the packets with the data structure and the evicting mechanism, the
model tries to preserve information of asymmetric IP addresses. In the next section, we’ll
discuss evaluations of the model, including the optimization of thresholds, accuracy of
detecting asymmetric IP addresses, and so on.

4. EVALUATION

In this section, we demonstrate the simulations of our model. Since the model needs
three parameters, we first describe the tuning process of the parameters. After that, we
test the validity of our model, i.e., the ability to preserve those we called asymmetric
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IP addresses. Additionally, we extend our simulation to a DDoS attack scenario to test
whether the model effectively preserves IP addresses of DDoS attackers and victims. Last,
we test the effect of whether using our method to preserve data for the controller when it
comes to machine-learning detecting methods.

4.1 Model Tuning

4.1.1 Simulation parameters

As mentioned above, each of the thresholds is in charge of some part of the filtering.
Therefore, it is important to know which combination of them performs the best. We
simulate with two kinds of traces, which split the simulation into two parts, to find the
best combination.

The first part of the simulation uses traces composed of randomly produced records
of packets following predefined distributions and parameters, simulating a DDoS attack
scenario. We use Pareto distribution based on previous research [26] and the observation
of the dataset we found [27]. The density formula of Pareto distribution:

f (t) =
αβ α

(t +β )α+1 (3)

and the way to match distribution parameters with datasets are introduced in [28]. The
total number of IP addresses is 4000, while the number of packets each address sends
and the inter-sending time of packets follow Pareto distribution with the mean around
100 packets and 200 ms. Moreover, there are three attackers and one victim in each trial.
Each attacker sends additional packets to the victim, which the packet inter-sending time
follows Pareto distribution with mean = 3 ms. We assume the size of normal packets is
1000 bytes and the malicious ones 1500 bytes. Also, the bandwidth of all IP addresses is
5 Mbps while the bandwidth of the victim is 10 Mbps. The parameters of the traces are
listed below in Table 1 for ease of reading.

For the second part of the simulation, we use the Boğaziçi University distributed de-
nial of service dataset [27]. The dataset consists of two parts - TCP flooding and UDP
flooding attack with IP spoofing, and we choose one of the attack periods of the TCP
flooding dataset as our simulation data. Since we focus on attack scenarios with no IP
spoofing, we replace the spoofed attacker IP addresses into three different new IP ad-
dresses, to simulate the attack scenario without IP spoofing.

We assume that the effects of αthr and βthr don’t interact with the effect of Tthr.
Therefore, we tune αthr and βthr first while setting Tthr = 50. After finding the combina-
tion of αthr and βthr that performs the best, we use the combination to tune the threshold
Tthr.

For each trial, our targets are IP addresses that have the largest absolute difference
between the number of packets they sent and the number of packets they received. If a
target IP address is preserved in the ip field in any entry, we treat the situation as a hit
defined in the detection theory. To evaluate how a combination of thresholds performs,
we use the F1 score as our metric.
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Table 1. Trace parameters (Alpha and beta are for pareto distribution).
Parameter Value

Number of total IP addresses 4000
Number of attackers 3
Number of victim 1
Number of entries 500

Alpha for number of packets sent by normal hosts (αnp) 2.02
Beta for number of packets sent by normal hosts (βnp) 99.88

Alpha for packet inter-sending time of normal hosts (αnt ) 3.45
Beta for packet inter-sending time of normal hosts (βnt ) 0.58
Alpha for packet inter-sending time of attackers (αat ) 2.01
Beta for packet inter-sending time of attackers (βat ) 42.26

(a) Distribution-based dataset. (b) Modified real dataset.
Fig. 7. Tuning alpha and beta using different dataset.

4.1.2 Tuning αthr and βthr

For each trace, we test 100 combinations of αthr and βthr, while the thresholds ranges
from 0.1 to 1. The formula of α and β determine that the lower bounds are zero. On the
other hand, according to our observation of sampling the data we get, most of the α and
β are below 1.0. Therefore, we set the upper bound of α and β in this simulation to 1.0.
The targets are set to the first 1% IP addresses that have the biggest absolute difference
between the packets they sent and the packets they received. For the first part of the
simulation, the result is shown below in Fig. 7 (a), and the second simulation in Fig. 7 (b).

In these two figures, we find that the best combination of αthr and βthr is 0.8 and 0.3
in the first part of the simulation, which has the best F1 score = 0.922.

On the other hand, when (αthr,βthr) = (1.0,0.1) or (1.0,0.2), the model performs
the best in the second part of simulation, which has F1 score = 0.93. In both figures, we
can observe that their F1 score generally rises as αthr rises and as βthr drops, while there
may also exist some local maximums.

Using αthr = 0.8 and βthr = 0.3 in the first part of simulation, and αthr = 1.0 and
βthr = 0.1 in the second part of simulation, we tune the threshold Tthr subsequently.
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(a) Tuning by F1 score with different target proportion. (b) Tuning by number of evictions.

Fig. 8. Tuning Tthr in the first part of simulation.

4.1.3 Tuning Tthr

We test the Tthr ranges from 1 to 500 and the results are shown below. In the first part
of simulation using distribution-based data, Fig. 8 (a) shows how the F1 score changes as
Tthr increases when setting the different proportion of the most asymmetric of IP addresses
as targets. That is, the true positive of the F1 score adds when the target IP is stored in the
table while the false positive adds when the others are stored. We can observe that the F1
score remains high when Tthr is below 50. However, as Tthr increases, the F1 score starts
to drop at different slopes. Especially when the target proportion is high, the F1 score
drops more significantly.

On the other hand, Fig. 8 (b) shows the number of evictions that happened in the
simulation under the different value of Tthr. Although small Tthr results in high accuracy,
the amount of evictions rises and it may cause the burden of switches to become heavier.
Therefore, it exists a trade-off between the number of evictions and accuracy. As a result
of the simulation, we think that it is appropriate to choose Tthr ranges from 50 to 100.

In the second part of the simulation using a modified real dataset, results are shown in
Figs. 9 (a) and (b). We can observe similar trends as shown in 8a and 8b, but the F1 score
drops more intensely and the number of evictions drops more smoothly at the beginning
as Tthr increases. According to this simulation, we suggest choosing Tthr ranges from 50
to 100.

As a result, we find the trends between αthr, βthr ,and the F1 score. We also find
the relationship between Tthr, the F1 score, and the number of evictions. We think that an
appropriate αthr is between 0.8 to 1.0. In addition, an appropriate βthr is between 0.1 to
0.3, and 50 to 100 for Tthr. For subsequent experiments, we choose αthr = 1.0, βthr = 0.1,
and Tthr = 100 to be the thresholds.
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(a) Tuning by F1 score with different target proportion. (b) Tuning by number of evictions.

Fig. 9. Tuning Tthr in the second part of simulation.

4.2 Model Validity

In this section, we test the validity of our model. In other words, we run an experi-
ment to see if our model can preserve the IP addresses we want under real traffics. We use
part of the CTU-13 dataset recorded in the CTU University, Czech Republic, in 2011 [29].

We choose a time interval containing no attack packets to run a trace-based experi-
ment. The interval lasts for about 780 seconds and we divide it into 13 one-minute-long
traces. For each trace, we let the packets go through a single switch with our model in-
stalled. In addition, we manipulate the number of entries to observe how it affects the
validity of the model. The result is shown below in Fig. 10. We can observe that when we
set the target proportion to 0.01, the F1 score rises a little as the number of entries reaches
300 to 400. After that, the F1 score drops slightly as the number of entries increases.

In other cases, the F1 score generally becomes higher when the model uses more
entries. The result is intuitive since the IP addresses should have more chance to be
preserved in the model as the number of entries increases, resulting in the true positive
rate to rise. In addition, when the model uses more entries, the collision rate between
target IP addresses will decrease, which also benefits the true positive rate. However, in
the case of setting the target proportion to 0.01, most targets are preserved in the model
when the number of entries is around 400. Therefore, although the increase of entries can
further let the rest of the targets easier to be preserved, the model will also preserve IP
addresses that are not our target, causing the false positive rate to rise. Generally speaking,
as the number of entries climbs to 500, the F1 score starts to become stable. In the case of
target proportion = 1%, the model can achieve the F1 score above 0.9, which infers that
our model can indeed record the IP addresses that have the biggest absolute difference
between packets sent/received. In the next section, we test our model in attack scenarios,
which contain different numbers of attackers and victims.
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Fig. 10. F1 score under different number of entries.

Fig. 11. F1 score under different attack intensities and number of victim.

4.3 Accuracy in Attack Scenario

Our model is designed to preserve data that is beneficial to DDoS attack detection. In
this section, we observe how well our model preserves the IP addresses of DDoS attackers
and victims under different scenarios. Furthermore, we compare this ability with Elastic
Sketch [9]. Elastic Sketch also uses the sketch-based data structure and it is designed for
preserving data of heavy hitters. We use another attack period of the Boğaziçi University
distributed denial of service dataset [27]. We duplicate the malicious packets and reassign
the source and destination IP addresses, to simulate different intensities of attacks and
different numbers of victims.

Still using detection theory as our evaluation method, we set the targets to the IP
addresses of attackers and victims in this simulation. The result is shown below in Fig. 11.
We can observe that no matter under which condition, our method has F1 score remaining
above 0.9. As attack intensity increases, there is only a tiny drop for about 0.01. On
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Fig. 12. F1 score under different conditions when a controller is involved.

the other hand, Elastic Sketch has the F1 score that rises significantly when the attack
intensity starts to increase, flattens out when attack intensity comes to 200 Mbps, and
falls between 0.8 to 0.9 when attack intensity reaches 500 Mbps. Furthermore, our model
can collect IP addresses related to DDoS attackers or victims well, and the F1 score is
27% better than Elastic Sketch on average. We find that our method performs better than
Elastic Sketch, especially when the number of victims increases. We think the result
is caused mainly by the difference in the ability to preserve the victims’ IP addresses
since Elastic Sketch does not consider packets received by each IP address, while our
model will also preserve IP addresses that receive a lot more packets than they send. In
conclusion, when it comes to preserving IP addresses that are related to DDoS attackers
and victims, our method outperforms Elastic Sketch and maintains high accuracy under
different conditions.

4.4 Effect on Controller

Last, we test the effect of detecting DDoS attacks when a controller is involved.
The controller collects data using different preserving methods from the switch and runs
the k-means algorithm for detecting DDoS attackers and victims. We set the number of
victims to 2 and test the F1 score of detecting DDoS attackers and victims under different
conditions. The result is shown below in Fig. 12.

We can find that in contrast to using our method or Elastic Sketch, the F1 score
increased by about 6% to 14% after using the k-means algorithm on the controller. On
the other hand, when the switch does not use any method and sends statistics of each IP
address to the controller, the F1 score of the detection performs the best.

In this condition, all information is recorded and information related to attackers and
victims will never be lost.

The machine-learning method can cluster or filter by its algorithm and have the best
F1 score. However, sending all information to the controller is not a practical method,
since the size of data passed to the controller is too large, which should cause more se-
rious problems when DDoS attacks truly exist. We calculate the size of data needs to be
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Table 2. Data size from switch to controller.
Our Method Elastic Sketch None
10000 bytes 9000 bytes 43404 bytes

transformed from a single switch to a controller when using different method, and show 
the results in Table 2.

We can see that without using any method to filter information, data that need to be 
transformed is 3 times larger than using our method or Elastic Sketch. As the size of the 
network scales up, the burden caused by not using any method also raises. On the other 
hand, by using our method for filtering, we can eliminate about 75% information and keep 
the F1 score still high at the same time (Fig. 12). Therefore, the simulation shows that our 
method can effectively decrease the cost while remaining high-quality of detection.

5. CONCLUTIONS

DDoS attacks have caused serious problems and losses due to their ability to inter-
rupt or suspend servers that provide important services such as financial activities. Many 
detection models have been proposed to detect DDoS attacks in various ways. However, 
most of them have some disadvantages, such as consuming a lot of bandwidth when col-
lecting data.

In this paper, we introduced a sketch-based data structure to calculate the asymmetry 
of data transmission/reception, and use Ostracism to evict IP addresses below the thresh-
old. The sketch-based data structure uses limited memory space to collect important data 
filtered through predefined th resholds. To improve the data collection process for further 
detection, we designed a sketch-based data structure that collects information based on 
the difference between data transmission and reception for each IP address.

In addition, we showed that our model can accurately reserve highly asymmetric IP 
addresses in packet transmission/reception. When the target ratio is set to 0.01, the F1 
score can reach 0.9 or more, and the number of entries is appropriate. Finally, we show 
that our model can collect IP addresses related to DDoS attackers and victims very well, 
and the F1 score is 27% better than Elastic Sketch on average.
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