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Cross-browser testing not only is one of the most common non-functional testing 

methods in the field of software testing, but also the testing method that requires large 

amounts of resources, in terms of hardware and time. Basically, based on Selenium Grid, 

Kubernetes and KEDA auto-scaler, a cross-browser testing platform can be quickly built. 

However, through our empirical study of this style of platform, we observed three signifi-

cant problems in terms of its reliability and efficiency: the Health-Check problem, the Ses-

sion-Queue problem, and the Cooldown problem. This paper suggests solutions to these 

problems. The experimental result shows a 2.27 times improvement in reliability and a 

decrease in execution time for 61.5%. Moreover, the overall execution time is also 54.2% 

less comparing with Selenium’s Dynamic Grid.     

 

Keywords: web application testing, cross-browser testing, testing cloud, autoscaling, soft-
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1. INTRODUCTION 
 

Software testing is the process of evaluating and verifying if a software meets its ex-

pected requirements without defects [1, 2]. Software testing can be classified into two main 

categories, manual testing and automation testing [3]. Manual testing is the process in 

which the quality assurance analyst evaluates the software by hand, testing each function 

manually. On the other hand, automation testing is the process in which the testers use 

automation technologies to automate the testing procedures [4].  

There are different types of testing procedures, one way to classify testing procedures 

is by the functional properties, which can classify testing into functional and non-func-

tional testing [5]. Functional testing is the procedure to verify the “functionality” of the 

software, which checks if all the functions of the software work as expected. On the other 

hand, non-functional testing checks for the aspects of the software other than the function-

ality, in other words, to ensure that the software is able to work efficiently under any 

conditions. One of the most important non-functional testing methods in the field of web 

testing is the cross-browser testing [6, 7]. Cross-browser testing is the process of testing 

and comparing the behaviors of webpages on different browser environments. Cross-

browser testing plays an essential role in the process of web testing since different browser 

vendors all have different ways of rendering HTML, CSS, and JavaScript, resulting in 

different user experience on different browsers [8-10]. In order to ensure that all users can 
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have the same experience on all browsers, web developers are required to perform cross-  

browser tests on all browsers. 

As mentioned above, cross-browser testing is crucial in the development of websites. 

However, testing on multiple browsers manually may be very time consuming and requires 

a significant amount of hardware, therefore may not be very cost-efficient [9, 11]. Thus, 

the need for a public testing platform arises, where the platform provides different hard-

ware in which developers can test their websites on different browsers or platforms, which 

can decrease the complexity of hardware resource and environment setup. Furthermore, it 

would be most user-friendly if the testing process is simplified to “record once, playback 

for all”, where the user can generate the test steps on one browser or one machine and test 

it on all the other browsers and platforms on one click. 

Nonetheless, the allocation of testing resources may be a problem for the design of 

public testing platforms since the platform cannot predict the testing requirements of the 

users. For example, suppose the platform has a capacity of 30 testing units, allocating 10 

units for browser A, 10 units for browser B and 10 units for browser C. If there is a sudden 

increase in requests for browser A, the resources allocated for browser A will be very busy, 

while the remaining two thirds of the platform’s capability allocated for browser B and C 

will be idle. Hence, it would be more efficient if the platform can dynamically allocate 

testing units according to the incoming requests.  

A cross-browser platform can be quickly built using Selenium Grid, Kubernetes and 

KEDA. However, through our empirical study of this style of platform, we still observed 

three significant problems in terms of its reliability and efficiency: the Health-Check prob-

lem, the Session-Queue problem, and the Cooldown problem. This paper suggests solu-

tions to these problems. The experimental result shows a 2.27 times improvement in reli-

ability and a decrease in execution time for 61.5%. The overall execution time is also 

54.2% less comparing with Selenium’s Dynamic Grid. In addition, Selenium Dynamic 

Grid is also compared regarding to execution time. 

This paper is organized as the following: Section 2 introduces the background work. 

Section 3 explains the three problems encountered and introduces solutions to each prob-

lem. Section 4 describes three experiments conducted to evaluate the solutions and an ex-

periment to compare the proposed platform with Dynamic Grid. Finally, Section 5 con-

cludes this paper. 
 

2. BACKGROUND WORK 
 

In this section, we introduce three popular open source software that can be used to 

build an autoscaling cross-browser testing platform: Selenium Grid 4, Kubernetes, and 

KEDA. The Selenium Grid Hub will provide a service port where clients may send their 

test requests to. The KEDA scalers will be listening to the Selenium Hub’s Session Queue 

for incoming test requests and will send signals to the Kubernetes Cluster Master to create 

new pods that contains the Selenium Node of the corresponding browser. 

2.1 Selenium Grid 

Selenium Grid is a software testing tool that allows you to run test cases in parallel 

across multiple machines by routing the client requests to a remote browser instance [12], 

which allows users to manage different browser versions and browser configurations 
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centrally, and acts as a central entry point for all the tests [13]. The Selenium Grid is made 

up by several components, which can be mainly separated into the “Hub” and the “Node”. 

The Selenium Hub is the controller of the Grid, which can receive test requests from users 

and distribute the request to the corresponding browser instance. On the other hand, the 

Selenium Node is a work unit within the Selenium Grid, which will receive the test requests 

from the Hub and execute the received commands [14]. A Node will be capable of execut-

ing test request on the browsers that is available on the machine, or to be specific, on the 

browsers that has the corresponding browser drivers installed. 

The Selenium Hub can be broken down into several smaller components, Router, Dis-

tributor, Session Map, New Session Queue, and Event Bus [14]. The Router forwards the 

test requests to the corresponding Node. The Distributor keeps a record of each Node and 

their capabilities; when a test request is received, the Distributor will find a suitable Node 

according to the given capabilities where the test request can be executed. The Session 

Map is a data map that records the test session’s id and the Node where the session is 

running, it helps the Router to forward test commands to the corresponding Node. The 

New Session Queue is a queue that holds all the incoming test requests in a FIFO order. 

When a new test request comes in, the Router will put the request into the New Session 

Queue, when the Distributor finds a suitable Node for the test request, the test request will 

be removed from the New Session Queue, and the Distributor will proceed to creating a 

new test session. Finally, the Event Bus is the object responsible for the internal commu-

nication between Nodes, Distributor, New Session Queue, and the Session Map. 

2.2 Kubernetes 

With the development of the containerization technology, the distribution of applica-

tions and environments becomes simpler. However, the increasing number of containers 

triggers the need for a management system to rise [15-17]. Kubernetes is an open-source 

platform for orchestrating containerized workloads and services [18, 19]. The configura-

tions for Kubernetes are written in YAML files, where developers can specify the expected 

state of the system service, for example, which images to use and how many replicas for 

each container. Kubernetes will then be monitoring the behavior of the system state and 

repair it when the expected behaviors are not met, for example, when a work unit crashes 

and therefore the number of work units do not meet the specifications, Kubernetes can 

restart the work unit [20-22]. 

A system working under the Kubernetes framework is called a Kubernetes cluster 

[23]. A Kubernetes cluster can be deployed across different working machines, called 

nodes; every cluster has at least one worker node. The node hosting the control plane is 

usually called the Master Node, or the Controller Node. On the other hand, the nodes where 

the application will be run are usually called the Slave Nodes or the Worker Nodes. The 

control plane can deploy pods, the smallest working unit in Kubernetes, across different 

nodes. The control plane is also responsible for making global decisions in the cluster, in-

cluding listening to cluster events and managing the worker nodes in the cluster. The small-

est working unit, pod, may contain one or more Docker containers. 

 

2.3 KEDA 
 

In Kubernetes, a Horizontal Pod Auto-scaler (HPA) is a component that can automat- 
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ically update a workload resource for the workload to match the demand, for instance, to 

increase the number of pods when the resource utilization of CPU or memory is too high 

[24]. On the other hand, KEDA is a Kubernetes-based Event Driven Auto-scaler that can 

scale a workload resource based on a customized event [25, 26]. In comparison to the built-

in Kubernetes HPA, the KEDA auto-scaler allows generating workload resources accord-

ing to a specific event (incoming requests) [27], instead of scaling the workload resources 

only according to the device resource utilization, making KEDA more flexible when scal-

ing a Selenium Grid. In a Selenium Grid, since there can be many different types of Brow-

ser Nodes, by generating the corresponding Selenium Browser Node according to the re-

quested browser of the incoming test request, the service will be more flexible and dynamic, 

with no idle resources. Thus, the appropriate targeted event of the auto-scaler would be the 

number of requests inside the Selenium Grid’s Session Queue, and the workload resource 

to be scaled would be the Selenium Browser Nodes, for this purpose, the KEDA project 

provides a Selenium Grid Scaler [28], which is used as the main scaler in this study. 

3. AN EFFICIENT AUTOSCALING CROSS-BROWSER TESTING 

CLOUD PLATFORM  

This section describes an autoscaling cross-browser testing cloud platform based on 

Selenium Grid, Kubernetes and KEDA. Three main problems of the platform and their 

corresponding solutions are also introduced. 

 

 
Fig. 1. System architecture of an autoscaling cross-browser testing cloud platform based on Selenium 

Grid, Kubernetes and KEDA. 

3.1 System Architecture 

 

Fig. 1 shows the system architecture of the platform. The platform is built upon the 

Kubernetes framework. The Kubernetes Cluster includes a number of, say five, virtual 

machines where one machine acts as the control pane of the entire cluster, and the re-
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maining four machines act as the Worker Nodes which can run Kubernetes Pods. One of 

the Worker Nodes will run the Pod containing the Selenium Hub’s container. The Selenium 

Hub’s Pod will provide a service port where clients may send their test requests to. The 

clients will send the test requests to the Kubernetes Pod that contains the Selenium Hub’s 

container, while the KEDA scalers for Chrome, Firefox and Edge browsers will be listen-

ing to the Selenium Hub’s Session Queue for incoming test requests. Once the KEDA 

scaler detects a request for its corresponding browser, it will send a signal to the Kubernetes 

Cluster Master, to create a new pod that contains the Selenium Node of the corresponding 

browser. The Master Node will then distribute the new pod to one of the four other Worker 

Nodes that can receive a Selenium Node Pod. After the Selenium Node Pod is generated, 

the Selenium Hub will send the test commands to be executed on the Selenium Node until 

the test session terminates. When all the test sessions in the cluster are completed and all 

Selenium Browser Nodes are idle, the KEDA scaler may then cooldown the cluster by 

deleting all the existing pods. In the following sections, we will discuss three problems of 

this platform and their corresponding solutions: the Health-Check Problem, the Session-

Queue Problem and the Cooldown Problem. 

3.2 Problem 1: The Health-Check Problem 

We called the first problem as the Health-Check Problem. As mentioned in Section 

2.1, the Selenium Hub is responsible for distributing test commands to its Selenium Nodes. 

One of the configurations of the Selenium Hub is called “healthcheck-interval”, this con-

figuration defines how often the Hub will run a health check on all Nodes. This ensures 

that the server can ping all the Nodes successfully. The default value of this flag is set to 

120 seconds, which means that the Hub will check on all its Nodes every 120 seconds to 

see if the Nodes all still healthy. One of related configurations is called “heartbeat-period”, 

this configuration define how often will the Selenium Node send a heartbeat event to the 

Distributor to inform that the Node is still up. The default value of this flag is set to 60 

seconds, which means that a Node will send a signal to the Hub to inform that it is still 

alive every 60 seconds. By using these two flags, the Hub is able to ensure that the Nodes 

are healthy and are available to process test requests. If a Node were to be shutdown, it 

will also send a signal to inform the Hub. 

However, when Selenium Grid is used in an auto-scaling framework, where the Sele-

nium Nodes are generated upon request and deleted when idle, in other words, Nodes are 

deleted involuntarily by components outside the Grid, therefore, it does not get a chance 

to send a signal to inform the Hub. It is observed that the Hub will keep sending test ses-

sions to Nodes that is being deleted. One of the reasons behind this problem is because the 

Selenium Nodes are wrapped in a Kubernetes Pod, where the KEDA scalers will instruct 

the Kubernetes Master to delete once the there are no more ongoing test sessions. When 

the Pod is removed, the Selenium Node running inside the Pod does not know that it is 

being deleted, therefore does not get a chance to send a signal to the Hub informing that 

the Node will become unavailable, which means that the Hub will only notice that the 

Node is down by performing its periodical health check. Consequently, if the health-check 

interval is too long, there will be a delay for the Hub to know that a Node is down, meaning 

that a Hub might distribute a test session to a Node that is actually not available, further 

causing the test request to fail. Intuitively, setting the healthcheck interval to a smaller 

value would solve the problem. However, the minimum value for “healthcheck-interval” 
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is 10 seconds. Nevertheless, 10 seconds is still too much of a delay for the platform pro-

posed in this study since the platform is designed to be shared between multiple users. 

There is a possibility that during the 10 seconds, new requests might come in, when the 

Hub receives a test request during the 10 second interval of health-checking, the Hub might 

assign the new session to be executed on a Node that is actually being removed. 
 

The proposed solution: The Selenium Server is a Java jar file that can start a Selenium 

Hub, Selenium Node or even the smaller components of the Grid mentioned in Section 2.1, 

depending on which role the user defines. The official release of the Selenium Server only 

supports the “healthcheck-interval” flag to be set to a minimum of 10 seconds. But in order 

to decrease the risk of users sending test requests into the Hub during these 10 second 

interval which can cause the test request to fail, it is preferable to decrease the “health-

check-interval” to a smaller value. To achieve a smaller minimum value for the flag, it is 

necessary to modify the open-source project of SeleniumHQ/selenium. The method “getH-

ealthCheckInterval()” where the server gets the healthcheck-interval duration is located at 

the class “DistributorOptions.java”. By modifying the minimum of “10” to “1”, the Sele-

nium Hub will be able to take 1 second as a valid “healthcheck-interval”. In our experiment 

(see Section 4), setting the healthcheck-interval to 1 second did not decrease the overall 

auto-scaling performance. After rebuilding the selenium/hub and letting the Kubernetes 

Cluster to run the pod with the modified selenium/hub container, the selenium hub is able 

to perform a healthcheck in a shorter interval, which can significantly decrease the defect 

rate of the test requests. The statistics of the experiment will be shown in Section 4. 

3.3 Problem 2: The Session Queue Problem 
 

To achieve the effect of auto-scaling the Selenium Browser Nodes according to test 

requests, there is a KEDA scaler object that constantly listens to the Selenium Session 

Queue for the test request capabilities and the existing session number. If the number of 

existing Browser Pods is less than number of currently executing sessions plus the number 

of test requests in the New Session Queue, it means that there is more demand than the 

current capacity. And when there is more demand on Browser Nodes, KEDA will send a 

signal to the Kubernetes Cluster Master to produce more Browser Nodes, based on the 

capacities given in the test requests. When a client user sends a request to the Selenium 

Hub, the test request is stored in the New Session Queue. When there are requests in the 

New Session Queue, the Distributor will look for a Browser Node that is compatible with 

the given capabilities, when there is an available Node, the Distributor will remove the test 

request from the New Session Queue and start to build a session. When the session is built, 

the session id and the node id of the corresponding Node will be stored in the Session Map. 

This process can be seen in the activity diagram in Fig. 2. 

The way KEDA monitors the current number of ongoing sessions and the number of 

test requests in the New Session Queue is by using the GraphQL endpoint provided by 

Selenium Hub. The GraphQL endpoint can provide query for the number of test requests 

in the New Session Queue and the number of ongoing sessions, which is stored in the 

Session Map. The problem with this design is that there will be a short period of time of 

session creation (marked as orange in Fig. 2), where the session instance is not in the New 

Session Queue, nor in the Session Map. If KEDA queries the GraphQL endpoint at this 

time, the total number of required pods might not be equal to the number of test requests 
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in the New Session Queue plus the number of ongoing sessions in the Session Map, which 

can cause miscalculations for the number of pods needed to be automatically scaled up, 

especially during times when there is heavy traffic in the Hub and building a session takes 

a long time. 

 

  
Fig. 2. The activity diagram of the session creation process in Selenium Hub. 

The proposed solution: To avoid KEDA from miscalculating the number of required 

Browser Nodes, it is necessary to count the sessions that are being created but not placed 

into the Session Map yet. To do this, a new object was created within the Selenium Hub, 

called the “Creating-Session Queue”. The overall process was modified to the following: 

when the test request is removed from the New Session Queue, the test request is immedi-

ately pushed into the Creating-Session Queue. The session will then proceed to build; after 

the session is built, the request will be removed from the Creating-Session Queue and the 

session id will be pushed into the Session Map. The modified activity diagram is shown in 

Fig. 3, with the added steps marked in purple. 

 
Fig. 3. The activity diagram of the improved session creation process. 
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In addition, when KEDA queries the GraphQL endpoint of Selenium Hub for the 

number of test requests in the New Session Queue, it will return the number of test requests 

in the New Session Queue, plus the number of test requests in the Creating-Session Queue, 

to get the accurate number of test requests in total, at all times. 

 

3.4 Problem 3: The Cooldown Problem 

 

KEDA is a custom Kubernetes component that can allow the generation of workload 

resources according to a specific event (incoming requests), instead of scaling the work-

load resources only according to the device resource utilization, making KEDA more flex-

ible when scaling up a Selenium Grid. However, the disadvantage of this component is the 

part of scaling down. KEDA can only scale down, or delete the pods, when there are abso-

lutely no ongoing sessions nor test requests in the session queue. To be specific, the entire 

Selenium Grid has to be completely idle in order for KEDA to delete any working pods. 

Therefore, the Grid can only scale up dynamically, to scale down, it must wait until the 

entire Grid is idle. For a platform designed to be shared among many users, this is not a 

practical scenario.  

The reason why KEDA has to wait for the Grid to become idle before deleting any 

pods is because KEDA does not have access to know which Browser Node is wrapped in 

which Kubernetes Pod. If it deletes the wrong pod, an ongoing test session might be ter-

minated unexpectedly, causing test cases to fail. Therefore, KEDA can only delete every 

pod or no pod, which can lead to unnecessary pods occupying the system resources. 

In addition, when the Selenium Node is not removed from the Grid after a session 

finish executing, it becomes available to the Distributor, meaning that the Distributor can 

distribute another session for the Node to execute. The reuse of pods may cause possible 

security concerns; if a Node is being reused, there is a chance that the next user might get 

access to what the previous user has executed on the Node. Therefore, to avoid this possible 

security leaks, the pods should be deleted after each session has finished executing, which 

is currently not possible in the existing architecture.  

Moreover, the cooldown problem can lead to a case of a waiting problem of resources. 

For example, suppose a Kubernetes Cluster capacity is of 5 pods and the first user requests 

for 5 Chrome sessions. The KEDA scaler will eventually scale up the cluster with 5 

Chrome pods to execute the 5 Chrome requests. Suppose four of the five requests last 

around 1 minute, and the fifth request lasts 1 hour. During the 59 minutes where the last 

request is still executing, the rest of the four pods cannot be scaled down because the 

KEDA scaler can only delete the whole cluster when there are no more ongoing sessions. 

Suppose another user request for 1 Firefox session during these 59 minutes, the user will 

need to wait 59 minutes until the 1 last request is finished processing, when there are ac-

tually 4 idle pods capable of processing the request if they could be removed from the 

cluster. The waiting problem is illustrated in Fig. 4. 

To summarize, for the Cooldown Problem, it is desired to build a Cluster where Se-

lenium Nodes can generate upon request, and when the session finishes executing, the Pod 

containing the corresponding Node will be deleted from the Cluster. 

 

The proposed solution: The current method of implementing the Selenium Nodes in Ku-

bernetes is by using the Kubernetes object called Deployment. A Deployment can define  
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Fig. 4. A waiting problem occurs when integrating KEDA and Selenium Grid. 

which containers to run in a pod, how many pods to run and how they should run. When 

the KEDA scaler detects that there are more demands for Browser Nodes than the existing 

resource, KEDA will generate new pods according to this Deployment, which will generate 

new Pods. However, when a Kubernetes Pod is created, it will remain in the Cluster unless 

it is deleted or crashed. For the Cooldown Problem, it is desired to build a Cluster where 

the Pod containing the corresponding Node will be deleted from the Cluster once the ses-

sion finishes executing. For this purpose, the use of Pods or Deployments will be replaced 

by another Kubernetes object called “Job”. A Job object in Kubernetes is a finite or batch 

task that will create one or more Pod objects that runs to completion. The difference be-

tween using a Pod and using a Job is that a Job has a finite or batch task that runs to 

completion, where tasks can be defined in the configuration file of a Job. As the Job is 

spawned, it will generate the Pods needed to execute the tasks defined in the configuration 

file, and when the tasks are finished executing, the Job will terminate the Pods. The char-

acteristic of a Job is closer to the purpose of building a Selenium Node that can terminate 

itself after a session is finished executing, as well as solving the problem where KEDA 

cannot delete a specific pod that contains a specific Selenium Node.  

However, simply switching the Deployment to Job does not solve all the problem. 

How to design a Job that can terminate after executing only one session is still a problem. 

The Selenium Grid provides a Distributor endpoint API that includes a command called 

“drain”, the drain command allows Nodes to be shutdown gracefully. Draining the Node 

will stop the Node after it finishes the ongoing sessions and will prevent the Distributor to 

distribute new session requests to the Node. In Selenium Hub, the “--drain-after-session-

count” flag allows the Node to be drained after a defined number of sessions. This flag was 

used achieve the effect of draining the node after one session. 

By using the Kubernetes Jobs with the drain mechanism, it is possible to drain a Se-

lenium Node after it receives one session, which will allow the Selenium Hub to shut down 

the Node after the session completes, and when the Node shuts down, the Pod will termi-

nate too due to the completion of the assigned job. 
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4. EXPERIMENTAL EVALUATION 

This section describes the experiments conducted to evaluate the proposed solutions 

mentioned in Section 3, as well as an experiment conducted for the comparison with Sele-

nium Dynamic Grid project. 

4.1 Experiment Environment 

As mentioned in Section 3.1, the architecture of the auto-scaling cross-browser testing 

platform consists of five virtual machines in total. The hardware specifications of the five 

virtual machines are shown in Table 1. The hardware specifications of all virtual machines 

used in this experiment. The first virtual machine act as the master control plane of the 

Kubernetes Cluster, where the rest of the four machines are the Worker Nodes of the Master. 

The second virtual machine has a relatively weaker memory capacity than the rest of the 

Worker machines because the Selenium Hub does not require as much memory as the Se-

lenium Nodes do. Therefore, the Selenium Hub will be deployed to the Worker machine 

with less memory, and the Selenium Nodes will be distributed to the machines with a 

stronger memory capacity. 

 

Table 1. The hardware specifications of all virtual machines used in this experiment. 

VM # 
Role in  

Kubernetes 

Role in  

Selenium Grid 
Processor Memory 

1 Master N/A 
Intel®  Xeon®  CPU E5-

2620 v2 @ 2.10GHz  4 
16 GB 

2 Worker Hub 
Intel®  Xeon®  CPU E5-

2620 v2 @ 2.10GHz  4 
12 GB 

3 Worker Node 
Intel®  Xeon®  CPU E5-

2620 v2 @ 2.10GHz  4 
16 GB 

4 Worker Node 
Intel®  Xeon®  CPU E5-

2620 v2 @ 2.10GHz  4 
16 GB 

5 Worker Node 
Intel®  Xeon®  CPU E5-

2620 v2 @ 2.10GHz  4 
16 GB 

 

4.2 Experiment 1: The Health Check Problem 
 

The first problem mentioned in Section 3 is the Health Check Problem. The main 

issue with this problem is that Selenium Hub would still distribute sessions to the Selenium 

Nodes that are actually shutting down, due to a long health-check interval. The proposed 

solution to solve this problem suggests decreasing the health-check interval to 1 second to 

allow Selenium Hub to ping the Nodes more frequently and thus will be able to determine 

which Nodes are still healthy and which Nodes are not, which can decrease the likelihood 

of Selenium Hub sending sessions to Nodes that are shutting down.  

To verify if a shorter health-check interval can indeed allow Selenium Hub to cor-

rectly distribute sessions to the healthy Nodes, the following experiment was designed to 

compare the effect of health-check interval on the success rate of the test cases: since the 

Kubernetes Cluster has the ability of restoring the number of pods to a given number, a 

deployment of n pods was deployed. After all the Selenium Nodes inside the n pods have 
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all registered themselves with Selenium Hub, the n pods are deleted. Immediately after the 

n pods are deleted, n test requests are sent to Selenium Hub. The response variable of this 

experiment would be the number of test requests that have failed after being sent to the 

Hub. Note that only the sessions failed due to SessionNotCreatedError and NoSuchSes-

sionError are counted in this experiment, because these are the two errors associated with 

the Hub sending test sessions to the Nodes that are shutting down. The health-check inter-

vals chose to be compared are 1 second, 10 seconds and 120 seconds; 1 second is the 

optimal interval proposed by this paper, 10 seconds is the minimum interval allowed by 

Selenium Hub, and 120 seconds is the default health-check interval of Selenium Hub. Dif-

ferent amount of test requests was also observed, since the capacity of the proposed Ku-

bernetes cluster is around 120 pods, the number of test requests observed are 40, 80 and 

120.  

Each category of the experiment was repeated 10 times and the average was shown 

in Fig. 5, where a health-check interval of 1 second allows 100% of the test requests to 

succeed, where the success rate of test requests with a health-check interval of 10 seconds 

average around 59%, and the success rate of health-check interval of 120 seconds average 

around 44%. On average, the health-check interval of 1 second improved the test request 

success rate for 2.27 times, comparing to the default Selenium Hub’s health-check interval 

of 120 seconds. 

 

 
Fig. 5. Test requests success rate of different health check intervals. 

4.3 Experiment 2: The Session Queue Problem 
 

The second problem mentioned in Section 3 was the Session Queue Problem. The 

main issue with this problem was that Selenium Hub’s Session Queue number is not accu-

rate, which further leads to the KEDA scaler unable to correctly auto-scale the right number 

of Pods to process the test requests. And when the KEDA scaler cannot auto-scale the right 

number of Pods that are required to process the test requests, it would take longer to process 

the test requests since it will take longer for the auto-scaler to scale up to the right number 

of pods. The solution proposed by this paper is to add a Creating-Session Queue object to 

the current Selenium Session Queue as a buffer queue for the sessions that are currently 

creating. In addition, when KEDA queries the GraphQL endpoint of Selenium Hub for the 
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number of test requests in the New Session Queue, it will return the number of test requests 

in the New Session Queue, plus the number of test requests in the Creating-Session Queue, 

to get the accurate number of test requests in total, at all times. 

To evaluate the effects of the Creating-Session Queue, an experiment was conducted 

to compare the total test case execution time of the original Selenium Hub and the im-

proved version of Selenium Hub with the Creating-Session Queue. Different amount of 

test requests was sent to both versions of Selenium Hub, and the total execution time was 

recorded, each category of the experiment was repeated 10 times, and the average execu-

tion time is shown in Fig. 6. As suggested, the modified version of Selenium Hub with a 

Creating-Session Queue can execute test requests faster than the original version of Sele-

nium Hub, for 40, 80 and 120 test requests. On average, the modified version of Selenium 

Hub is 61.5% faster than the original Selenium Hub. 

 
Fig. 6. Execution time of test requests of the original and the modified Selenium Hub (sec). 

4.4 Experiment 3: The Cooldown Problem 
 

To avoid the waiting problem, we proposed a solution of designing the workload with 

ScaledJob objects instead of ScaledObjects, and to drain the Node after each session, in 

order to close the pod after each session. To verify if the new design can solve the waiting 

problem, an experiment was designed to observe the number of each browser pods in the 

cluster as test requests for different browsers come in. First, a limit of max pods in the 

cluster was set to 100 pods, meaning that there could only be a maximum of 100 pods in 

the whole cluster. The experiment will first send 100 test requests for Chrome, where 99 

requests last around 90 seconds each and one request that last around 2000 seconds. When 

the KEDA scaler scales up the cluster to 100 Chrome pods, 100 Edge requests will be sent 

into the Session Queue, where 99 requests last around 90 seconds each and one request 

that last around 2000 seconds. After the Edge requests, 100 Firefox requests will also be 

sent to the Session Queue, where 99 requests last around 90 seconds each and one request 

that last around 2000 seconds. The change in number of each browser pods was observed 

for both the original design with ScaledObjects and the modified version with ScaledJobs 

and the drain method. The change in number of each browser pod for the original design  
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with ScaledObject can be observed in Fig. 7. 

The waiting problem mentioned above can be observed from Fig. 7, at the beginning, 

when the cluster receives 100 Chrome requests, the cluster scales up to 100 Chrome pods. 

But as there is one session that lasts for 2000 seconds, the cluster cannot cooldown the 

other 99 Chrome pods, even if they are idle. The Edge and Firefox requests cannot be 

processed since the cluster is not able to generate the corresponding browser pods to pro-

cess their requests. 

 

 
Fig. 7. Change in number of browser pods in the cluster using ScaledObjects. 

 

 
Fig. 8. Change in number of browser pods in the cluster using ScaledJobs. 

 

On the other hand, the change in number of each browser pod for the modified design 

with ScaledJobs and drain method can be observed in Fig. 8. 

As shown in Fig. 8, in the beginning, when 100 Chrome requests came in, the cluster 

is scaled up to 100 Chrome pods. But as each Chrome Node finishes its session, the Pod 

will terminate itself, and therefore releasing the cluster capacity for the other Browser Pods 

to scale up. As Fig. 15 shows, as the number of Chrome Pods drops, the Edge Pods were 

able to scale up and process the requests, although there is still one Chrome request that 

will be processing for 2000 seconds. And the same happened with the Firefox requests, as 

the Edge requests finishes, the Firefox pods were able to scale up and process the request 

although there are still a Chrome session and an Edge session processing. In comparison 

with the original design with the ScaledObject, the modified version with the ScaledJob 

was able to adjust its resources more flexibly and thus able to process all the request in 

significantly less time. 
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4.5 Experiment 4: Comparison with Dynamic Grid  
 

The last experiment conducted in this study is a comparison with Dynamic Grid. Dy-

namic Grid is a suggested architecture introduced since Selenium Grid 4. Its main idea is 

to start Docker containers on demand of a test request. The Dynamic Grid is achieved by 

using a Selenium Node object called the “Node-Docker”. A Node-Docker is not specified 

to be only one browser, instead, it contains a configuration map that maps the browser 

capabilities to specific Docker images. By using the configuration map, the Node-Docker 

can pull a specific Docker image according to the test request capability it receives. This 

enables the Node to decide which browser image to use at runtime, increasing the flexibil-

ity of the Nodes.  

However, although Node-Docker can dynamically decide which browser image to 

use at runtime, Node-Docker still need to be “pre-deployed” before the test requests comes 

in. On the other hand, the Auto-Scaling Cross-Browser Platform suggested by this paper 

uses the KEDA scaler to scale up pods on demand, which allows resources to be allocated 

dynamically. Moreover, when deploying the Dynamic Grid in a distributed architecture, 

since docker does not offer a cross-device orchestration framework, one has to manually 

deploy the Node-Dockers on each of the machines in the distributed network. And when 

the network grows larger, or when the docker images needs a version update, managing 

such network becomes more complex since one will need to update on all the machines in 

the network.  

On the other hand, the platform suggested by this study uses the Kubernetes frame-

work which enables the cluster manager to orchestrate the whole cluster from the Master 

control plane, which can automatically deploy the workload to its worker machines. Fur-

thermore, when the pod container images need an update, it is only required to change the 

deployment details from the master machine, without having to change the version on each 

of the machines in the cluster. Additionally, in terms of resource allocation, since Dynamic 

Grid requires the Node-Docker to be pre-deployed, the cluster manager must pre-allocate 

the resources, usually using the worst-case scenario as the estimation. For instance, a best 

case of a test request of opening a simple website may only require 400MB, if a machine 

has a total RAM of 16GB, it could possibly process around 40 requests at the same time.  

However, for a worst-case scenario, a test request of opening several complex web-

sites may require around 1600MB of RAM, which allows the machine of 16GB to only 

process 10 requests at the same time. For a public cloud, one cannot assume that the in-

coming test requests will always be the best case of simple requests, so therefore is more 

reasonable to pre-deploy the Dynamic Grid with a fixed number of ten 1600MB-RAM 

Node-Docker, to ensure that the Grid is able to process both simple and complex requests.  

On the other hand, the platform suggested by this paper can auto-scale the number of 

pods in the cluster, and by setting a range of resource usage to the pods (for instance 

400MB to 1600MB), the cluster can dynamically allocate the number of pods according 

to the test request’s complexity. When the test requests are mostly simple requests, a 16GB 

machine may hold up to 40 pods, and when the requests are mostly complex, the 16GB 

machine can process 10 pods. The use of Kubernetes orchestration framework allows the 

cluster to have an elastic number of pods according to demand where the Dynamic Grid 

can only have a fixed number of nodes. 

To verify that the platform built upon Kubernetes is more efficient that the Dynamic  
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Grid, an experiment was conducted to compare the total test case execution time between  

Dynamic Grid and the Auto-Scaling Cross-Browser Platform proposed by this study. As 

mentioned in Section 4.1, the worker machines used in this study has a RAM capacity of 

16GB, and according to the estimations made above, where a worst test case would take 

up to 1600MB, only 10 Node-Dockers were deployed on each worker machine. On the 

other hand, the Kubernetes-based Grid has the resource range set to 400MB to 1600MB 

for each pod. Two types of test cases were experimented with both Dynamic Grid and 

Kubernetes-based Grid, the simple test case and the complex test case. The simple case 

only consists of opening a single webpage of ptt, which is a terminal-based bulletin board 

system. On the contrary, a complex test case will open 5 different tabs that navigates 

through shopping websites such as Momo, PChome, eslite, books.com.tw, and Yahoo. 

Since shopping websites has a lot of web elements and consists of a lot of image resources, 

it is considered as a complex webpage.  

100 test cases of both simple and complex test cases are sent to both the Dynamic 

Grid and the Kubernetes-based Grid, and the total test case execution time is observed. 

Each category of experiment is repeated 10 times and the average is calculate and shown 

in Fig. 9. For the simple test cases, the Kubernetes-based Grid is able to process the 100 

requests 50.4% faster than the Dynamic Grid. And for the complex test cases, the Kuber-

netes-based Grid is able to process the 100 requests 57.9% faster than the Dynamic Grid. 

 

 
Fig. 9. Execution time of test cases for Kubernetes-based (this study) and selenium dynamic grid. 

5. CONCLUSION 

Cross-browser testing not only is one of the most common non-functional testing 

methods in the field of software testing, but also the testing method that requires the most 

resource, in terms of devices and time. However, by using the open-source tool, Selenium 

Grid, together with the Kubernetes framework and the KEDA auto-scaler, three problems 

were observed, the Health-Check problem, the Session-Queue problem, and the Cooldown 

problem, which decreased the reliability and the efficiency of the platform. This paper 

suggested solutions to these three problems and conducted experiments to verify the vali-

dity of the improvements, which proved that the improved version of the platform can 

increase the test case success rate up to 2.27 times when decreasing the health-check inter-

val to one second, decrease the test case execution time for 61.5% by adding the Creating-

Session Queue, and avoid the KEDA scaler waiting problem by using ScaledJobs together 
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with the drain method. The study also compared the efficiency of the platform with a si-

milar project, Dynamic Grid, which resulted in the platform suggested by this study being 

54.2% faster when executing test cases in comparison to the Dynamic Grid.  
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