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This paper presents an outlier detection method that is based on a Variable Precision 

Rough Set Model (VPRSM). This method generalizes the standard set inclusion relation, 
which is the foundation of the Rough Sets Basic Model (RSBM). The main contribution 
of this research is an improvement in the quality of detection because this generalization 
allows us to classify when there is some degree of uncertainty. From the proposed meth-
od, a computationally viable algorithm for large volumes of data is also introduced. The 
experiments performed in a real scenario and a comparison of the results with the 
RSBM-based method demonstrate the efficiency of both the method and the algorithm in 
diverse contexts that involve large volumes of data.    
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1. INTRODUCTION 
 

From the perspective of Knowledge Data Discovery and Data-Data Mining (KDD- 
DM), outliers usually represent undesirable objects that must be addressed or eliminated 
in the data preparation phase, to not hinder the detection of reliable patterns. However, 
for some applications, these objects are even more representative and interesting than the 
most common events. Some of these applications would be, for example, credit card 
fraud detection, where outlier detection could provide information for examining pat-
terns of misconduct; or electronic business data analysis, where outlier detection could 
be useful for Customer Relationship Management. 

KDD-DM processes require increasingly effective methods for outlier detection. 
The current data sets include ever more bulky and sophisticated data, representation 
structures, and data storage means. 

After examining the current state of the art [1], it is concluded that the scope of ap-
plication is wide and diverse, where the nature of the data and the spaces in which they 
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are defined acquire very different characteristics. This circumstance has led to the de-
velopment of a variety of detection methods that are appropriate to each problem. The 
challenge is to devise increasingly flexible detection methods that can be valid in differ-
ent environments. 

In this paper, we rely on the non-deterministic nature of VPRSM [2], based on the 
fuzzification of the set inclusion concept, which allows managing certain thresholds that 
are established by the user. From this idea, we propose an extension of the theoretical 
VPRSM to create a new algorithm for outlier detection. This algorithm shows remarkable 
improvements in its capacity for generalization and detection but maintains the levels of 
spatial and temporal complexity that make it viable in practice. 

The remainder of the article is structured as follows: In Section 2, the most signifi-
cant aspects of the state of the art and the background of this proposal are discussed. In 
Section 3, a VPRSM-based theoretical framework is constructed, and an algorithm is 
proposed for outlier detection based on this computationally viable method, which ad-
mits some degree of uncertainty or misclassification. In Section 4, the results are vali-
dated by various experiments that show an improvement in both the quality of detection 
and the computational viability of the algorithm, and in addition, Section 4 presents a 
comparison with other methods. Finally, in Section 5, the main conclusions of the study 
are presented together with future lines of research. 

2. STATE OF THE ART AND BACKGROUND 

The outlier detection problem is currently gaining more and more importance in 
multiple and diverse contexts [3], where some noteworthy examples are credit card or 
cellular phone fraud detection; identification of conflicting users in the assessment of 
bank loan applications; computer network intruder detection; computer network traffic 
monitoring; diagnosis of faults or malfunctions in the operation of motors, generators, 
pipes, and measuring instruments; detection of structural defects; automated control of 
manufacturing lines to detect faulty batches; automated monitoring of medical parame-
ters and the identification of new molecular structures. 

Statistical models were the first to address the outlier detection problem. However, 
current artificial intelligence (AI) techniques are giving better results [4] in environments 
where increasingly large volumes of categorical data must be processed. In [5, 6], and 
[7], an extensive set of outlier detection methods based on different algorithms is de-
scribed. In general, outlier detection algorithms or methods are classified according to 
the technique on which they are based. The most important techniques are based on dis-
tributions, different depth criteria, distances, densities, clustering, neural networks, or 
machine learning. 

By increasing the size of the data set, the effectiveness of certain algorithms can be 
seriously compromised. For example, the concept of distance in a space of different di-
mensions varies. The temporal complexity of most distance-based methods is quadratic, 
which causes an increase in the processing time and a distortion of the processing time 
distribution. In the context of data mining, the distribution of attribute values is almost 
always unknown, which affects those methods that are based on data proximity. By 
greatly increasing the size of the data set, it is very difficult to estimate its multidimen-
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sional distributions [5]. 
In recent years, proposals have emerged from which efficient algorithms can be 

constructed for outlier detection based on Rough Set Theory [8-10]. The use of Rough 
Sets produces new problems such as computational viability, which is why many works 
tackle the question of generating more efficient algorithms [11] exploiting the mathe-
matical qualities of the Rough Sets theory [12, 13]. Some works delve into the structur-
ing of the data and pre-detection processes to optimize the algorithms [14], in the use of 
the knowledge that we have about data to combine rough sets with other methods [15, 16] 
or in the characteristics of the data set to be analyzed [17] and thus make the detection 
more efficient. In other works they talk about achieve an approach to fuzzy logic in 
terms of classification [18] which opens other lines of work to achieve efficient and ef-
fective classification algorithms [19]. 

In [20], an alternative approach to Rough Set Theory is proposed, which constitutes 
a novel approach to the outlier detection problem compared to that based on RSBM. Un-
der this approach, the outliers are defined as elements of non-redundant exceptional 
sets that have a greater degree of marginality than an established threshold. The fun-
damental contribution of RS theory is to facilitate the analysis of the classification. The 
approximation (upper and lower) becomes necessary because of the inability to establish, 
with the available knowledge, a complete classification of objects that belong to a certain 
category [21]. 

With some frequency, the available information allows only a partial classification, 
and RS theory can be used effectively to model this type of classification, but according 
to this theory, this classification must be completely correct or certain [21]. This ar-
rangement limits the possibility of producing a classification result that has a controlled 
degree of uncertainty, in other words, the possibility that there is a certain specific 
amount of error in the classification. This arrangement is not what occurs with RSBM. 
Paradoxically, in practice, and in many cases, it is convenient to admit some degree of 
uncertainty in the classification process, which can allow better understanding and use of 
the properties of the data that is being analyzed. 

Another limitation ascribed to RSBM is that it assumes that the universe U of ob-
jects or data under consideration is known and that all conclusions derived from the ap-
plication of the above-mentioned model are applicable only to that set of objects. How-
ever, in practice, there is a need to generalize the conclusions that are obtained from a 
small set of objects (U) to a larger universe, for example, the real world. RSBM allows us 
to obtain hypotheses based only on error-free classification rules (which are expressed in 
the lower approximation, X) obtained from the analysis of the data involved (U); in other 
words, this model is deterministic. However, there are multiple situations in the real 
world that require accounting for a partially incorrect classification. A partially incorrect 
classification rule also provides useful information. It can establish the trends in the val-
ues if most of the available data to which the rule applies can be classified correctly. 

A generalization of RSBM is VPRSM [2]. This model overcomes the deterministic 
nature (in terms of classification) based on a very simple idea that allows us to manage 
certain thresholds that are established by the user: the fuzzification of set inclusion. 
VPRSM offers the possibility of detecting or establishing this information trend and, 
based on it, performing some analyses on a particular universe of objects or data; in other 
words, it is a statistical model. 
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The main objective of this research is to create a VPRSM-based non-deterministic 
outlier detection method that is computationally viable and that is based on the hypothe-
sis that VPRSM allows us to extend the application of the original RSBM-based method 
[22] to contexts in which there is a need for classification with some degree of uncer-
tainty. 

3. VPRSM-BASED OUTLIER DETECTION PROPOSAL 

3.1 Detection Method based on the Properties of VPRSM 
 
In this section, we will construct the new outlier detection method as we analyze 

and propose the mathematical tools that are needed and that arise from VPRSM. 
It is evident that no classification can be performed based on the definition of a 

standard inclusion relation. The first step to overcome the limitations imposed by RSBM 
is to free ourselves from the need to explicitly define the universal quantifier. The meas-
ure of the degree of misclassification proposed in VPRSM will allow us to do so: the 
measure of the relative degree of misclassification of the set X with respect to set Y, c(X, 
Y). In other words, the relative error present when classifying a set of objects is defined 
as 

1 /     if 0
( , ) .

0                          if 0

X Y X X
c X Y

X

    


 (1) 

This definition is evident because we can observe that 
 

 if XY  |XY| = |X|, then c(X, Y) = 1 – 1/1 = 0  there is no error in the classification; 
 if c(X, Y)  1  X, Y come close to being disjoint sets; and 
 if c(X, Y) = 1  |XY| = 0  X, Y are disjoint. 

 
The numeric expression c(X, Y) is indicative of the relative error of classification. 

The product c(X, Y)*|X| will indicate the absolute classification error, that is, the number 
of misclassified objects. 

If the relative degree of misclassification is taken as the basis measure, then the in-
clusion relation can be redefined, which avoids having an explicit definition of the uni-
versal quantifier, such as: X  Y  c(X, Y) = 0. According to this definition, c(X, Y) can 
take values that are greater than 0 (without being too large) in a case in which the rela-
tionship would represent a majority. In other words, it is necessary that a majority of 
objects in X be classified in Y. It is obvious that the concept of majority requires estab-
lishing a threshold. In such a case, it is assumed that the majority implies that more than 
50% of the elements of X should be common with Y. The definition of the inclusion rela-
tion is redefined by adding the specification of an admissible error limit in the classifica-
tion. 
 
Definition 1: majority inclusion relation: Let U be a finite universe of objects. Let , 0 

  < 0.5, the admissible misclassification error. Let X, YU, X≠, Y≠. We say that X is 
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for the most part included in Y, or that X is included in Y with a -error, XβY, if and 
only if c(X, Y)  . From the same definition, it can be seen that  = 0 expresses a stand-
ard inclusion relation, which is called, in this model, total inclusion. 

Based on this new definition of an inclusion relation, the most representative con-
cepts of RSBM are redefined: 
 
Definition 2: Let X be an arbitrary subset of the universe U. Let UU be an equiva-
lence relation that divides U into a finite set of equivalence classes x. Let us define the 
following: 
 
a) X = {x:xX}, and it is known that xX  c(x, X)  ; 

b)X = {x:xXc}. Therefore, xXcc(x,X) < 1  ; 
c) BN(-boundary region) =X  X; 
d) Bβ(-internal boundary region) = XBN; and 
e) NEG(-negative region) = U X. 

 
RSBM is a specific case of VPRSM: the representative regions of both models cor-

respond to a classification error  = 0. However, these regions vary if a certain classifi-
cation error is allowed. Note also that the -negative region of X is the union of all 
equivalence classes that can be classified within Xc, with an error in the classification no 
greater than . 

Bearing in mind that when  = 0 the standard RS model [23] is a specific case of 
VPRSM, the following proposition is established, whereby other relationships that are 
also fulfilled are expressed. 
 
Proposition: 
a) X  X: lower approximation is a proper subset of the -lower approximation. 
b) X X: -upper approximation is a proper subset of the upper approximation. 
c) BN  BN: the -boundary region is a proper subset of the boundary region. 
d) NEG  NEG: the negative region is a proper subset of the -negative region. 

 
Intuitively, it can be seen how, by decreasing the classification error , the size of 

the positive and negative regions of X decreases while that of the boundary region in-
creases. 

In conclusion, based on the concept of majority inclusion defined in VPRSM, we 
have devised a new outlier detection method that allows performing classifications with 
some degree of error when calculating the significant regions; in other words, it allows 
an almost complete classification. 
 
3.2 Outlier Detection Algorithm 
 

From the method proposed in the previous section, in this section, a new algorithm 
is conceived that improves the quality of detection and provides a greater range of appli-
cation. Likewise, this algorithm maintains the levels of spatial and temporal complexity 
that ensure its viability in real environments in which we must work with large volumes 
of data. 
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To design the new algorithm, we started from the RSBM algorithm, which was al-
ready tested and validated in [13], but we added the admissible -error to the input. 
Therefore, the inputs are the following: the universe U, the dataset X (sub-set of objects 
of the Universe that constitute the study set or interest), the criteria that distinguish the 
equivalence relations R:(ri, 1  i  m) to be accounted for in the analysis, the value of the 
established detection threshold , and the admissible -error in the classification. The 
same data structures as those described for the original algorithm [22], based on RSBM, 
are maintained. 

The fundamental data structure used in the algorithm is that of a dictionary, where a 
dictionary is a set of pairs (key, value), where key is any object to which only one value 
object is associated. In the algorithm, the keys are obtained by applying a classifier to 
any element of the universe. This classifier is associated with a particular equivalence 
relation ri, with 1  i  m, and allows us to classify the members of the equivalence clas-
ses that are defined by the relation. The values that are associated with the keys are lists 
of elements that belong to the equivalence class identified by the key associated with said 
value. A dictionary is built for each equivalence relation, and from all of them, a list of 
dimension m is formed, where m is the number of equivalence relations under considera-
tion. According to the data structures used, it can be said that the spatial complexity of 
the algorithm is O(nm) because each dictionary, at most, can contain all of the elements 
(n) of the universe. 

The algorithm consists of two steps: (1) the formation of -internal boundaries and 
(2) the outlier detection process itself. Next, each of these steps is shown and analyzed 
from its pseudo-code. 
 
Step 1: Formation of -internal boundaries: the classifiers are applied, one for each 
equivalence relation that is accounted for in the analysis, to the elements of U to form the 
-internal boundaries. 

 
Algorithm 1: Pseudo-code of the BUILD_REGIONS algorithm, representing step 1 for the 
formation of the -internal boundaries. 

BUILD_REGIONS (U, X, R, ): B 
1 for each r R 
2   Pr = CLASSIFY-ELEMENTS (U, r) // Pr is the partition induced by the equivalence relation <r> 
3   for each class  Pr  
4       if c(class, X) ≤   
5           Xβ = Xβ  class // By proposition 4a: class β X  class  Xβ 
6       else if c(class, X)  1   
7           NEG = NEG  class // By proposition 4b: class β X  class  NEG 
8       else  
9           B

r  = B
r  (class  X) // By proposition 4c: (class  X)  B

r add the elements of <class>  
// that meet the <dataset X> to the internal boundary relative to <r> 

10 return B  

 
The temporal complexity of this step is O(nmc), where c is the cost of classifying 

each element, n is the cardinality of the universe, and m is the number of equivalence 
relations that are accounted for in the analysis. The cost of classifying each element “c”, is 
constant, since the cost of classifying an element from an equivalence relation is constant.  
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Step 2: Outlier detection process: the set of OUTLIERS that contain all of the elements 
that meet the dataset X and could be outlier candidates is calculated. Of these, all of those 
whose degree of exceptionality is greater than the established detection threshold  are 
classified as such. 

 
Algorithm 2: Pseudo-code of the VPRS_OUTLIER_DETECTION algorithm that im-
plements step 2: outlier detection procedure. 
VPRS_OUTLIER_DETECTION (U, X, R, , ): OUTLIERS 

1 B = BUILD_REGIONS (U, X, R, ) // Step 1 
2 for each r  R // For each equivalence relation <r> 
3     contains Another = FALSE // There is no internal boundary subset of B

r  
4     for each q  R – {r} // For each equivalence relation<q>different from <r> 
5         if B

r  B
r  // If the internal boundary of <q> is a subset of the  

// internal boundary of <r>, then its elements are discarded 
// as members of the set of possible OUTLIERS: E 

6             contains Another = TRUE  
7             break // It is no longer necessary to continue 
8     if not contains Another // If no internal boundary is a subset of the one analyzed,  

// all of the elements of the internal boundary of <r> 
9         E = E  B


r  // members of the set of possible OUTLIERS: E 

10 for each e  E  
11     if EX-DEGREE(e)   // The elements of E above the exceptionality threshold 
12         OUTLIERS = OUTLIERS  {e} // belong to the set of outliers 
13 return OUTLIERS  

 
The temporal complexity of step 2 is O(nm2). When accounting for steps 1 and 2, 

the computational cost of the whole algorithm is O(max(O(step 1), O(step 2))) = O(step 
2) = O(nm2). 

In general, the number of equivalence relations that occur in the analysis, in the vast 
majority of cases, is not very large in relation to the number of data set elements. For this 
reason, the quadratic dependence of the execution time with respect to the number of 
equivalence relations does not affect, to a large extent, the execution time of the algo-
rithm. As will be seen later in the results obtained, this quadratic dependence is almost 
linear for small values (m  20). 

Because the data structures described for the RSBM-based algorithm are maintained, 
the same order O(n*m) is also maintained for the spatial complexity. The method is ap-
plicable to data in the form of a table, with non-redundant data and mono-valued attrib-
utes, and data can be both continuous and categorical. 

4. VALIDATION OF THE RESULTS 

The fundamental objectives of the experiments are (1) to validate the incorporation 
of variable precision into the outlier detection algorithm to improve the results obtained; 
(2) given the large volumes of data used in this type of problem, to verify that the tem-
poral complexity of the algorithm remains linear in practice; and (3) to compare the re-
sults obtained with other methods, algorithms, and strategies. 

To achieve this last objective (3), experiments (1) and (2) were performed using the 
data set provided by the UCI Machine Learning Repository of the Center for Machine 
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Learning and Intelligent Systems of the University of California, Irvine [24], which con-
tains the data extracted from the US Census Bureau Database. This data set has already 
been used in more than 50 different scientific articles and is therefore endorsed as a ref-
erence data set. 

 
4.1 Experiments to Determine the Quality of Detection 

 
The purpose of this test is to demonstrate that the method is valid, to show the vari-

ation in the quantity of detected outliers as the value of the threshold is varied ( and ), 
and to compare the RSBM ( = 0) and VPRSM (  0) algorithms. To demonstrate that the 
method is valid in terms of its detection capacity on real data sets, a set of tests were de-
signed, while defining a dataset X for the data set under study and a series of equivalence 
relations and intentionally introducing a set of outliers. Afterward, we use the proposed 
method to detect outliers and analyze the results. The elements defined are the following: 
 
 Individuals in the data set that were studied are those that met the following criterion: 

DATASET X: 1  subjects_aged  10. 
 The criteria for conducting the analysis were established by the following equivalence 

relationships  
 
r1: defined from the categorical attribute "workclass" 

c1.1: workclass = ['private' OR 'self-emp-not-inc' OR 'self-emp-inc' OR 
'federal-gov local-gov' OR 'state-gov without-pay'] 

c1.2: workclass = ['never-worked'] 
r2: defined from the categorical attribute "education" 

c2.1: education = ['bachelors' OR 'some-college' OR '11th' OR '9th' OR 
'7th-8th' OR '12th' OR '10th' OR 'HS-grad' OR 'prof-school' OR 
'assoc-acdm' OR 'assoc-voc' OR 'masters' OR 'doctorate'] 

c2.2: education = ['preschool' OR '1st-4th' OR '5th-6th'] 
r3: defined from the categorical attribute "marital-status" 

c3.1: marital-status = ['married-civ-spouse' OR 'divorced' OR 'separated' 
OR 'widowed' OR 'married-spouse-absent' OR 'married-AF-spouse'] 

c3.2: marital-status = ['never-married'] 
r4: defined from the categorical attribute "occupation" 

c4.1: occupation = ['tech-support' OR 'craft-repair' OR 'other-service' 
OR 'sales' OR 'exec-managerial' OR 'prof-specialty' OR 'han-
dlers-cleaners' OR 'machine-op-inspct' OR 'adm-clerical' OR 
'farming-fishing' OR 'transport-moving' OR 'priv-house-serv' OR 
'protective-serv' OR 'armed-Forces'] 

c4.2: occupation = ['student'] 

Code 1. Equivalence relationship for analysis of data set. 
 
Therefore, any element that meets the dataset X and belongs to class cx.1 (x = 1, 2, 3, 

4) is contradictory for the relation rx because the individuals under analysis are children 
between 1 and 10 years old. 

A set of 13 outliers with contradictory values in different fields of each record is in-
tentionally introduced in the data set, which were always for children aged 1-10 years. In 
the set of introduced outliers, the level of contradiction of individuals varies. In some 
cases, they are contradictory for one or two attributes, while in others they are contra-
dictory for three or four, and these are precisely the most contradictory elements. 

Table 1 shows the number of detected outliers for different thresholds  (misclassi-
fication error) and  (degree of outlier). The results that correspond to RSBM are exactly 
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those achieved for  = 0. The values set were  = 0.10; 0.20; 0.30; 0.40; 0.50; this ap-
proach establishes admissible error values in the classification and therefore corresponds 
to VPRSM. 

 
Table 1. Basic RS algorithm (RSBM) vs. VPRSM for detecting outliers. 
 RSBM VPRSM 
  = 0  = 0.1  = 0.2  = 0.3  = 0.4  = 0.5 

 = 0.2 24 10 6 6 0 0 
 = 0.4 24 10 3 0 0 0 
 = 0.6 14 4 2 0 0 0 
 = 0.8 9 3 1 0 0 0 
 = 1 9 1 0 0 0 0 

 

When interpreting the results, it should be noted first that in all cases, within the set 
of detected outliers, some of those intentionally introduced into the data set were always 
found. When the number of detected outliers was greater than the number of introduced 
outliers, those detected included all introduced. When the number of detected outliers 
was lower than the number of introduced outliers, then of them, those detected were al-
ways the most contradictory. For example, with  = 0.02 and  = 0.0, 24 outliers were 
detected, and among them were the 13 that were introduced, and with  = 0.6 and  = 
0.2, although only four outliers were detected, two of them belong to the set of the 13 
introduced, especially the two most contradictory because they were so for the four at-
tributes under consideration. 

The interpretation of the tests performed also allows us to draw the following con-
clusions: 

An adequate choice of equivalence relations or classification criteria ensures effec-
tiveness in the detection. 

For small values of the parameters  and , the number of detected outliers is usu-
ally high, and elements that really are not outliers are identified as such. For example, for 
 = 0.2 and  = 0.0, 24 outliers were detected. This finding reaffirms an important aspect 
of the statistical view of the outlier detection problem for identifying a case as excep-
tional: when the candidate observations to be considered as such have been identified by 
some method, the researcher must make an analysis of those results to select those ob-
servations that show a real contradiction with respect to the sample studied. 

By successively increasing the detection threshold (), a refinement of the result is 
achieved. In general, the higher the threshold is, the smaller the number of detected out-
liers. In addition, those that remain are contradictory for a greater number of attributes. 
However, in some cases and for certain variations of the value of , such a refinement is 
not achieved. For example, by varying the value of  from 0.2 to 0.4, with  = 0.0, the 
number of detected outliers is in both cases 24. The same circumstance occurs when  
varies from 0.8 to 1.0, with  = 0.0. In both cases, again, the number of detected outliers 
was nine. Note the value of  = 0.0 in both examples, which implies that no degree of 
misclassification has been allowed. Therefore, the results are referred to as RSBM. Note 
also that by allowing a certain degree of misclassification (values of   0.0) for the same 
variations of the values of  referred to in the previous example, the quantity of detected 
results is different. 
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Fig. 1. (a) Execution time of RSBM vs. VPRSM by varying the number of columns of the data set
and keeping the number of rows and equivalence relationships constant; (b) Execution time of 
RSBM vs. VPRSM by varying the number of equivalence relations and keeping the number of rows
and columns of the data set constant; (c) Execution time of RSBM vs. VPRSM by varying the 
number of rows of the data set and keeping the number of columns and equivalence relations con-
stant. 

Another element to note is that once  reaches the highest possible value ( = 1.0), 
the number of detected outliers is nine. However, again, by making variations in the val-
ue of , a greater detection refinement is achieved, detecting only the most contradictory 
elements. This finding shows that controlled and progressive misclassification () im-
proves the quality of detection. Nevertheless, one should be cautious when varying  
because a high degree of misclassification can imply that all of the elements in the 
boundary pass to the positive or negative regions, leaving the internal boundaries without 
elements. In the tests performed, for example, this arrangement is evident from  = 0.3. 

 
4.2 Experiments to Determine the Viability of the Algorithm 

 
To observe the performance of the algorithm, its behavior is analyzed by varying all 

of the parameters that define the size of the input, that is, the number of rows and col-
umns of the data set and the number of equivalence relationships that are accounted for 
in the analysis. To contextualize the results, the results are compared with the RSBM 
algorithm. 

Fig. 1 (a) shows the execution of the algorithm when the number of equivalence re-
lations (5 relationships) and the number of rows of the data set (30,000 rows) are con-
stant and the number of columns in the data set to process is varied (from 5 to 14 col-
umns). Fig. 1 (b) shows the same experiment but keeping the number of rows (30,000 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Legend: 

RSBM  

VPRSM 
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records) and columns (14 columns) of the data set constant and varying the number of 
equivalence relations (from 2 to 14 relationships). It can be observed that the cost is al-
most linear. Finally, in Fig. 1 (c), the experiment was performed while keeping the num-
ber of columns of the data set (14 columns) and the number of equivalence relations (5 
equivalence relations) constant and varying the cardinality of the data set from 5,000 to 
30,000 rows. 

The results confirm that the levels of temporal complexity in the execution corre-
spond to those of the algorithm that were justified from a theoretical point of view. The 
results also show that level constants are reasonable, which allows the algorithm to be 
used with realistic data sets. Finally, the execution times for both versions of the algo-
rithm, RSBM and VPRSM, do not differ significantly, and thus, the new capacity of vari-
able precision can be incorporated into the basic classification system. 

 
4.3 Comparison with Other Outlier Detection Algorithms 

 
Most state-of-the-art techniques and algorithms for detecting outliers are conceived, 

to a greater or lesser extent, to solve a certain type of problem, even for a specific case. It 
is difficult to make valid comparisons between these algorithms because they will de-
pend strongly on what the user is looking for. However, it would be interesting to con-
duct a comparative study of the different existing methods involving the advantages pre-
sented by the current proposal in the area in which it is useful  to provide, in an unsu-
pervised manner, general results with respect to all the elements of the universe of the 
data, by determining some initial conditions: dataset X and equivalence relations. When 
accounting for these concerns, Table 2 details how the created algorithm can overcome 
the limitations of the methods studied when generalization is required. 

 

Table 2. Characteristics of the proposed method against the limitations of conventional 
methods. 
Against STATISTICAL METHODS and DISTANCE-BASED METHODS 
 Applicability to data sets with a mix of continuous and discrete attributes. In some 

cases equivalence relations are useful to discretize continuous data [25]. 
 It is not necessary to know the data distribution nor establish a distance criterion on them. 
 The problem of temporal complexity, quadratic order, which most distance-based 

methods present, is solved. 
 The dimensionality and size of the data set is not a limitation for the algorithm’s exe-

cution. 
Against DENSITY and DEPTH-BASED METHODS 
 It is not necessary to establish criteria on the density of the data in the data set. 
 The dimensionality of the data set is not a limitation for the algorithm’s execution. 
 It is not necessary to perform previous calculations that consume a large amount of 

time, such as the calculation of the convex envelope, which is necessary in most 
depth-based methods. 

 RSBM allow obtaining the results in an unsupervised way, without the need for the 
user to establish, as a step prior to their execution, the value of certain parameters that 
are involved in the analysis, which is necessary in density-based methods such as 
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DBSCAN. 
 RSBM and VPRSM represent improvements in terms of the temporal complexity com- 

pared to depth-based methods. 
Against NEURAL NETWORK BASED METHODS  
 It is not necessary to establish previous processes that consume a large amount of 

time, such as training the network, which is necessary in some neural network models 
to ensure their learning. 

 The dimensionality of the data set is not a limitation for the algorithm’s execution. 
 Algorithm functionality does not depend on data density criteria, as is required in 

some supervised models. 
 It is not necessary to model the data distribution, as required in some supervised mod-

els. 
 Some approaches based on supervised networks establish the use of thresholds for 

various purposes in the outlier detection process. This concern is resolved from the 
conception of the RSBM algorithm. 

 
The great advantage of the proposed VPRS_OUTLIER_DETECTION algorithm is 

its generalist nature. Of course, an algorithm that is specifically designed to detect a spe-
cific type of outlier is usually better, both in the quality of detection and in the spatial 
and temporal complexity. However, having a generic algorithm that is capable of ad-
dressing different types of problems and different types of data and capable of behaving 
reasonably with large volumes of data is a very interesting option that avoids having to 
design different algorithms each time that we face new problems or when the conditions 
of the problems that are already solved change. 

5. CONCLUSIONS 
 
The results obtained from the tests performed show that the proposed VPRSM-based 

algorithm eliminates the deterministic character, in terms of classification, which limits 
the RSBM-based algorithm. This improvement results in greater detection accuracy, 
identifying only the most contradictory elements as outliers. 

Additionally, the VPRSM-based algorithm achieves this improvement while main-
taining the same level of temporal and spatial complexity of the RSBM-based algorithm. 
As has been demonstrated, our method provides a computationally efficient solution, 
offering the possibility of using quasi-linear algorithms, which is an advantage over the 
usually high procedural complexity in the field of KDD-DM and the enormous volume 
of the data sets. 

In the medium term, our research is aimed at the creation of a tool that allows us to 
predict probabilistically the condition of the outliers for all of the elements of a given 
data set, while this prediction is computationally viable. To achieve this goal, we are 
working on the creation of an algorithm that is capable of automatically calculating the 
thresholds  and , which are involved in the proposed method (currently, they must be 
defined by the user). From this algorithm, our research will focus on the creation of a 
new method to determine the set of threshold values under which a certain element of a 
data set would be an outlier. 
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