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Scientists often study physical phenomena using computer simulation models. The 

same simulation can generate different datasets because of different input parameter con-

figurations or internal random variables. Therefore, each grid point is represented by mul-

tiple data values from simulation runs, and we call this type of data ensemble dataset. To 

gain insight into the physical phenomenon, scientists often have to visualize and analyze 

the ensemble datasets with uncertainty. Distribution-based data representation is a popular 

approach to handling the ensemble dataset and supporting uncertainty visualization. How-

ever, storing a time-varying ensemble dataset needs hundreds or even thousands of times 

storage size. Given the size of the time-varying ensemble dataset, it is natural to develop 

storage-reduced data representation to facilitate the time-varying ensemble data explora-

tion. We propose a novel data representation to compactly represent the time-varying sci-

entific data for uncertainty visualization and analysis. Our approach decouples data on the 

temporal domain into two types of distributions and stores. One distribution summarizes 

the data values on the temporal domain, and the other distribution describes the occurrence 

probability of a data value on the temporal domain. Our approach can provide time-varying 

ensemble scientific data analysis with uncertainty quantification and detailed temporal fea-

ture evolution with less storage requirement.     

 

Keywords: data reduction, ensemble data, large-scale data, probability distribution, statis-

tical modeling 

 

 

1. INTRODUCTION 
 

Scientists often study physical phenomena using computer simulation models, which 

are usually affected by initial configurations and internal random variables. Therefore, a 

single simulation run is insufficient for scientists to study the inherent uncertainty and 

deeply understand the physical phenomenon. Scientists usually have to change the initial 

configurations to run the simulation and generate data for the same experiment. The col-

lection of the data from simulation runs is called ensemble dataset. In an ensemble dataset, 

each data point is represented by multiple data values from simulation runs. Therefore, the 

dataset size is much larger than a regular scientific dataset. To handle the large ensemble 

dataset and efficiently analyze and visualize the data with the uncertainty inherent in the 

simulation, a common practice is to represent each data point by a probability density func-

tion and store the function by a compact distribution representation, such as a histogram 
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or a Gaussian Mixture Model (GMM). The distribution representation can summarize data 

values at a data point and reduce the storage requirement to facilitate the data analysis 

pipeline. Many uncertainty analysis and visualization works [1-4] have been done based 

on the distribution data representations. 

With the advance of supercomputers, simulations can produce time-varying ensemble 

datasets with hundreds or even thousands of time steps nowadays. Although the distribu-

tion representation can compactly represent the ensemble dataset for data analysis, storing 

a time-varying ensemble dataset needs hundreds or even thousands of times the storage 

size. Given the size of the time-varying ensemble dataset, it is natural to develop storage-

reduced data representation to facilitate the time-varying ensemble data exploration. One 

common practice to handle time-varying scientific data is to reduce the sampling rate in 

the temporal domain [5-7]. However, scientists may lose track of the feature evolution 

between two sampled time steps. Lossy compression [8-10] is another choice to handle the 

large-scale dataset, but it may introduce unacceptable data quality when high compression 

is required. 

This work proposes a compact distribution-based representation to facilitate the un-

certainty analysis and visualization of time-varying ensemble data. The main idea is to 

transform the probability density functions into a few distributions with a better tradeoff 

between storage cost and representation accuracy. At a spatial grid point, we transform 

adjacent probability density functions in the temporal domain into one numerical distribu-

tion and multiple temporal distributions. The numerical distribution summarizes the prob-

ability density functions at the grid point, and each temporal distribution describes the oc-

currence probability of a data value interval over the temporal domain. Because data sam-

ples with similar values usually concentrate at neighboring time steps instead of randomly 

spread over the temporal domain, the temporal distribution can be well represented by a 

Gaussian Mixture Model (GMM), a parametric model that costs less storage space. In ad-

dition, we also utilize spatial coherence to reduce our representation’s storage cost further. 

The temporal distributions in the neighboring spatial region are often similar. We use the 

SLIC-based algorithm [11] to efficiently identify similar temporal distributions that can be 

represented by one represented temporal distribution without scarifying too much quality. 

When analyzing and visualizing the dataset, the probability density function at any given 

grid point and time step can be reconstructed by Bayes’ rule. We show that our data rep-

resentation can represent the time-varying ensemble dataset with a better tradeoff between 

the storage cost and representation quality than alternatives. 

This paper is organized as follows. We review and discuss related works in Section 

2. In Section 3, we provide an overview of the background and our approach. Section 4 

and Section 5 introduce our data representation and data reconstruction process in detail, 

respectively. Sections 6 and 7 quantitatively and qualitatively compare our approach with 

alternatives. In Section 8, we report the timing of our approach and discuss the influence 

of hyperparameters in our approach. Section 9 concludes this paper and discusses future 

works. 

2. RELATED WORKS 

Large-scale Data Representation: Due to the storage limitation, raw data of largescale 

simulations are challenging to preserve. Sub-sampling is a popular method to reduce the 

data size by selecting a subset from raw data. In addition to the simple sub-sampling 
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method, importance sampling is also another popular method, such as saving critical time 

steps or some locations with drastic changes [12-14]. However, the inevitable information 

loss will damage the data analysis quality. Another common way to get a high data com-

pression ratio is to use lossy compression techniques. Di et al. [8] propose an error-

bounded data compression method that allows the user to specify an absolute or relative 

error tolerance. A high compression rate from the lossy compression approach usually re-

sults in an unacceptable data loss. O’Leary et al. [15] proposed an image-based system that 

directly renders images of data in situ to greatly reduce the disk I/O time to facilitate large-

scale data visualization. He et al. [16] proposed a GAN-based framework to synthesize the 

isosurface images or volume rendering images of any given rendering, view, and simula-

tion parameters. Chen et al. [17] can improve the pathline visualization from the downsam-

pling data by integrating the error quantification into the pathline computation pipeline. Li 

et al. [18] surveyed compact data representation techniques for scientific datasets and cat-

egorized the techniques by use cases. 

 

Distribution-based Data Representation: In visualization applications, distribution-bas-

ed data representations can not only reduce the data size but also provide the potential for 

uncertainty estimation. Therefore, statistic-based presentation for scientific data has been 

the favored approach in the past few years. Thompson et al. [2] use a histogram to encode 

the distribution of values in each local block. Lee et al. [19] utilize integral histograms, an 

extension of the summed-area tables, and discrete wavelet transform. Wang et al. [20] 

divide the space into blocks and use the spatial Gaussian mixture model to represent the 

data of a block. Wang et al. [21] use the probability distribution model to cut the data on a 

camera ray into several segments, and each part uses a probability distribution model to 

represent the data and then reconstruct the information for data visualization. Li et al. [22] 

proposed an adaptive space subdivision approach to represent dark matter particles within 

each subregion dataset by GMM. Hazarika et al. [23] utilized the copula-based function to 

compactly represent the multi-variant scientific dataset for posthoc data analysis and vis-

ualization. Yang et al. used [24] data-parallel primitives to develop the efficient distribu-

tion-based scientific data modeling algorithms based on VTK-m [25] library to facilitate 

the large-scale scientific data processing pipeline. Dutta et al. [26] computed the statistical 

values of subblocks in situ to compactly represent the jet engine simulation data for engine 

stall detection. Those approaches can achieve a reasonable storage space reduction rate but 

are not focused on ensemble data sets. 

 

Visualization and Analysis Techniques for Ensemble Data: This paragraph discusses 

visualization and analysis techniques associated with ensemble data. Thompson et al. [2] 

use histograms to summarize values of the data points and visualize the uncertainty in the 

ensemble dataset. Hazarika et al. [27] use the Gaussian copula to preserve the correlation 

between each grid. Their approach can use different distribution representations to flexibly 

represent each grid’s distribution and enable uncertainty visualization. Liu et al. [1] use a 

Gaussian Mixture Model to represent data values on a voxel to produce a compact ensem-

ble data representation. They repeatedly resample values from the GMMs of grid points to 

render consecutive images to show the uncertainty of the data by the color variable on a 

pixel. Wang et al. [28] use parallel coordinates plots to help the user explore and analyze 

ensemble data in different resolutions. Sanya et al. [29] proposed a software tool called 
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Noodles to enhance the spaghetti plot for weather ensemble dataset understanding. Sun et 

al. [30] proposed a deep-learning-based visual analysis system. The system not only uses 

an artificial neural network to learn the behavior of a cosmology simulation but also builds 

a visual system based on the knowledge learned from the machine learning model to guide 

users in identifying critical ensemble members. Ovis was created by Höllt et al. [31] for 

visualization of ensemble simulations of sea surface heights for ocean forecasting. Wang 

et al. [32] collected ensemble visualization work from the past decade and categorized 

ensemble visualization techniques. However, the above works focus on the efficient 

presentation of ensemble datasets instead of dealing with the large-scale data problem of 

the time-varying ensemble dataset. 

 
3. OVERVIEW 

An ensemble dataset is the collection of the simulation outputs from multiple simula-

tion runs, and each simulation run has slightly different simulation initial conditions or 

random parameter settings. Each output from a simulation run is called an ensemble mem-

ber. Fig. 1 shows a time-varying ensemble dataset with M ensemble members. To visualize 

and analyze the uncertainty inherent in the computer simulation, modeling the data values 

at the same grid point and time step as a probability density function (PDF) [1, 2] is a 

popular choice because this approach can preserve the statistical characteristic and reduce 

the memory footprint. Fig. 1 also illustrates this representation. Different distribution rep-

resentations can be chosen to represent the PDF according to its complexity. If the com-

plexity is low, a single Gaussian could be sufficient. Gaussian Mixture Model (GMM) 

could be a choice if the PDF is a multi-model distribution. Histogram is usually used to 

represent the most complex PDF. 

 

 
Fig. 1. Illustration of time-varying an ensemble dataset. In this example, the dataset has N time steps 

and consists of M ensemble members. 

 

The main purpose of our representation is to compactly represent the probability den-

sity functions (PDFs) from the ensemble datasets to support the uncertainty visualization 

and analysis for the time-varying ensemble dataset. Fig. 2 shows the overview of our 

method. Our method consists of two main stages, data modeling, and PDF estimation. Data 

modeling transforms a time-varying ensemble dataset to our compact data representation 

that consists of numerical and temporal distributions. The PDF estimation stage calculates 

the PDFs from our data representation at all grid points and an arbitrary time step for un-

certainty visualization and analysis. 
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Fig. 2. Overview of our approach. In data modeling (the left part), we collect all data values at the 

same grid point over time to calculate a numerical distribution and multiple temporal distributions 

for the grid point. When visualizing and analyzing the uncertainty of the dataset, the PDF at a time 

step can be calculated by combining the distributions using Bayes’ rule. 

 

4. DATA MODELING 

 
In this section, we will introduce the data modeling process. Our data representation 

aims to decompose the PDFs at the same grid point over the temporal domain into one 

numerical distribution and multiple temporal distributions. After the decomposition, the 

data can be stored by a more compact distribution representation. We collect all the sam-

ples for each grid point over the temporal domain to compute a numerical distribution 

represented by a histogram. We also compute a temporal GMM for each bin of the numer-

ical distribution. A temporal GMM stores the occurrence probability over the temporal 

domain for the value interval of the corresponding bin. Fig. 3 shows the overview of the 

data modeling process. 

4.1 Numerical Distribution 

For each grid point and a temporal interval, we use a histogram to summarize all data 

values from all ensemble members, as shown in Fig. 3. A histogram has B bins, and the 

user specifies the number of bins. The histogram bins equally subdivide the data value 

range into B intervals. If B is the total number of samples in bini and Q is the total number 

of samples at the grid point, B/Q is the probability of bini in the numerical distribution. 

Although the histogram is compact and summarizes all data values from time steps, the 

histogram lacks temporal information of the data samples. When visualizing and analyzing 

the uncertainty, the accurate PDF at arbitrary time steps is not available. Therefore, we will 

also compute the temporal distribution for each bin that stores the occurrence probability 

of the data samples within the value interval of the bin. 

4.2 Temporal Distribution 

The temporal distribution represents the occurrence probability of data samples 

within the value interval of a bin in the numerical distribution. Therefore, any bin with 

non-zero probability must have a temporal distribution. In our work, we use a Gaussian 

Mixture Model (GMM) to represent a temporal distribution, and we call it temporal GMM. 
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Fig. 3. This figure illustrates our data representation for the data values at a grid point and in a tem-

poral interval; The red line on the left-hand side shows the data at a grid point and in a temporal 

interval. The top middle figure shows the numerical distribution of the data on the red line; The red 

box at the bottom middle figure shows the time stamps of data samples on the red line whose data 

values are within the value interval of Bin1; These time stamps are used to compute the temporal 

distribution for the bin Bin1 in the numerical distribution. 

 

The Gaussian mixture model is widely used because it can adapt to the different complex-

ity of the distribution and well represent the distributions by adjusting the number of 

Gaussian components. In addition, each Gaussian component is a parameter distribution 

representation, and it is compact because each Gaussian component only stores a weight, 

mean, and standard deviation. Eq. (1) shows the temporal GMM of a bin. 

1

( ) * ( | , )
i

k

b j j j

j

TGmm t w t u 
=

=     (1) 

TGmmbi(t) represents the temporal Gaussian Mixture Model of histogram bin bi. The 

domain of the temporal GMM is the time steps. TGmmbi(t) is the occurrence probability of 

data samples within the data interval of bin bi at time step t. K is the number of Gaussian 

components, wj, uj and j are the weight, mean, and standard deviation in the Gaussian Mix- 

ture Model, (t | uj, j) is the probability density at time step t of the Gaussian distribution. 

To compute a temporal GMM for a bin of the numerical distribution, we first collect 

all time stamps of the data samples within the value interval of the bin. To model a GMM, 

Expectation-Maximization (EM) is a popular algorithm. The EM algorithm takes the time 

stamps as the input and estimates the weights, means, and standard deviations of Gaussian 

components of the temporal GMM. The middle figure of Fig. 3 is an example. The data 

samples’ time stamps of numerical distribution’s Bin1 are collected, and the EM algorithm 

computes the corresponding temporal GMM. 

4.3 Temporal Distribution Sharing 

To further reduce the storage costs, we propose a method to identify similar temporal 

distributions and only store one distribution to represent all of them. This task is a clus-

tering problem to identify similar temporal distributions and use one distribution in a clus-

ter to represent the cluster. However, clustering temporal distributions from all bins and 
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all grid points is time-consuming and impractical because the number of temporal distri-

butions is enormous. 

In order to efficiently identify temporal distribution clusters, we utilize spatial coher-

ence in the scientific dataset. In the scientific dataset, the data does not often change dra-

matically in a local region. Two temporal distributions in a local region have a higher 

chance of being similar enough to be represented by one temporal distribution without 

damaging the representation quality too much. Therefore, we use the SLIC-based [11] al-

gorithm to identify the temporal distribution clusters. SLIC is a limited region K-means 

clustering algorithm that considers the spatial proximity to search similar samples. The 

limited region search can utilize the scientific data property to significantly reduce the 

computation for finding similar temporal distribution. 

To use the SLIC-based algorithm, we have to define the “position” of a temporal dis-

tribution for the SLIC-based algorithm to estimate the spatial proximity between two tem-

poral distributions. In our scenario, if the temporal distributions with both similar spatial 

locations and corresponding bin IDs, they will have a higher chance of being similar. 

Therefore, the “position” of a temporal distribution for the SLIC-based algorithm is de-

fined in an s+1 dimensional space where s is the dimensionality of the dataset’s spatial 

space and the extra one is the bin ID. We call the s+1 dimensional space “Grid-Bin” space. 

For example, if the dataset is a 3D dataset, the position of a temporal distribution for the 

SLIC-based algorithm is a point in the Grid-Bin space, and the point should be a 4D point, 

(x, y, z, b), where b is the bin ID. The steps of our SLIC-based algorithm are outlined below. 

Step 1: Initialization: For a dataset, we have GB temporal distributions for a dataset, 

where G is the number of the grid point of the dataset and B is the bin count of a histogram. 

In the initialization step, we will subdivide the Grid-Bin space of the dataset into sub-

blocks. First, we create P partitions by regularly dividing the spatial domain. We also sub-

divide the bin dimension into l blocks. Therefore, we can create a Pl nonoverlapping 

Grid-Bin sub-blocks and temporal distributions in a sub-block belonging to the same initial 

cluster. Therefore, we initially have Pl clusters, and each cluster has G/P C temporal dis-

tribution, where C = B/l. We set the temporal distribution at the center of a Grid-Bin sub-

block to be the center temporal distribution of the cluster. Fig. 4 shows the initialization step. 

 

 
(a) (b) 

 Fig. 4. The Fig. shows the initialization step of our SLIC-based methods for an ensemble dataset 

with 2D spatial space and 1 histogram bin space; (a) illustrates the Grid-Bin space; (b) The 2D spatial 

space is divided into P = 4 sub-regions, and the bin space is divided into l = 2 regions. The corre-

sponding temporal distributions of the red bins are the initial center of clusters. 
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Step 2: Assignment: In the second stage, our SLIC-based algorithm will assign a new 

center to each temporal distribution based on the similarity between temporal distributions 

to centers. However, our SLIC-based algorithm does not compute the similarity between 

all temporal distributions and centers. As shown in Fig. 5, a cluster center only computes 

the similarity with the temporal distributions within a local Grid-Bin region whose length 

of each dimension is twice longer than the Grid-Bin sub-block used in the initialization 

step. Earth Mover’s Distance (EMD) [33] defines the similarity between two temporal 

distributions, a popular metric for measuring the distance between two probability distri-

butions. If the EMD distance between a temporal distribution and the most similar cluster 

center is smaller than a given threshold, the temporal distribution is assigned to the cluster. 

If the EMD distance between a temporal distribution and the most similar cluster center is 

not smaller than a given threshold, the temporal distribution creates a new cluster, and the 

temporal distribution is the only member in this new cluster. After the similarity computa-

tion and the new cluster center assignment, we have to update the cluster center of each 

cluster. We first compute each cluster’s average position in the Grid-Bin space. However, 

the temporal distribution at the average position may not belong to this cluster. We will 

find and assign the temporal distribution closest to the average position to be the new clus-

ter center. We will iteratively run the above cluster assignment and cluster center updating 

steps until the number of iterations meets the user-given upper bound or the cluster centers 

become stable. 

 

 
Fig. 5. The figure illustrates the SLIC-based algorithm search area to update the cluster center for a 

temporal distribution; The red point in the left figure shows a spatial point with at least one cluster 

center, and the red box shows the search area in the spatial space; The bottom left figure is an example 

that shows two cluster centers (blue and green bars) on the bin index domain, and the dotted boxes 

show the corresponding search region in the bin index domain. 

 

Step 3: Represented Temporal GMM Creation: After the second step, we assign each 

bin to a cluster and each cluster is represented by the temporal GMM of the cluster center. 

Because we have a user-defined EMD threshold in the SLIC-based algorithm, the error 

between the actual temporal distribution and the temporal distribution of the corresponding 
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cluster center must be bounded by the threshold. We only compute and store the temporal 

GMMs at the centers of clusters and store a pointer for each bin to indicate the represented 

temporal GMM. In this way, we can significantly reduce the storage space cost of temporal 

information. 

4.4 Data Structure 

Fig. 6 illustrates the data structure of our data representation. The data structure has 

two parts. One is bin information of the numerical distributions of all grid points (the blue 

block of Fig. 6). The information of every bin consists of two parts, one is the probability 

of the bin of the numerical distribution, and the other one is a pointer (model label) that 

points to the corresponding represented temporal distribution. Note that we use the sparse 

representation to store the bin information. If the probability of a bin is zero, we do not 

store the probability and the model label. The second part is the array of temporal GMMs 

(gray block of Fig. 6). Only the represented temporal GMMs computed from the SLIC-

based algorithm are stored in this array. Each GMM stores weights, means, and standard 

deviations of the k Gaussian components. To access the corresponding temporal GMM of 

a bin of a grid point, we first get the “model label” of the bin and access the corresponding 

temporal GMM from the temporal GMMs array. 

 
 

 
Fig. 6. Data structure of our data representation; There are two parts of our data structure, bin infor-

mation, and temporal GMMs. 

 

5. DATA RECONSTRUCTION 

 
To visualize and analyze the uncertainty of the data, a basic operation is to access the 

PDF at any given time step and grid point. In Section 4.4, we have introduced the data 

structure of our data representation and how to access the represented temporal GMM of 
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a given bin of a numerical distribution. This section will introduce how to compute a PDF 

at a given time step from the given numerical distribution and the corresponding temporal 

distributions. 

5.1 PDF Computation by Bayes’ Rule 
 

The main purpose of data reconstruction is to compute the PDF at a given time step. 

We develop our data reconstruction method by Bayes’ rule. The Bayes’ rule is a wellk-

nown theorem and it can combine the prior probability and evidence to compute the pos-

terior probability. By analogy with our PDF computation, the posterior probability is the 

PDF at a time step, the prior probability comes from the numerical distribution, and the 

evidence is the probability at the time step from the temporal distribution. We can use 

Equation 2 to compute the probability of bin bi of the PDF at time step t. 

( | ) ( )
( | )

( )

T i i
i

T

f t I b P I b
P I b T t

f t

= =
= = =     (2) 

1

0

( ) ( | ) ( )
B

T T n n

n

f t f t I b P I b
−

=

= = =     (3) 

where P(I = bi | T = t) is the reconstructed probability of bin bi of the PDF at the specified 

time t, fT(t|I = bi) is the probability at time step t computed from the temporal GMM of bin 

bi, and P(I = bi) is the probability of bin bi of the numerical distribution. fT(t) in Equation 

3 is the normalization factor for P(I = bi | T = t) to ensure the sum of the reconstructed PDF 

is one. 

 
6. QUANTITATIVE EVALUATION 

In this section, we use three datasets to show the storage cost and quality of our rep-

resentation. The experiments are carried out on a computer with two Intel®  Xeon®  Plati-

num 8280L 28 Cores 2.7GHz with 90GB memory. The following is a short introduction 

to the three datasets. The first one is a 2D Global Climate Forecast ensemble dataset from 

the Research Center of Environmental Changes. The spatial resolution of the dataset is 160 

320 and the temporal resolution of the dataset is 150 time steps. The second dataset is the 

dark matter density field of a cosmology ensemble dataset [34]. The spatial resolution of 

the data is 323 and the temporal resolution is 200 time steps. The third dataset is a Red Sea 

salinity ensemble dataset from the IEEE Visualization 2020 competition. The spatial res-

olution is 2520120 and the temporal resolution is 60 time steps. Note that our work 

focuses on supporting the tasks of visualizing and analyzing the uncertainty in ensemble 

datasets, so the ground truth in the experiment is the data representation that represents the 

data values at each grid point by a histogram with 128 bins. 

6.2 Reconstruction Quality 

We compare our data representation with histogram interpolation [35], and SZ [8], 

ZFP [10] and FPZIP [9] lossy compression approaches. The histogram interpolation only 

stores histograms of grid points at the sampled time steps. The histograms at non-sampled 
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time steps are computed from the histogram interpolation approach proposed by [35]. SZ, 

ZFP and FPZIP are popular lossy compression approaches for scientific datasets. These 

compression approaches compress the ground truth histograms of all time steps. We also 

compare our data representation with that without the temporal distribution sharing ap-

proach. To quantitatively evaluate the PDF estimation accuracy at a given grid point and a 

given time step, we use Root Mean Square Error (RMSE) as the metric. 

1 2

0
( ( )) ( ))

( , )

B

t i t ii

t t

P b x b
RMSE P x

B

−

=
−

=


    (4) 

where the variable t is a given time step, ℓ is a given grid point, Pℓ is the reconstructed PDF 

at grid point p and time step t, and xi
ℓ is the ground truth PDF at the grid pint p and the time 

step t. The RMSE of a time step is calculated by averaging the RMSE values from all grid 

points. A lower RMSE represents the reconstructed data is closer to the ground truth. 

Fig. 7 shows the tradeoff between the representation quality and the storage cost 

among our approach and the alternatives. We control the number of Gaussian components 

to generate the lines for our approach with and without temporal GMM sharing. The line 

of the histogram interpolation is generated by controlling the number of stored time steps. 

For the SZ compression approach, we control the error bound to plot the line. However, 

the RMSE and storage change dramatically when we change the error-bound a little bit 

when a high compression rate is required. Therefore, we only generate two points and 

connect them by a dotted line, and only one point from SZ is shown to make sure the fig-

ures’ scale is proper for comparison. For the FPZIP and ZFP compression approaches, we 

control the precision and rate to plot the lines, respectively. In Nyx dataset, the ZFP’s 

RMSE values decrease when the compress rates are higher. We think that is because the 

grid does not change dramatically and compressed data happened close to the original data 

values. 

In Fig. 7, a lower curve indicates a better trade-off between the representation quality 

and storage cost. The figures show that the trade-off of our approach outperforms the his-

togram representation with interpolation, and SZ, ZFP and FPZIP compression approaches 

across all three test datasets. In addition, Fig. 7 also shows that our approach significantly 

improves the trade-off when the temporal GMM sharing approach is used. 

 

 
(a) Global climate (b) Nyx (c) Red sea 

Fig. 7. The trade-off between RMSE and storage cost when comparing our approach using different 

Gaussian components with SZ compression, ZFP compression, FPZIP compression, and histogram 

interpolation. The size of the point represents the number of components of our method from small 

to large is 1, 3, 5, and 7. 
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     (a) Global climate (b) Nyx (c) Red sea 

Fig. 8. Quantitative evaluation of our approach, histogram interpolation, SZ lossy compression, Zfp 

lossy compression and Fpzip lossy compression by Root Mean Square Error. 

 

Fig. 8 shows the RMSE at each time step to evaluate the reconstruction quality of our 

method with histogram interpolation and SZ lossy compression. We adjust the storage cost 

of our approach to be close to or even less than the other approaches. The figure shows 

that the reconstruction quality of our approach is better than lossy compression approaches 

at all time steps. The Histogram interpolation approach applied on Nyx has a lower error 

for some time steps. The reason is that the value range of Nyx is very large, which causes 

the values to be concentrated in specific bins and the data changes in the initial time step 

are small, so there are relatively low errors in some time steps. However, the reconstruction 

quality of our approach has a lower error at most time steps. 

 

   
 (a) Ground truth (359.47MB)       (b) SZ (39.05MB)        (c) Interpolation (35.97MB) 

   
(d) FPZIP (19.73MB)           (e) ZFP (60.80MB)       (f) Our approach (19.75 MB) 

Fig. 9. Uncertain isosurface (isovalue = 290) of the Global Climate dataset; (a) is the true isosurface 

from the raw data; (b) is the result of SZ compression with a high compression ratio; (c) is the result 

of the histogram interpolation method; The temporal sampling interval is 10 time steps; (d) is FPZIP 

compression and the precision is 8; (e) is ZFP compression and the rate is 0.5; (f) is our approach 

with 7 Gaussian components of the temporal GMM and the number of consecutive time steps is 50. 

 

7. QUALITATIVE EVALUATION 
 

In this section, we use two visualization techniques, uncertainty isosurface and re-

sampling volume rendering to qualitatively compare the visualization results from our data 

representation and other alternatives. Uncertain isosurface computes level crossing proba-

bility field [36] to show the occurrence likelihood of a given isovalue. The resampling 

volume rendering [1] repeatedly generates a scalar field by resampling from the distribu-

tions on grid points and rendering the scalar field. The process can generate an animation 
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that consists of the volume rendering images and the pixels with higher color variation 

indicates a higher uncertainty. In this section, we show one image frame from the anima-

tion. The number of consecutive time steps used to build one independent data representa-

tion in this experiment is 50, 50, and 60 for Global Climate, Nyx, and the Red Sea datasets, 

respectively. The number of Gaussian components for the Global Climate, Nyx, and Red 

Sea datasets is 7, 3, and 5, respectively. We will let the data size of the histogram interpo-

lation and SZ, ZFP and FPZIP compression approaches be as close as possible to our data 

representation. We control their sizes by adjusting the temporal sampling rate for the his-

togram interpolation approach, error-bound for SZ compression, precision for FPZIP com-

pression, and rate for ZFP compression, respectively. 

 

   
(a) Ground truth (173.37MB)              (b) SZ (11.23MB)               (c) Interpolation (9.56MB) 

   

(d) FPZIP (24.07MB)           (e) ZFP (51.20MB)            (f) Our approach (8.55MB) 

Fig. 10. Uncertain isosurface (isovalue = 1010) of the Nyx density dataset; (a) is the true isosurface 

from the raw data; (b) is the result of SZ compression with a high compression ratio; it shows a lot 

of artifacts; (c) is the result of the histogram interpolation method. The temporal sampling interval 

is 20 time steps; (d) is FPZIP compression and the precision is 8; (e) is ZFP compression and the rate 

is 0.5; (f) is our approach with 3 Gaussian components of the temporal GMM and the number of 

consecutive time steps is 50. 

7.1 Uncertain Isosurface 

We use the level-crossing probability [36] to compute the uncertain isosurface for 

ensemble datasets. It computes the probability of a given isovalue passing through the cells 

and renders the probability field. Eq. (5) shows the formula to compute the probability at 

a cell. 

 
7 7

0 0

( ) 1 ( ) ( )
k k

c

crossing l l
c

k k

p c P v dv P v dv


−
= =

= − −    (5) 

where c is an isovalue a pl is the PDF for the data values at the grid point, and Pl0 ... Pl7 

represent eight grid points of a cell. 
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(a) Ground truth (359.47MB)          (b) SZ (39.05MB)              (c) Interpolation (35.97MB) 
Fig. 12. Visual comparison of resampling volume rendering in Global climate dataset at time step 

144; (a) is the ground truth image from the raw data; (b) is the result of SZ compression with a high 

compression ratio; (c) is the result of the histogram interpolation method. 

                 
(a) Ground truth (777.19MB) (b) SZ (38.62MB)     (c) Interpolation (38.52MB) 

                 
(d) FPZIP (36.32MB)          (e) ZFP (28.12MB)     (f) Our approach (29MB) 

Fig. 11. Uncertain isosurface for isovalue 35.95567 of the Rea Sea salinity; (a) is the true isosurface 

from the raw data; (b) is the result of SZ compression with a high compression ratio; it loses a lot of 

data features; (c) is the result of the histogram interpolation method. The temporal sampling interval 

is 30 time steps; (d) is FPZIP compression and the precision is 8; (e) is ZFP compression and the rate 

is 0.5; (f) is our approach with 5 Gaussian components of the temporal GMM and the number of 

consecutive time steps is 60. 

 

Figs. 9-11 show the images of the Global Climate, Nyx and Red Sea datasets at dif-

ferent time steps and isovalues. Figs. 9-11 (a) show the uncertain isosurface generated by 

ground truth data. Compared to alternatives, our approach (Figs. 9-11 (f)) shows more si-

milar results to the ground truth images. 

7.2 Resampling Volume Rendering 

In this experiment, we show the visual comparison using resampling volume render-

ing. Figs. 12-14 show the image of the Global Climate, Nyx and Red Sea datasets at dif-

ferent time steps. Figs. 12-14 (a) are the ground truth resampling volume rendering image. 

Compared to the other approaches, our approach (Figs. 12-14 (f)) show much better image 

quality with less storage cost. In addition, Table 1 shows the data storage of the setting we 

use to generate images in this section. Note that the ground truth in the experiment is the 

data representation that represents the data values at each grid point by a histogram with 

128 bins. And the interpolation approach only stores histograms of grid points at the sam-

pled time steps. We can observe that our approach can provide good visualization quality 

with a high data reduction rate. In addition, with similar data storage usage, our data rep-

resentation quality is significantly better than alternatives. 
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(d) FPZIP (19.73MB)      (e) ZFP (60.80MB) (f) Our approach(19.75MB) 

Fig. 12. Visual comparison of resampling volume rendering in Global climate dataset at time step 

144; The temporal sampling interval is 10 time steps. (d) is FPZIP compression and the precision is 

8 (e) is ZFP compression and the rate is 0.5 (f) is our approach using 7 Gaussian, and the number of 

consecutive time steps is 50. 

 

         
(a) Ground truth (173.37 MB)      (b) SZ (11.23MB)        (c) Interpolation (9.56MB) 

         
(d) FPZIP (24.07MB) (e) ZFP (51.20MB)          (f) Our approach (8.55MB) 

Fig. 13. Visual comparison of resampling volume rendering in Nyx density dataset at time step 95; 

(a) is the ground truth image from the raw data; (b) is the result of SZ compression with a high com-

pression ratio; (c) is the result of the histogram interpolation method. The temporal sampling interval 

is 10 time steps; (d) is FPZIP compression and the precision is 8; (e) is ZFP compression and the rate 

is 0.5; (f) is our approach using 3 Gaussian, and the number of consecutive time steps is 50. 

 
8. DISCUSSION 

 

Data Processing Time: We report the processing time per time step of our data represen-

tation of the three datasets used for our experiments. We measure the processing time of 

our data representation using the same settings and the same machine in Section 6. The 

data processing time varies because of the complexity of the data. If the dataset has a higher 

spatial resolution, the processing time is usually longer because we have to process more 

data values, and the time for the SLIC-based algorithm also significantly increases. In ad-

dition, the processing time will increase if the number of Gaussian components used in the 

data representation increases. In our experiment, the computation time in average per time 

step is 17.86 seconds for the Global Climate dataset, 11.77 seconds for the Nyx dataset, 

and 115.2 seconds for the Red Sea dataset. 
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Reconstruction Time: The data reconstruction process of data point at any given time 

step and grid point, as described in Section 5, is independent. This implies that our data 

reconstruction program lends itself to parallelization. Therefore, we implement our recon-

struction algorithm by VTK-m library [25]. VTK-m not only provides many parallel im-

plementations of scientific data processing and visualization algorithms but also provides 

a platform for developing parallel programs on multi-core processors and GPU. We con-

duct this experiment on a Tesla V100 GPU and measure the execution time. Table 2 shows 

the data reconstruction time of one time step of the datasets. In addition, we also implement 

the process of generating the resampling volume and the probability field of uncertain 

isosruface from a reconstruction dataset. Because generating the resampling volume and 

the probability field of uncertain isosurface require extra work after reconstructing the data, 

these two tasks take slightly longer than purely reconstructing the data. The data point of 

individual grid points can be reconstructed independently; so with the parallel implemen-

tation and running it on a decent GPU, our data representation and data reconstruction 

algorithm can potentially serve the need for interactive data exploration. 

 

Impact of Parameters: We have four hyperparameters in our approach. The first is the 

number of Gaussians of the temporal GMM. The second is the number of consecutive time 

steps used to construct an independent data representation. The other two are the number 

of initial clusters and the threshold for determining if temporal distributions are sufficiently 

similar. We carry out experiments for the studies of these four parameters. Figs. 15-17 

show the results of the three datasets. 

 

             
   (a) Ground truth (777.19 MB)        (b) SZ (38.62MB)          (c) Interpolation (38.52MB) 

               

(d) FPZIP (36.32MB)          (e) ZFP (28.12MB)       (f) Our approach (29MB) 

Fig. 14. Visual comparison of resampling volume rendering in Red Sea dataset at time step 50; (a) 

is the ground truth image from the raw data; (b) is the result of SZ compression with a high com-

pression ratio; (c) is the result of the histogram interpolation method. The temporal sampling interval 

is 30 time steps; (d) is FPZIP compression and the precision is 8; (e) is ZFP compression and the rate 

is 0.5; (f) is our approach using 5 Gaussian, and the number of consecutive time steps is 30. 

 

• Consecutive Time Steps: Fig. 15 shows that if other parameters are fixed and the number 

of consecutive time steps used to build one independent data representation decreases, the 

information is easier to describe and the RMSE will decrease. In addition, using larger 

consecutive time steps to build one independent data representation creates less numbers 

of independent data representations for one dataset and reduces the data representation size. 

Therefore, if users can afford a larger data representation size, a smaller number of con-
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secutive time steps can be used. Otherwise, a larger number of consecutive time steps can 

be chosen to sacrifice the quality for smaller storage usage. 
 

 

     (a) Global Climate (b) Nyx (c) Red Sea 

Fig. 15. Comparison of the effect of different time intervals and the number of Gaussian components 

on RMSE. The color of the curves is the number of consecutive time steps used to build one inde-

pendent data representation. Each point represents the number of Gaussian of the temporal GMM. 

Table 1. Data storage summary of each dataset. 

Data Sets Approach RMSE Memory (MB) Reduction 

Global Climate 

SZ 0.0889 39.05 89.13% 

Interpolation 0.0556 35.97 89.9% 

FPZIP 0.0322 19.73 94.51% 

ZFP 0.0419 60.80 83.08% 

Ours 0.0271 19.75 94.5% 

Nyx 

SZ 0.0906 11.23 93.52% 

Interpolation 0.0483 9.56 94.48% 

FPZIP 0.0356 24.07 86.11% 

ZFP 0.0740 51.20 70.46% 

Ours 0.02857 8.55 95.06% 

Red Sea 

SZ 0.1315 38.62 95.03% 

Interpolation 0.0153 38.52 95.04% 

FPZIP 0.0160 36.32 93.40% 

ZFP 0.0144 28.12 96.39% 

Ours 0.0087 29.00 96.26% 

 

• Gaussian Component Count: Fig. 15 also demonstrates that if other parameters are fixed 

and the number of Gaussian components increases for each GMM, the data representations 

receive lower RMSE values in different datasets. However, diminishing marginal returns 

can also be observed when the number of Gaussian components increases. In addition, in-

creasing the Gaussian count also increases the data representation storage. Therefore, se-

lecting a proper Gaussian count can provide a better tradeoff between the data representa-

tion quality and storage size. Akaike Information Criterion (AIC) [37] or Bayesian Infor-

mation Criterion (BIC) [38] often helps with the tasks of Gaussian count selection. By 

using AIC or BIC, the different Gaussian counts of GMMs in our data representation can 

choose and the data representation can even receive a better tradeoff between the data rep-

resentation quality and storage size. However, evaluating the AIC or BIC scores requires 

modeling data by GMMs with different Gaussian counts and it will significantly increase 

the data modeling time. Thus, we suggest that if longer data modeling is affordable, users 

can use AIC or BIC to assign different numbers of Gaussians to different GMMs to get a 
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better tradeoff between the data representation and data storage size. Otherwise, users can 

sample a subset of data, such as 5% of the dataset, to evaluate the AIC or BIC scores and 

determine one Gaussian count for all GMMs of the dataset. 
 

 
(a) Global climate                (b) Nyx                    (c) Red sea 

Fig. 16. Tradeoff between RMSE and storage cost at different thresholds. 

• Initial Cluster Count and Threshold for Cluster Similarity: Fig. 16 demonstrates the trade- 

off between the RMSE and storage costs at different thresholds. If the threshold value 

increases, the number of bins that share temporal information will increase, resulting in 

reduced storage costs, but the RMSE will increase slightly. This is because the more bins 

can share temporal information, the number of the temporal GMMs can be reduced. The 

Fig. also shows that the increase in RMSE in the limited threshold range is low, but can 

effectively reduce the cost of storage. 

 

Table 2. Data reconstruction, volume resampling, and uncertain isosurface generation 

time. The time reported is measured in seconds. 

Data Sets Reconstruction Volume Resampling Uncertain Isosurface 

Global Climate 0.0164s 0.0165s 0.0167s 

Nyx 0.0104s 0.0107s 0.0129s 

Red Sea 0.0136s 0.0162s 0.0165s 

 

 
(a) Global Climate                     (b) Nyx (c) Red Sea 

Fig. 17. Comparison of the effect of sharing temporal information for various clusters number. 

 

If storage cost reduction is the primary goal, users can use a higher threshold value to 

obtain a better compression ratio. Fig. 17 shows the effect of sharing temporal information 

for different numbers of clusters at the same threshold. We can observe that the number of 

temporal GMMs decreases as the number of clusters increases. However, as the number 

of clusters increases to a certain extent, the downward trend of the curve will become 

slower, and the number of temporal GMMs even increases in Fig. 17 (b). Because there 

are too many clusters, the search range of each cluster is too small to effectively share tem-
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poral information of bins. 

 
Effect of temporal distribution sharing: In order to further reduce the storage cost, we 

propose a SLIC-based algorithm in Section 4.3 to achieve temporal distribution sharing. 

Fig. 18 demonstrate the impact of temporal distribution sharing the yellow rectangle rep-

resents our approach without temporal sharing and the gray rectangle represents our ap-

proach with temporal sharing. Figs. 18 (a)-(c) compare the storage cost under different 

numbers of Gaussian components. As the number of Gaussian components increases, the 

cost of storage increases considerably without using the temporal sharing method. If the 

sharing method is used, the cost of storage will only increase slightly, and the cost of stor-

age will be substantially reduced from the method without temporal information sharing. 

Figs. 18 (d)-(f) compare the RMSE under the different number of Gaussian components. 

We can observe that the RMSE of the gray rectangles is very close to the yellow rectangles, 

which means that the use of temporal distribution sharing does not significantly degrade 

the quality of the representation. This experiment demonstrates that our temporal distribu-

tion sharing method can significantly reduce storage costs and maintain high data repre-

sentation quality. 

 

     
(a) Global climate (b) Nyx (c) Red sea 

     
(d) Global climate                      (e) Nyx                      (f) Red sea 

Fig. 18. Comparison of our approach with and without temporal GMM sharing in terms of the stor-

age and RMSE. 

 

9. CONCLUSION AND FUTURE WORK 

 
This paper proposes a compact distribution-based representation for the uncertainty 

visualization and analysis of time-varying ensemble data. We transform adjacent probabil-

ity density functions in the temporal domain into one numerical distribution and several 

temporal distributions. We use the Gaussian mixture model to represent the temporal dis-
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tribution because the Gaussian mixture model can well represent the temporal distribution 

with less storage space. In addition, we use a SLIC-based algorithm to identify similar 

temporal distributions. Similar temporal distributions are represented by one represented 

temporal distribution to save more storage costs. As the results are shown in our experi-

ment, our data representation can represent the time-varying ensemble data with a better 

tradeoff between the quality and storage cost. In future work, we will extend our approach 

to multivariate ensemble datasets. Because multivariate ensemble datasets will require a 

higher storage cost, we hope to develop better data representations to support efficient 

multivariant and time-varying ensemble data exploration and analysis. In addition, In ad-

dition, the deep learning approach is one potential approach to deal with large-scale scien-

tific data problems. A model can be trained to take a time step and a grid point coordinate 

as input and predict the corresponding value distribution. 
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