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Motor imagery (MI) based brain-computer interface (BCI) is a communication device
that helps motor disabled patients to interact with the surrounding through their brain sig-
nals. But, it has low performance due to huge variations of brain patterns among the pa-
tients. The main reason behind is that the difference in spatial and temporal distribution of
the brain signals. In order to boost the efficiency of the system, this paper combined fea-
tures obtained from the Hilbert transform (HT) and second order difference plot (SODP).
The proposed technique decomposed raw electroencephalogram (EEG) signals into mul-
tiple sub-bands with distinct frequency bands. The event-related patterns (ERPs) and MI
features for each band were extracted through the HT and SODP. The obtained ERPs and
MI features were fed into a multi-class support vector machine (SVM) for decoding brain
activities. Two different benchmark datasets (BCI competition-III and IV) were used to
evaluate the performance of the proposed method. The results show that the mean clas-
sification accuracy (%CA) and Cohen’s kappa coefficient (K) obtained from the proposed
technique are higher than state-of-the-art techniques.

Keywords: brain computer interface, electroencephalogram, Hilbert transform, second order
difference plot, support vector machine

1. INTRODUCTION

The human brain is a complex network that consists of around 100 billion neurons,
which are responsible for various activities such as breathing, talking, smelling, etc. One
of the important activities is communication through voluntary muscle movements. These
voluntary muscle movements are controlled by the motor neurons present in motor cortex
of the brain. Motor neuron disease (MND) is a neuro-degenerative disorder that dam-
ages neurons of the central nervous system (CNS). Amyotrophic lateral sclerosis (ALS)
is a common cause of MND, where nerve cells of the brain started dying resulting par-
alyzed the person [1]. The ALS patients always depended on an assistant thus degrade
their quality of life. To enhance their quality of life, they need a technology or commu-
nication device which provides alternative communication and control options for ALS
patients. One such option is the brain-computer interface (BCI), which acts as an effective
communication protocol for motor disabled people.
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BCI is a control system that alters brain activities into control signals and acts as a
new communication bridge between the ALS patients and outside environment [2]. There
are several methods to assess brain activities such as magnetoencephalogram (MEG),
near-infrared spectroscopy (NIRS), functional magnetic resonance imaging (fMRI) and
electroencephalogram (EEG). However, EEG is commonly used because of high temporal
resolution, low cost, portability and non-invasive nature.

There are four distinct kinds of EEG-based BCI system depending on the brain sig-
nals such as slow cortical potentials (SCPs), P300 evoked potential (P300), steady-state
visual evoked potential (SSVEP) and motor imagery (MI) [3-5]. In recent times, MI-based
BCI system draws more attention to the researchers because it doesn’t require any external
hardware to evoke brain activities. Motor imagery is a procedure where a subject accom-
plishes a specific task mentally without performing actual voluntary movements. As per
literature, when a subject performs any self-paced voluntary movements, the power of µ

(8-12 Hz) and β (13-30 Hz) frequency bands start to decrease/increase from/to ideal state.
This operation is known as event-related desynchronization (ERD) and event-related syn-
chronization (ERS) [6]. The MI-based BCI includes acquisition of raw EEG signal, pre-
processing, feature extraction and detection of brain activities. Feature extraction plays
a major role that brings out information of the brain activities corresponding to various
voluntary movements. But, the extraction of relevant features from the human brain is
a challenging task. In the past, various feature extraction techniques were developed by
numerous scientists around the globe. In order to validate their proposed techniques, they
have employed two different MI-EEG datasets (BCI competition-III and IV). They have
computed classification accuracy (%CA) and Cohen’s kappa coefficients (K) and com-
pared their performance with traditional techniques.

Some authors used BCI competition-III dataset and compared their results with ex-
isting methods in terms of %CA. For example, Schlogl et al. used an adaptive auto-
regressive (AAR) model to extract information of the brain activities and the activities
were detected by minimum distance analysis (MDA) [7]. Hu et al. used a hybrid model,
i.e., a combination of common average reference (CAR) and common spatial pattern
(CSP) to extract new features of the brain patterns [8]. Li et al. computed MI features
from wavelet packet decomposition (WPD) and the movements were decoded through
the support vector machine (SVM) and neural network (NN) [9]. Ge et al. implemented
a short-time Fourier transform (STFT) and CSP to classify MI movements through the
SVM [10]. Shi et al. calculated features from sparse CSP and the voluntary movements
were identified by the SVM [11]. Meanwhile, Mahmood et al. employed four sub-bands
(7-13 Hz, 13-19 Hz, 19-25 Hz and 25-31 Hz) and extracted the brain activities using
CSP [12]. Some researchers used BCI competition-IV dataset and improved the perfor-
mance of the BCI system. For instance, Grosse et al. discussed the shortcomings of com-
mon spatial patterns (CSP) through information-theoretic feature extraction (ITFE) [13].
Zang et al. applied Bayesian learning for spatial filtering in EEG-based BCI and intro-
duced the gamma probability model to explain the brain activities [14]. Zanini et al.
represented the data into a special matrix known as symmetric positive definite (SPD)
using Rayleigh geometry [15]. Xi et al. extracted MI information by employing SPD
matrices obtained from the Riemannian distance [16].

Meanwhile, some researchers have used advanced techniques like common spatial
pattern (CSP), filter bank common spatial pattern (FBCSP), regressive analysis (RA) and
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independent component analysis (ICA), time frequency-information, multi-segment joint
approximate diagonalization (MSJAD) and second order difference plot (SODP) to ex-
tract various brain patterns [17-22]. But, satisfying outcomes have been accomplished by
some of them. For real-time applications, it is necessary to improve the performance of
the system, which is a major issue in MI-based BCI. In order to solve the above issue, first
time this article recommends a combination of event-related patterns (ERPs) and second
order difference plot (SODP). First, the filter bank technique was implemented to raw
EEG signals and multiple numbers of sub-bands were generated. The MI features like
ERPs and area of SODP were obtained for each sub-band.

Finally, a multi-class SVM was employed to detect four types of MI activities
through the obtained EEG features. The remainder of this paper is organized as follows.
Section 2 describes motor imagery-based EEG database. The suggested methodology is
illustrated in Section 3. Results and discussion are provided in Section 4. Finally, the
paper is concluded in Section 5.

2. MI-EEG DATABASE

In order to evaluate the efficiency of the proposed method, two different benchmark
MI-EEG datasets were used. The detailed description of both the datasets were explained
in the following sub-sections.

2.1 BCI Competition-III, Dataset-3a

The Neuroscan EEG amplifier was used to record raw data of three subjects (K3b,
K6b and L1b). In the experiment, the subjects were given instructions to sit on a chair
with armrest. They were informed to imagine four movements (left hand, right hand, feet
and tongue) in the direction of a random visual cue. The experiment consists of several
runs and each run had 40 trials. The time segment of one trial is 7 s. First, an empty black
screen was displayed for 2 s (0 to 2 s), which indicates the beginning of each trial. At t =
2s, a beep sound along with a cross mark was displayed to alert the subject. At t = 3 s, an
arrow pointing toward left, right, up or down direction was displayed for 1 s. At the same
time, the subjects were asked to imagine the movements concerning an arrow direction
till t = 7 s. The raw signals were measured through 60-channels EEG amplifier where
right and left mastoids are served as ground and reference, respectively. The raw signals
were filtered between 1 to 50 Hz using a band-pass filter (BPF) and sampled at 250 Hz.
The detailed connections of electrodes and visual paradigm were explained in [23].

2.2 BCI Competition-IV, Dataset-2a

The raw EEG signals were recorded from 9 healthy subjects performing four MI
movements (left hand, right hand, feet and tongue). The experiments were conducted on
different days in two sessions. Each session consists of 6 runs, which included 48 MI
trials (12 MI trials for each movement). The time duration of one trial is 7.5 s. A cross
mark along with a beep sound was presented from t = 0 to 2 s at the initial stage of each
trial. At t = 2 s, an arrow is directing left, right, up or down direction corresponding to
each of the four movements. At t = 3 s, the subjects were intimated to imagine respective
movements according to direction of an arrow till t = 6 s.
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A 1.5 s break follows the MI tasks. Twenty-two Ag/Agcl electrodes were used for
EEG and three electrodes were used for electrooculogram (EOG) data recording. The raw
signals were filtered between 0.5 to 100 Hz using a band-pass filter (BPF). The power
line interference was removed by implementing a 50 Hz notch filter and the signals were
sampled at 250 Hz. The detailed connections of electrodes and visual paradigm were
explained in [24].

3. PROPOSED METHODOLOGY

The detailed steps for decoding MI activities are shown in Fig. 1. In the first step,
filter bank technique was employed to decompose each raw EEG signal into sets of six
sub-bands (8-12 Hz, 12-16 Hz, 16-20 Hz, 20-24 Hz, 24-28 Hz and 28-32 Hz). In the
next step, the HT and SODP were applied to each sub-band and their corresponding MI
features were obtained. Finally, the calculated MI features were fed into a multi-class
support vector machine to detect various MI activities.

EEG Signal

8-12 Hz

12-16 Hz

28-32 Hz

Filter Bank

HT & SODP Multi-class SVM

Left

Right

Feet

Tongue

Fig. 1. Steps for decoding MI activities.

3.1 Event-related Patterns using the Hilbert Transform

The band power (BP) plays a vital role in analysis of the brain activities. The average
BP of an EEG signal can be calculated using Eq. (1):

BP(l) =
1
N

N

∑
k=1

x2
f (k,l) (1)

where x f (k,l) is lth EEG sample in kth trial and N is the total number of MI trials. The
event-related pattern (ERP) for various MI activities can be calculated from Eq. (2) :

%ERP(l) =
BPevent(l)−BPrest

BPrest
×100% (2)

where BPevent and BPrest are the BP of the signals when the subject is performing MI
movements and in rest state. The Hilbert transform (HT) uses a phase-shift operator to
convert a real signal x(t) into another new signal xh(t). The obtained new signal has a
phase shift of π/2 radians and it is known as an analytic signal.
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The HT of a signal x(t) is calculated from Eq. (3) [25]:

xh(t) = H[x(t)] =
1
π

∫ +∞

−∞

x(τ)
t− τ

dτ (3)

The analytic signal is calculated from Eq. (4):

xa(t) = x(t)+ jxh(t) (4)

The envelope of the signal xa(t) can be obtained from Eq. (5):

|xa(t)|=
√

x(t)2 + xh(t)2 (5)

The envelope of the analytic signal helps to identify ERP corresponding to various MI
activities. According to Eq. (5), the envelope of event-related patterns can be obtained
from Eq. (6):

|%ERPa(t)|=
√

%ERP(t)2 +%ERPh(t)2 (6)

where %ERP(t) is the event-related pattern and %ERPh(t) is the HT of event-related
pattern for various brain activities.

3.2 Second Order Difference Plot

The second order difference plot (SODP) gives the rate of variation of the successive
samples [26]. It can be obtained by plotting A[n] against B[n], which gives a graphical
view of the rate of variability between A[n] and B[n] and presented in Eqs. (7) and (8):

A[n] = x[n+1]− x[n] (7)

B[n] = x[n+2]− x[n+1] (8)

The shape of SODP pattern is elliptical and therefore area of the ellipse can be used
as a feature to detect various MI activities. The 95% confidence area of the ellipse can
be used to quantify four types of MI tasks [27]. In order to obtain area of the ellipse,
variance of A[n], B[n] and the covariance between A[n] and B[n] were calculated using
Eqs. (9)-(11):

σA =

√
1
M

M−1

∑
n=0

A[n]2 (9)

σB =

√
1
M

M−1

∑
n=0

B[n]2 (10)

σAB =
1
M

M−1

∑
n=0

A[n]B[n] (11)

where σ2
A , σ2

B , σ2
AB are the variance of A, B and covariance between A and B. M is the

total number of sample points. The diameter (D), major axis (a) and minor axis (b) of the
ellipse can be obtained from Eqs. (12)-(14):



1084 NIRAJ BAGH, T. JANARDHAN REDDY, M. RAMASUBBA REDDY

D =
√
(σ2

A +σ2
B)−4(σ2

Aσ2
B−σ2

AB) (12)

a = 1.7321
√
(σ2

A +σ2
B +D) (13)

b = 1.7321
√
(σ2

A +σ2
B−D) (14)

Finally, area of the ellipse can be calculated from Eq. (15):

Area = πab. (15)

3.3 Support Vector Machine

The support vector machine (SVM) is a powerful machine learning model that con-
structs an optimal line or hyperplane to separate points between two classes or among
the multiple classes. It separates points by finding weight vector and bias of the hyper-
plane [28, 29]. The performance of the SVM was evaluated by classification accuracy
(%CA), precision (P), sensitivity (S), F1-score and Cohen’s kappa coefficient (K). The
model parameters can be obtained from Eqs. (16)-(20):

%CA =
T P+T N

T P+FN +FP+T N
×100% (16)

P =
T P

T P+FP
(17)

S =
T P

T P+FN
(18)

F1− score = 2(
P×S
P+S

) (19)

K =
CA− 1

Nc

1− 1
Nc

(20)

where T P is true positive that correctly predicted MI-EEG trials. FP is false positive
that incorrectly predicted MI-EEG trials. T N is true negative that correctly rejected MI-
EEG trials. FN is false negative that incorrectly rejected MI-EEG trials. Nc is the number
of classes.

4. RESULTS AND DISCUSSION

The raw signals obtained from C3, Cz and C4 channels were decomposed by filter
bank technique and multiple numbers of sub-bands were generated. Fig. 2 shows signal of
one sub-band, i.e., µ band (8−12 Hz) in three channels for BCI competition-III dataset.
Figs. 2 (i)-(iv) represent variation in the µ band while the subject is performing four
different MI tasks. In order to analyze deeper, the ERPs were extracted through the Hilbert
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transform. Fig. 3 illustrates %ERPa for all MI activities in three channels. Fig. 3 (i)
shows the variation of the patterns in three channels when the subject is performing left
hand MI movement. As we know that the C3 and C4 channels are placed over left and
right hemispheres of the brain. When the subject is imagining left hand MI movement,
then the pattern in C4 channel starts decreasing. During MI period, the pattern in C4
channel is lower than C3 channel which indicates that the ERD activity is occurring in C4
channel. Meanwhile, the ERS activity is observing in C3 channel.
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Fig. 2. EEG signals obtained from BCI competition-III dataset during (i) left hand; (ii) right hand;
(iii) feet and (iv) tongue MI movements.
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Fig. 3. ERPs for BCI competition-III dataset during (i) left hand; (ii) right hand; (iii) feet and (iv)
tongue MI movements.
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This decreasing in the pattern is due to desynchronization of motor neurons in the
right hemisphere of the brain. It implies that the motor neurons present in right hemi-
sphere of the brain are responsible for controlling left-hand MI movement. Fig. 3 (ii)
shows the variation of the patterns in three channels when the subject is performed right-
hand MI movement. During MI period, the pattern in C3 channel is lower than C4 chan-
nel. This indicates that the ERD process is occurring in C3 channel and the ERS activity
is observing in C4 channel. It inferred that the motor neurons present in left hemisphere
of the brain are responsible for controlling right hand MI movement. Similarly, Figs. 3
(iii) & (iv) reveal that when the subject is performing both feet and tongue MI move-
ments, then variation of the patterns were observed in three channels. The variation of
the patterns demonstrated that the MI activities are effectively captured in three channels.
In order to study the non-linear dynamical behavior of the signal, SODP was applied to
each sub-band. It gives the rate of variability or chaos in three channels when the subject
is performing various MI movements.
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Fig. 4. SODP patterns for BCI Competition-III dataset during (i) left hand; (ii) right hand; (iii) feet
and (iv) tongue MI movements.

Fig. 4 illustrates SODP patterns for all MI activities in three channels for BCI
competition-III dataset. Fig. 4 (a) shows the variation of SODP patterns in three channels
when the subject is performing four MI activities. But, the variation of the patterns in
three channels are not clearly noticeable in the figure. Therefore, SODP patterns for each
MI movement were calculated in three individual channels and plotted in Figs. 4 (b)-(d).
Each figure has four subplots, where subplots (i), (ii), (iii) & (iv) represent SODP patterns
in left hand, right hand, feet and tongue movements, respectively.
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Table 1. Model parameters for both BCI competition-III and IV datasets.
BCI-Competition-III, Dataset-3a

Subjects Case-1, ERPs Case-2, Area Case-3, ERPs+Area

%CA P S F1-score K %CA P S F1-score K %CA P S F1-score K

K3b 82.70 0.83 0.83 0.83 0.76 92.70 0.93 0.93 0.93 0.90 95.00 0.95 0.95 0.95 0.93

K6b 73.33 0.74 0.73 0.73 0.64 74.16 0.74 0.74 0.74 0.65 89.16 0.90 0.89 0.89 0.85

L1B 72.50 0.73 0.72 0.72 0.63 87.50 0.88 0.88 0.87 0.83 93.33 0.94 0.93 0.93 0.91

Mean 76.17 0.76 0.76 0.76 0.67 84.78 0.85 0.85 0.84 0.79 92.49 0.93 0.92 0.92 0.89

BCI-Competition-IV, Dataset-2a

S1 93.75 0.94 0.94 0.94 0.91 95.13 0.96 0.95 0.95 0.93 85.40 0.86 0.85 0.85 0.80

S2 56.25 0.56 0.56 0.56 0.41 67.56 0.68 0.68 0.68 0.56 79.93 0.80 0.80 0.80 0.73

S3 75.00 0.75 0.75 0.75 0.66 94.07 0.94 0.94 0.94 0.92 95.13 0.96 0.95 0.96 0.92

S4 87.50 0.88 0.88 0.87 0.83 88.19 0.88 0.88 0.88 0.84 98.61 0.99 0.98 0.99 0.98

S5 88.88 0.89 0.89 0.89 0.85 92.01 0.92 0.92 0.92 0.89 95.30 0.96 0.96 0.96 0.93

S6 74.30 0.74 0.74 0.74 0.65 83.40 0.84 0.83 0.83 0.77 84.40 0.84 0.83 0.83 0.77

S7 79.86 0.80 0.80 0.81 0.73 88.61 0.89 0.89 0.89 0.84 84.72 0.85 0.85 0.85 0.79

S8 75.34 0.78 0.75 0.75 0.67 90.67 0.91 0.91 0.91 0.87 85.13 0.86 0.85 0.85 0.80

S9 85.13 0.85 0.85 0.86 0.80 88.54 0.89 0.89 0.88 0.84 87.92 0.88 0.88 0.88 0.83

Mean 79.55 0.79 0.79 0.79 0.72 87.57 0.87 0.87 0.87 0.82 88.39 0.88 0.88 0.88 0.83

The obtained SODP patterns are elliptical and their sizes are distinct for different MI
movements. These distinct sizes of the patterns are due to presence of chaotic behavior
during MI period. The changes in the area of ellipse, indicating that the SODP is playing
a significant role and captured the chaotic behavior of the signal. Hence, area of the
ellipse can be used as a feature to discriminate four different MI tasks. The MI features
obtained from both the HT and SODP were combined and fed into a multi-class support
vector machine and the performance of the model was evaluated for both the datasets. The
performance of the SVM was evaluated by considering three special cases. The ERPs and
area of the ellipse were considered as feature vectors in case-(1) and case-(2), respectively.

The features obtained from case-(1) and case-(2) were combined and considered as
a case-(3). The performance (%CA, P, S, F1-score and K) of the model in three different
cases was evaluated and listed in Table 1. It is observed that the performance of case-(3)
is superior to the remaining two cases in both the datasets. In case-(3), the %CA and
K for both BCI competition-III and IV datasets were found to be 92.49% & 0.89 and
88.39% & 0.83, respectively. Case-(3) of the proposed method gives better result and
therefore it was taken into consideration while comparing with several existing methods.
Table 2 compares the performance of the proposed method with existing methods in terms
of %CA. The mean %CA of all three subjects was found to be 92.49% which is higher
than the existing methods on BCI competition-II dataset. The highest and lowest %CA,
i.e., 95.00% & 89.16% were found in K3b and K6b subjects. Table 3 compares the
performance of the proposed method with conventional methods in terms of %CA.
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Table 2. Comparison between the proposed and conventional methods on BCI com-
petition-III, dataset-3a.

Proposed by Feature extraction Classifier
%CA Mean

K3b K6b L1b

Schlogl et al. [7] Adaptive auto-regressive model MDA 66.60 38.50 49.50 51.50

Hu et al. [8] Combination of CAR and CSP NN 41.60 41.70 49.50 44.26

Li et al. [9] WPD SVM+NN 83.10 84.40 85.60 84.40

Ge et al. [10] Combination of STFT and CSP SVM 71.30 88.10 71.20 76.90

Shi et al. [11] Sparse PCA+CSP SVM 85.10 81.60 80.10 82.30

Mahmood et al. [12] Four sub-bands CSP SVM 93.30 77.50 85.80 85.50

Present Proposed SVM 95.00 89.16 93.33 92.49

Table 3. Comparison between the proposed and conventional methods on BCI com-
petition-IV, dataset-2a.

Subjects Gross et al. [13] Zhang et al. [14] Zanini et al. [15] CSP+LDA [16] CSP+SVM [16] Proposed
S1 48.10 61.50 77.80 78.30 76.30 85.40
S2 27.30 32.10 44.10 44.70 50.70 79.93
S3 70.60 68.60 76.80 82.20 85.10 95.13
S4 21.40 27.10 54.90 59.10 52.90 98.61
S5 22.70 34.30 43.80 39.70 48.80 95.30
S6 32.40 35.30 47.10 50.10 49.20 83.40
S7 52.30 48.00 72.00 81.00 78.10 84.72
S8 65.80 65.60 75.20 68.50 77.40 85.13
S9 34.20 41.80 76.60 77.40 82.20 87.92

Mean 41.64 46.01 63.20 64.60 66.70 88.39

Table 4. Comparison between the proposed and conventional methods on BCI com-
petition-IV, dataset-2a.

Subjects Ang et al. [17] Liu et al. [18] Wang et al. [19] Kam et al. [20] Pailler et al. [21] Bagh et al. [22] Proposed
S1 0.68 0.69 0.56 0.74 0.66 0.59 0.80
S2 0.42 0.34 0.41 0.35 0.42 0.77 0.73
S3 0.75 0.71 0.43 0.76 0.77 0.73 0.92
S4 0.48 0.44 0.41 0.53 0.51 0.35 0.98
S5 0.40 0.16 0.68 0.38 0.50 0.63 0.93
S6 0.27 0.21 0.48 0.31 0.21 0.56 0.77
S7 0.77 0.66 0.80 0.84 0.30 0.61 0.79
S8 0.75 0.73 0.72 0.74 0.69 0.51 0.80
S9 0.61 0.69 0.63 0.60 0.46 0.81 0.83

Mean 0.57 0.52 0.57 0.60 0.50 0.62 0.83

The mean %CA of all nine subjects was found to be 88.39% which is superior to
state-of-the-art methods. The highest and lowest values of %CA, i.e., 98.61% & 79.93%
were found in S4 and S2 subjects. Similarly, Table 4 compares the performance of the
proposed method with conventional methods in terms of K. The mean value of K for all
nine subjects was found to be 0.83 which is higher than the existing methods. The highest
and lowest values of K, i.e., 0.98 & 0.73 were found in S4 and S2 subjects. The maximum
and minimum values of %CA and K represent the sensitivity of the subjects toward MI
tasks. The maximum value shows high sensitivity of the subject whereas minimum value
reveals the subject is not performing MI tasks properly and it is known as BCI illiteracy.
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5. CONCLUSIONS

In this research, the event-related patterns and areas of the ellipses are used to de-
tect various MI activities of the subjects. The event-related patterns are identified by the
Hilbert transform, whereas areas of the ellipses are obtained from the second order differ-
ence plot. Two approaches have been employed to discriminate four different MI tasks:
one is graphical and the other is machine learning. The graphical method shows that the
event-related patterns and shapes of the ellipses are changing when the subject is per-
forming MI movements. In the machine learning approach, the event-related patterns and
areas of the ellipses are used as features to classify MI movements. The performance is
higher when combined event-related patterns and areas of the ellipses. Both the Hilbert
transform and the second order difference plot contributed significant MI features, which
helps to boost the efficiency of the system. Finally, the efficiency of the proposed method
was compared with several existing methods and results show that the presented method
outperformed state-of-the-art methods.
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