
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 36, 1021-1034 (2020)
DOI: 10.6688/JISE.202009 36(5).0006

Rule Based Conversion of LATEX Math Equations
into Content MathML (CMML)

SHARAF HUSSAIN, SAMITA BAI AND SHAKEEL KHOJA
Faculty of Computer Science

Institute of Business Administration
Karachi, 75270 Pakistan

E-mail: {shussain; sbai; skhoja}@iba.edu.pk

This paper discusses the formation of math grammar rules for LATEX math equations.
These rules are used to generate Abstract Syntax Tree (AST) which extracts structural in-
formation from mathematical expressions given in LATEX format. Later AST is used to
generate XML structure of mathematical expressions that make mathematical expressions
machine-readable in heterogeneous environments. A rule-based algorithm is also proposed
that converts LATEX math expressions into Content MathML (CMML), which produces se-
mantic enrichment in web documents. The rules for writing LATEX math equations are for-
mulated and implemented as LATEX Math Grammar (LMG), which are used for generating
AST. Further, AST is converted into XML structure which is used to generate CMML en-
coding. Initially, the conversion algorithm is tested on 20 equations used in an NTCIR-12
math competition, then the algorithm is tested on NTCIR-12 Wikipedia-MathIR and ArXiv
data sets. The results show that our algorithm is capable of converting LATEX complex equa-
tions into CMML extensively as compared to the existing ones as well as its time efficiency
is better than contemporary systems.

Keywords: LATEX AST, XML tree, math grammar, CMML conversion, semantic analyzer

1. INTRODUCTION

The Internet has become the largest source of information. It facilitates different
types of data in varying formats including text, images, videos, voice and math equations.
This phenomenon has created a need for efficient searching capabilities for all types of
data formats. However, the existing techniques to query data available on the Internet are
limited and insufficient, as the expectations of users’ search experience have increased
over the time. The typical text-based (or keyword-based) search for scientific material
is not just what the users want but they also require proper mechanisms to perform a
meaningful and contextual search. W3C has developed different markup languages to
make web content meaningful and machine-understandable. Math Markup Language
(MathML) is one such effort to make math equations machine-readable.

Received August 7, 2019; revised September 28, 2019; accepted November 12, 2019.
Communicated by Filbert Hilman Juwono.

1021

1022 SHARAF HUSSAIN, SAMITA BAI, SHAKEEL KHOJA

In this paper, we are focusing on semantic enrichment of math equations in the web
documents by converting them into MathML format. W3C has developed MathML which
is an extension of Extensible Markup Language (XML) for publishing math equations.
Moreover, MathML is an ISO standard (ISO/IEC DIS 40314) since 2015 [1] which con-
tains two lexis for writing math equations i.e. Presentation MathML (PMML) and Content
MathML (CMML). PMML emphases on the layout of the math equations, while CMML
deals with the semantics or meaning of the math equations. It also includes a parallel
markup language that provides a way of writing math equations in two or more markup
trees for the same math equation. It means a math equation can be written in PMML and
CMML simultaneously [2].

The modern math retrieval systems formerly called Math Information Retrieval
(MIR) systems use MathML for storing and searching math equations on the Internet.
Writing math equations in MathML has enormous advantages, such as its CMML encod-
ing clarifies the context of math equations for machine processing and its PMML encod-
ing render math equations in a clear and smooth format. However, most of the scientific
documents available on the Internet are in TEX/LATEX format since the authors of scientific
research papers prefer to use this script for writing math notations for dissemination pur-
poses. This creates a gap between the existing MIR systems and the available scientific
documents containing math equations and notations in TEX/LATEX. To fill the existing gap,
there is a need for conversion/transformation tools for converting old documents into the
format which contains MathML support.

In this paper, we are introducing an algorithm for converting LATEX math equations
into CMML format by using LATEX Math Grammar (LMG). The LMG is developed ac-
cording to the standard rules of writing math equations [3]. The LMG is written in
ANTLR41.

For experimentation and evaluations, we have selected 20 equations from NTCIR-
12 Wiki formula queries and later we have performed detailed experiments on NTCIR-12
Wikipedia2 and ArXiv3 data sets. Wikipedia corpus contained more than 547 million
equations of 27835 web pages, while the ArXiv corpus contained 721814 equations of
2653 TEX documents.

The rest of the paper is organized as follows: Section 2 discusses the literature review
in the field of writing and transforming math equations into different formats. Section 3,
proposes algorithms for developing LATEX AST and CMML encoding, Section 4, explains
the experimental results, and Section 5 contains the conclusion of the paper.

2. LITERATURE REVIEW

LATEX is a professional-quality typesetting scripting language. It is the most preferred
language for publishing technical and scientific documentation. The LATEX language is
a mixture of content and presentation. It is extensible through macro definitions [4],
therefore, it is very difficult to extract significant information of math formulae from
the LATEX documents. TEX/LATEX math formulae are not suitable for automated machine

1https://www.antlr.org/
2http://ntcir-math.nii.ac.jp/
3https://archive.org/details/arXiv src 0310 001

RULE BASED CONVERSION OF LATEX MATH EQUATIONS INTO CMML 1023

processing and sharing math information among heterogeneous systems as they are for
typesetting only, and are required to be converted into machine-readable formats such as
MathML (e.g. CMML) or OpenMath [5].

The Content Math Markup Language (CMML) is developed by W3C to provide an
explicit encoding of the underlying mathematical structure of expression, rather than any
particular rendering for the expression [6]. Several MIR systems are using CMML for
indexing and retrieving math equations, some of them are discussed below.

MCAT is a math-aware full-text search engine which indexes math formulae in
PMML/CMML for retrieval of math formula contents [7]. It uses the order of occurrence
of PMML/CMML elements for storing equations into the index.

Start

Input TEX equation,

sty files(opt)

LATEX Math Gram-
mar (LMG)

Laxer and Parser

LATEX Tokens

TEX Tokens

sty tokenizer

Verfied Tokens Non-verfied Tokens

Error:

unkown-token

LATEX Abstract Syn-

tax Tree (AST)

Semantic Analyzer:

develop XML tree

MathML Encoder:

develop MathML tree

CMML En-

coded equation

Stop

XML Tokens

TEX to XML Encoder

verify token

sty files

collect XML tokens

Fig. 1. Process flow of LATEX to MathML conversion.

MIaS is a MIR system
that indexes math equations,
both in PMML and CMML
[8], It also performs canonical-
ization (e.g. the standard form
of math equation) and unifica-
tion on PMML/CMML encod-
ing before indexing them. The
MathWebSearch is a Math for-
mula search engine that stores
math equations into Substitu-
tion Tree(ST) [9], using CMML
encoding for storing math for-
mulae into the ST index [10].
Tangent math is another tree-
based math search engine which
stores CMML encoding of math
formulae into Symbol Layout
Tree(SLT), where symbols are
mapped with their layout to the
occurrence of constants, oper-
ators, variable and relationship
[11]. The skeletal component of
a MIR system is its Math Lan-
guage Processing (MLP) unit,
which is required for the comput-
ers to understand mathematical
expressions. It is a very difficult
task for computers to compre-
hend how humans perceive math-
ematical expressions. This diffi-
culty can be removed by writing
proper grammar for mathemati-
cal expressions. Therefore, we
need a set of well-defined rules for writing math expressions. This grammar may also

1024 SHARAF HUSSAIN, SAMITA BAI, SHAKEEL KHOJA

provide help to encode math expressions into markup language (e.g. CMML). The MLP
is also crucial for math knowledge management, math knowledge discovery, and machine
learning processing [12, 13].

Algorithm 1: LATEX AST

Purpose : Generate a Abstract Syntax Tree (AST)
of a LATEX Equation

Input : A LATEX Equation (LE)
Output : Abstract Syntax Tree (AST)

1 ParseTree← empty
2 getRelation (LE)
3 return ParseTree

4 Function getRelation(le):
5 if le.isExpr()==True then
6 getExpr (le.expr());
7 else
8 relation =le.getRelName();
9 ParseTree.addNode(relation);

10 getRelation (le.getLHS);
11 getRelation (le.getRHS);
12 end
13 end

14 Function getExpr(expr):
15 if expr.isAtom()==True then
16 ParseTree.addNode(expr);
17 else if (expr.isScript()==True) then
18 script = expr.getScriptName();
19 ParseTree.addNode((script));
20 getRelation (expr.getBase());
21 getRelation (expr.getScript());
22 end
23 else if (expr.isArthmaticOp()==True) then
24 OpName = expr.getOpName();
25 ParseTree.addNode(OpName);
26 getRelation (expr.getLHS());
27 getRelation (expr.getRHS());
28 end
29 else if (expr.isRow()==True) then
30 FnRowAdd(expr)
31 end
32 else if (expr.isFunction()==True) then
33 FnName = expr.getFnName();
34 ParseTree.addNode(FnName);
35 if FnName= bmatrix | pmatrix | vmatrix |

cases then
36 FnMatrix(expr);
37 else
38 FnEquation(expr);
39 end
40 end
41 end
42 else
43 Print(Equation Error);
44 end
45 end

46 Function FnEquation(expr):
47 FnArgsCount = FnName.getArgSize();
48 if FnArgsCount = 0 then
49 if FnName.symbole()==True then
50 symbole=FnName.convert();
51 getExpr (symbol);
52 end
53 else
54 for i=1 to FnArgsCount do
55 getRelation (expr.getFnArg(i));
56 end
57 end
58 end

59 Function FnMatrix(expr):
60 RowCount = expr.getRowSize(expr);
61 for i=1 to RowCount do
62 ParseTree.addNode(getRelation

(expr.getRow(i)));
63 end

64 Function FnRowAdd(expr):
65 RowElements = expr.rowElementsCount();
66 for i=1 to RowElements do
67 ParseTree.addNode(getRelation

(expr.getRowElement(i)));
68 end

Several transformation tools have been developed for converting TEX/LATEX
documents into MathML as described in the W3C literature4. However, some tools
are made to convert LATEX equations into PMML only. Math2Web5, mathematical6,

4https://www.w3.org/wiki/Math Tools
5http://www.mathtoweb.com/cgi-bin/mathtoweb home.pl
6https://github.com/gjtorikian/mathematical

RULE BASED CONVERSION OF LATEX MATH EQUATIONS INTO CMML 1025

latex2mathml7, mathconverter8, TeXZilla9, and Mathoid10.The following tools convert
LATEX equations into CMML, however with certain limitations as described below:

latexml system consists of two Perl scripts latexml and latexmlpost.
latexml converts TEX documents into XML format, and latexmlpost is a post-
processor script that converts XML documents into variety of other formats including
HTML and XHTML. latexml system can convert LATEX math equations into PMML,
CMML, and parallel markup. latexml system uses latexml bindings for the seman-
tic macros in LATEX packages. The processing speed of this system is very slow as a new
process is required to reload all bindings and Perl modules for each document [14].

TeX4HT is a tool that converts TEX documents into (X)HTML format [15]. It is
a dynamically configurable TeX-based publishing system specially designed to produce
HTML documents and converts math equations into PMML only.

TRALICS is a tool that converts LATEX documents into XML format [16]. It converts
LATEX math equations into PMML only making it appropriate for publishing HTML and
PDF documents, but cannot be used for exchanging the information of math equations
among heterogeneous environments.

Ttm11 and Hermes12 are some other tools but are used to generate XML and PMML
formats. However, they have been deprecated over time due to their limited use.

Hence, it is clear that a tool to convert LATEX into CMML format is essentially re-
quired to use mathematical knowledge for expert systems. Therefore, we propose a rule-
based system that converts LATEX equations into CMML format which produces unam-
biguous output in a small duration as compared to existing systems. Since the system is
rule-based, therefore malformed or deformed expressions will result in an error. At the
moment our system does not have any mechanism to auto-correct such expressions.

3. LATEX TO CMML CONVERSION PROCESS

As shown in the flowchart of Fig. 1, the conversion process starts by giving a LATEX
equation and an optional .sty file to the processor. The processor first checks the optional
.sty file that contains user-defined commands/macros which are tokenized and stored into
a repository called ‘TEX Tokens’. This process is discussed in detail in subsection 3.1.1.
Then the LATEX equation is parsed through a built-in LATEX Math Grammar (LMG) parser
to generate LATEX math tokens, which are then verified against an existing token repos-
itory. Further, Abstract Syntax Tree(AST) is generated from the verified tokens, which
helps in generating XML structure and MathML tree of the equation. This process is ex-
plained in subsections 3.1.2 and 3.1.3 and the complete detail of this process is explained
in Algorithms 1 and 2. CMML encoding is then extracted from the MathML tree. The
CMML extraction process is discussed in subsection 3.1.4.

7https://github.com/roniemartinez/latex2mathml
8https://github.com/roniemartinez/latex2mathml
9http://fred-wang.github.io/TeXZilla/
10https://www.mediawiki.org/wiki/Manual:Mathoid
11http://hutchinson.belmont.ma.us/tth/mml/
12https://www.openmath.org/meetings/bremen2003/hermes.htm

1026 SHARAF HUSSAIN, SAMITA BAI, SHAKEEL KHOJA

3.1 Process Flow of the Conversion Algorithm

The LATEX to CMML conversion algorithm takes two arguments: first argument
takes equation in LATEX standard style [17], enclosed in $...$, \(...\), \[...\],
or begin{equation}...end{equation} and the second argument which is op-
tional, takes .sty files separated with commas. As we know that all LATEX commands
start with ‘\’ followed by arguments which are enclosed in curly braces (i.e. { }), further
the properties of these commands are provided in square braces (i.e. []), so we need to
extract LATEX commands with their all constituents. To start the process, LATEX tokenizer
divides LATEX equation into different TEX components. The TEX components are further
categorized as commands, operators, characters, and numbers. Only the TEX commands
(i.e. TEX Tokens) are stored in the TEX Tokens repository along with their arguments and
properties specifications. All TEX tokens are verified from the TEX repository. If the token
is not present in TEX repository then it is tagged with non-verified flag and if the token is
available then it is tagged with verified flag. The second argument is send to sty tokenizer,
if it is provided in the command.

3.1.1 sty tokenizer

The second argument of the algorithm which is optional takes .sty files in an array
string separated with a comma. If the second argument is present in the command then the
system will search for .sty files in the specified locations and send it to sty tokenizer, where
TEX commands and macros are collected from the .sty files along with their parametric
information and sent to TEX Tokens repository. The TEX Tokenizer checks the availability
of newly coming token if the upcoming token is not present in the TEX Token repository
then it will be stored in the repository otherwise it will be discarded.

3.1.2 Rules for developing LATEX Abstract Syntax Tree (AST)

A mathematical expression is a phrase that groups together numbers, letters, oper-
ators, and functions. In mathematical expressions, numbers are considered as constant
values, such as ‘1’ is a constant value in Fig. 2. The variables in an expression are rep-
resented by letters or symbols such as ‘P,x,N,n’ are the variables as shown in the Fig.
2. A function in mathematical expressions returns some value for given inputs,

√
25 is

a function which returns square root of input value 25, similarly ∑,̂ ,
∫

are also exam-
ples of different functions. In mathematical expressions, different types of operators are
used, such as arithmetic (e.g. +,−,×,/,±,∓), logical (e.g. =,<,>,≤,≥), boolean (e.g.
∧,∨,¬), and miscellaneous (e.g. ∩,∪,⊕,⊗,t) operators. As AST is required to extract
the hierarchy and relations of the above mentioned entities. We use the following prede-
fined rules for constructing AST of an equation:

1. Initially, LATEX equation (LE) is broken by a relational (e.g. logical, boolean,
and miscellaneous) operators into Left-Hand-Side (L.H.S) and Right-Hand-Side
(R.H.S) expressions. The relational operator will be added to the parse tree as a
node. If the equation does not contain any relational operator then it is considered
as an expression and the equation is directly send to getExp(expr) function.

2. Each L.H.S and R.H.S expression of an equation are further analyzed for the re-
lational operator. If the L.H.S/R.H.S expression does not contain any relational

RULE BASED CONVERSION OF LATEX MATH EQUATIONS INTO CMML 1027

=hhhhhhhhh
(((((((((

∧
@@��

LL��
p i

x

Invisible
Times
hhhhhhhhh
aaaa
(((((((((

\frac
PPPPP
�����

Invisible
Times
LL��

N !

Invisible
Times
aaa
!!!

Invisible
Times
TT��

LL��
n x

!

Invisible
Times
ee%%

-
JJ

N
LL��

n x

!

∧
\\��

LL��
p x

LL��
n x

∧
cc##

TT��
1
LL��

p x

-
JJ

N
LL��

n x

Fig. 2. AST of
(
Px

i = N!
nx!(N−nx)!

Pnx
x (1− px)

N−nx
)
.

operator then it is considered as an expression. Therefore, L.H.S/R.H.S expression
is passed to getExp(expr) function.

3. The getExp(expr) function analyzes input expression for its type.

3.1. If the input expression is an atom that does not contain any relational/arith-
metic operator, script (e.g. super and sub), and LATEX function. Then the value
of the atom will be added to the parse tree as a leaf node.

3.2. Else if the input expression contains a script (e.g. ˆ,) symbol then it is added
to parse tree as a node. Furthermore, the base and script components are
separated and passed to getRelation() function for further analysis.

3.3. Else if the input expression contains an arithmetic operator (e.g. +,−,×,/,
±,∓ and \invisibletimes) then it is added to parse tree as a node and L.H.S
and R.H.S expressions are passed to getRelation() function for further
analysis.

3.4. Else if the input expression is a LATEX function (e.g. ∑,
∫
,
√) then func-

tion arguments are checked. If function contains zero argument and it is a
LATEX symbol then it passes to getExpr() function for further analysis.
Otherwise, each function argument will be separated out and again sent to
getRelation() function for further analysis.

3.5. Else if the input expression is a LATEX matrix(e.g. bmatrix, pmatrix, vma-
trix) or case statement, it passes to FnMatrix function where rows are
separated and added to parse tree and each element of a row is sent to

1028 SHARAF HUSSAIN, SAMITA BAI, SHAKEEL KHOJA

getRelation() function for further analysis and is added to parse tree
as a child of a row.

4. If the above conditions are not satisfied then an error message is generated in the
log file.

As an example, we take the equation Px
i = N!

nx!(N−nx)!
Pnx

x (1− px)
N−nx for elaborating

the concept of LATEX AST. Initially the equation is divided into two components because
of a logical operator (i.e. ‘=’) has been used. The L.H.S (e.g. Px

i) does not contain any
logical operator so it is sent to getExpr() function which constructs the L.H.S AST of
‘=’ operator. The R.H.S (e.g. N!

nx!(N−nx)!
Pnx

x (1− px)
N−nx) of ‘=’ operator contains LATEX

function (i.e. \frac), arithmetic and script operators so the R.H.S AST of ‘=’ operator
is constructed according to rules mentioned earlier. The details of AST construction is
described in Algorithm 1 and the constructed AST is shown in Fig. 2.

3.1.3 Semantic analyzer, XML tree

The Semantic Analyzer collects XML tokens from the XML Tokens repository which
are equivalent to LATEX tokens. In case of XML equivalent token is not present in the
repository then an error token is generated for unavailable one. The XML semantic tree is
generated with XML Tokens as defined in XML namespace as shown in Fig. 3. A Depth-
First-Search (DFS) algorithm is used to replace LATEX elements with XML elements in the
LATEX AST. The complete procedure of replacement of LATEX tokens with XML tokens is
shown in Algorithm 2.

Algorithm 2: XMLT (LT)
Purpose : Generate a XML Tree from a LATEX AST
Input : A LATEX Tree LT =<V,E >
Output : XML Tree

1 mark each vertex in V with 0 as mark of being ”unvisited”;
2 count← 0;
3 for each vertex v in V do
4 if v is marked with 0 then
5 Replace (v);
6 end
7 end
8 Function Replace(v):

Purpose : Visits recursively all the unvisited vertices connected to vertex v by some path and replace
each vertex with XML equivalent symbol

Input : a vertex v
Output : Replace LATEX elements with XML Element

9 count← count+1;
10 if vertex v equivalent XML element exists then
11 replace vertex v with XML equivalent element;
12 end
13 else
14 replace vertex v with < Error > tag;
15 end
16 mark v with count;
17 for each vertex w in V adjuscent to v do
18 Replace (v)
19 end

RULE BASED CONVERSION OF LATEX MATH EQUATIONS INTO CMML 1029

3.1.4 CMML encoding

The XML encoded tree is passed to CMML encoder where necessary elements
are added into it and generates a standard CMML encoded equation. For example, the
<apply> element is used to develop an expression tree that represents a function or
an operator to its arguments. The resulting tree corresponds to complete mathematical
expression. Generally, this means a piece of mathematics that could be surrounded by
parentheses or logical brackets without changing its meaning. The opening and closing
tags of <apply>. . .<\apply> specify exactly the scope of any operator or function.
Similarly, other elements of CMML are used to generate CMML encoding.

4. EXPERIMENTS AND RESULTS

To perform an experimental investigation of the conversion process from LATEX to
CMML format, the NTCIR-12 MathIR competition query set is selected. The query
set contains 20 formulae from the diverse background of mathematical fields. Each
math formula from the query set (e.g. in LATEX format) is provided to SnuggleTex13,
latexml14, and to our proposed system called LMG as an input for the CMML con-
version. The SnuggleTex converted only 4 formulae from the query set. How-
ever, latexml converted 15 formulae successfully. The LMG converted all the for-
mulae without producing any error or warning. According to experimental investiga-
tion, SnuggleTex can only perform simple and basic LATEX formulae into CMML
while latexml can perform a bit complex LATEX math formulae into CMML. More-
over, latexml cannot perform CMML conversion if .sty files are used as they are not
are not part of latexml LATEX.pool package. The proposed rule-based algorithm (e.g.
LMG) performed all conversions successfully by recognizing the inherent structure of the
mathematical expressions. The LATEX math equations used in the initial experiment and
their conversion results are reported in [18].

The extensive experiment of CMML conversion is performed on NTCIR-12
Wikipedia data set, which contains 547727786 LATEX equations in 27835 files and Arxiv15

data set, which contains 721814 LATEX equations in 2653 files. The conversion is per-
formed on latexml(version 0.8.3) and the proposed system LMG, the conver-
sion results are evaluated based on warnings and errors generated during the conversion
process.

The latexml facilitates the error handling and categorization with the help of a
comprehensive framework based on the effect produced during the conversion process.
The level of conversion problems can be broken into three categories: Warnings that
provide the information about the produced outcome that is abortive in nature, Errors that
mostly signify more complicated problems that lead to malformed results, and Fatals that
classify a class of errors that are quite severe and can cause processing to stop. The errors,
warnings, and fatals are further categorized into problem definitions, which indicate the
problem type. During the conversion process, two types of problems may arise,

13https://www2.ph.ed.ac.uk/snuggletex/documentation/overview-and-features.html
14https://dlmf.nist.gov/LaTeXML/
15https://archive.org/details/arXiv src 0310 001

1030 SHARAF HUSSAIN, SAMITA BAI, SHAKEEL KHOJA

<eq/>hhhhhhhhhh
((((((((((

sup
JJ

sub
LL��

p i

x

<times/>hhhhhhhhhh
b
bb

((((((((((
<divide/>

XXXXX
�����

<factorial/>

N

<times/>
aaa
!!!

<factorial/>

sub
AA��

n x

<factorial/>

<minus/>
SS��

N sup
AA��

n x

sup
@@��

sub
AA��

p x

sub
AA��

n x

sup
HHH
���

<minus/>
JJ

1 sub
AA��

p x

<minus/>
SS��

N sub
AA��

n x

Fig. 3. XML encoded tree of
(
Px

i = N!
nx!(N−nx)!

Pnx
x (1− px)

N−nx
)
.

Table 1. Performance comparison on Wikipedia LATEX equations.
latexml LMG
Errors Warnings Fatals Errors Warnings Fatals

undefined 8896 0 0 1063 0 0
expected 47290 31180 1035 4015 33721 37
unexpected 125783 59643 12240 14763 4532 976
not parsed 0 130326 0 0 0 0
missing file 0 0 0 0 0 0
too many errors 0 0 2 0 0 0
latex 0 0 0 0 0 0
uninitialized 0 2133 0 0 0 0
misdefined 35578 0 0 0 0 0
malformed 141396 0 0 0 0 0

1. On account of malformed TEX input, incomplete latexml bindings, or bindings
that are not well defined according to the TEX input, or the user-defined macros,
are utilized in TEX input. These issues are reported by the system as, undefined,
ignore, expected, unexpected, not parsed, missing file, too many errors, latex, and
uninitialized.

2. On account of programming errors in the latexml core, or in the binding files,
or the document model. These issues are reported by the system as, misdefined,
deprecated, malformed, I/O, Perl, and internal

The latexml error handling framework is effective and comprehensive, therefore, it has
been selected for comparing the performance of the systems latexml and our proposed
system LMG. The LMG produced three main errors during the conversion process,

1. undefined: These errors are caused by undefined/unavailable TEX tokens in the
token repository.

RULE BASED CONVERSION OF LATEX MATH EQUATIONS INTO CMML 1031

Table 2. Performance comparison on Arxiv LATEX equations.
latexml LMG
Errors Warnings Fatals Errors Warnings Fatals

undefined 8550 474 0 6551 387 0
expected 981 3887986 0 763 2706315 0
unexpected 7396 1517 1 5763 1616 0
not parsed 0 2185 0 0 47 0
missing file 129 789 0 0 0 0
too many errors 0 0 115 0 0 37
latex 62 57 0 0 0 0
uninitialized 0 50673 0 0 0 0
misdefined 2866 0 4 0 0 0
malformed 3187 142 0 0 0 0

Fig. 4. Errors and warnings comparison between latexml & LMG.

2. expected: These errors are generated due to the missing part of LATEX tokens. The
system is expected for their availability but not find in the tokens.

3. unexpected: These errors are evolved due to extra information attached with LATEX
tokens but the system is not expected their availability in the tokens.

Tables 1 and 2 show the conversion performance of latexml and LMG systems
on NTCIR-12 Wikipedia and Arxiv datasets respectively. This shows that latexml
produced many errors and warnings during the conversion process. In contrast, LMG pro-
duced a few errors during the conversion process. A comparison of errors and warnings
are also illustrated in Fig. 4.

The conversion time is another evaluation metric for the performance of both the
systems. The latexml took around 112 hours to convert 547.772 million Wikipedia
equations, in contrast, LMG took around 33.6 hours to complete this process. For the
Arxiv16 collection, which contains 721814 equations, latexml took 5 hours and LMG
took 1.5 hours to complete the conversion process. Fig. 5 shows the time comparison
of the conversion process between latexml and LMG, this graph also shows that the
performance of the conversion process of LMG is better than latexml.

16https://archive.org/details/arXiv src 0310 001

1032 SHARAF HUSSAIN, SAMITA BAI, SHAKEEL KHOJA

Fig. 5. Conversion time comparison between latexml & LMG.

5. CONCLUSION & FUTURE WORK

In this paper, we had tried to develop rules for extracting AST of math equations
written in LATEX. ANTLR-4 is used to write a grammar for these rules termed as LMG.
This grammar is then used to generate an XML tree for MathML conversion, especially
for CMML encoding. Since this conversion is strictly based on pre-defined rules, so the
output is unambiguous and precise, making our process efficient and speedy as compared
to the existing ones. The experimental results show that the proposed conversion process
is quite adequate and time-efficient.

One area of expansion to this research could be to introduce some self-correcting
mechanisms to correct malformed LATEX expression in order to reduce undefined and un-
expected errors. The LMG can also be used for Math Language Processing (MLP), which
is an emerging field of Machine Learning. In the future, we plan to use LMG for learn-
ing math concepts using Machine Learning/Deep Learning algorithms, which could be
beneficial for understanding, retrieving, and labeling math equations for expert systems.

REFERENCES

1. M. Schubotz, “Augmenting mathematical formulae for more effective querying ef-
ficient presentation,” Ph.D. dissertation, Technical University of Berlin, Germany,
2017.

2. B. R. Miller, “Strategies for parallel markup,” in Proceedings of International Con-
ference on Intelligent Computer Mathematics, 2015, pp. 203-210.

3. T. Gowers, J. Barrow-Green, and I. Leader, The Princeton Companion to Mathemat-
ics, Princeton University Press, NJ, 2008.

4. H. Stamerjohanns, M. Kohlhase, D. Ginev, C. David, and B. Miller, “Transforming
large collections of scientific publications to xml,” Mathematics in Computer Science,
Vol. 3, 2010, pp. 299-307.

5. M. Kohlhase, OMDoc - An Open Markup Format for Mathematical Documents [ver-
sion 1.2], Lecture Notes in Computer Science, Vol. 4180, Springer, Berlin, 2006.

6. R. Ausbrooks, S. Buswell, D. Carlisle, G. Chavchanidze, S. Dalmas, S. Devitt,
A. Diaz, S. Dooley, R. Hunter, P. Ion, M. Kohlhase, A. Lazrek, P. Libbrecht, B. Miller,

RULE BASED CONVERSION OF LATEX MATH EQUATIONS INTO CMML 1033

R. Miner, M. Sargent, B. Smith, N. Soiffer, R. Sutor, and S. Watt, “Mathematical
markup language (mathml) version 3.0,” World Wide Web - WWW, 01 2010.

7. S. Ohashi, G. Y. Kristianto, G. Topic, and A. Aizawa, “Efficient algorithm for math
formula semantic search,” IEICE Transactions, Vol. 99-D, 2016, pp. 979-988.

8. M. Ruzicka, P. Sojka, and M. Liska, “Math indexer and searcher under the hood:
Fine-tuning query expansion and unification strategies,” in Proceedings of the 12th
NTCIR Conference on Evaluation of Information Access Technologies, 2016, pp. 331-
337.

9. P. Graf, “Substitution tree indexing,” in Proceedings of the 6th International Confer-
ence on Rewriting Techniques and Applications, 1995, pp. 117-131.

10. M. Kohlhase, B. Matican, and C. Prodescu, “Mathwebsearch 0.5: Scaling an open
formula search engine,” in Proceedings of the 11th International Conference on In-
telligent Computer Mathematics, 2012, pp. 342-357.

11. N. Pattaniyil and R. Zanibbi, “Combining TF-IDF text retrieval with an inverted index
over symbol pairs in math expressions: The tangent math search engine at NTCIR
2014,” in Proceedings of the 11th NTCIR Conference on Evaluation of Information
Access Technologies, 2014, pp. 135-142.

12. A. Youssef, “Part-of-math tagging and applications,” in Proceedings of the 10th In-
ternational Conference on Intelligent Computer Mathematics, 2017, pp. 356-374.

13. A. Youssef and B. R. Miller, “Deep learning for math knowledge processing,” in Pro-
ceedings of the 11th International Conference on Intelligent Computer Mathematics,
2018, pp. 271-286.

14. H. Stamerjohanns, D. Ginev, C. David, D. Misev, V. Zamdzhiev, and M. Kohlhase,
“Mathml-aware article conversion from latex, acomparison study,” in Proceedings of
Workshop Towards Digital Mathematics Library, 2009, pp. 109-120.

15. G. Cevolani, “Introduzione a tex4ht,” in Proceedings of Italian TUG Meeting, 2004.
16. J. Grimm, “Producing mathml with tralics,” in Towards a Digital Mathematics Li-

brary, Masaryk University Press, Paris, 2010, pp. 105-117.
17. D. E. Knuth, The TeXbook, Addison-Wesley Professional, MA, 1984.
18. S. Hussain, S. Bai, and S. Khoja, “Content Mathml(CMML) conversion using Latex

Math Grammar(LMG),” in Proceedings of the 7th International Conference on Smart
Computing and Communications, 2019, pp. 1-5.

1034 SHARAF HUSSAIN, SAMITA BAI, SHAKEEL KHOJA

Sharaf Hussain is pursuing his Ph.D. in the field Computer
Science from the Institute of Business Administration (IBA),
Karachi, Pakistan. His core research area includes information
retrieval in general and mathematical information retrieval on
web in particular.

Samita Bai is currently pursuing Ph.D. degree in the field
of Computer Science from Institute of Business Administration
(IBA) Karachi, Pakistan. Her core research area includes seman-
tic web in general and linked data query execution strategies in
particular.

Shakeel Khoja is a Professor at Faculty of Computer Sci-
ence, IBA and a Commonwealth Academic Fellow. He read for
his Ph.D. and Postdoc at School of Electronics and Computer
Science, University of Southampton, UK. His research work
includes the development of E-learning frameworks, digital li-
braries, content and concept based browsing, and application of
multimedia tools over the web.

