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Malware analysis has been extensively investigated as the number and types of mal-
ware has increased dramatically. However, most previous studies use end-to-end systems to
detect whether a sample is malicious, or to identify its malware family. In this paper, we
introduce a framework composed of two components, RasMMA and RasNN, accounting
for common characteristics within a family. While RasMMA extracts the common behav-
iors of malware, RasNN is designed to pretrain a composition of the common behaviors
as malware representation. Different from the end-to-end models, the pre-trained malware
representation can be fine-tuned with one additional output layer to apply other malware
applications, such as family classification. We conduct broad experiments to determine the
influence of individual framework components and the feasibility of a task-specific exten-
sion model. The results show that the proposed framework outperforms the other baselines,
and also demonstrates that learned malware representation can be applied to other cyberse-
curity application and outperform the existing system.

Keywords: deep learning, dynamic analysis, malware behavior analysis, malware family
classification, malware representation

1. INTRODUCTION

Malware, such as computer viruses, Internet worms, and Trojan horses, is a major
threat in computer security, because malignant actors disrupt network services, destroy
software or data, steal sensitive information, or take control of a host, often resulting
in dramatic personal or business losses. As the number of malware has increased dra-
matically, it poses an even more significant threat to the Internet worldwide. Most mal-
ware programs are borrowed, modified, or combined from existing malware. In addition
sophisticated obfuscation techniques, such as polymorphic engine, compression, encryp-
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tion, or packing tools [1,2] are applied to evade from detection. This explains the growing
interest in advanced techniques of malware detection [3] and malware classification [4].

Antivirus products have focused on using individual malware signatures for mal-
ware detection. More recently, with the development of obfuscation techniques [1, 2],
some variants/members of a malware family are mutated using polymorphic or metamor-
phic techniques. As the resultant obfuscated behavior not just increases the difficulty of
identifying effective signatures, malware may bypass static signature-based detection and
evade virus scanners. In addition, many works, such as Sebastidn et al. [5] and Zhang
et al. [6], pointed out that labels (malware classes) from different antivirus vendors are
inconsistent due to the classification rules of vendors. The inherent label inconsistency
problem of antivirus vendors leads to profound difficulties in the study of the characteris-
tics of malware family. All issues above suggest that a behavior-based approach is needed
in investigating the characteristics of malware.

One of the major characteristics of malware is its family. The criteria of a malware
family are based on common features such as attribution to the same origins or the same
techniques that can be observed from the execution activities. Reversely, a malware has
common behaviors inherited from its malware family, while it may exhibit distinct be-
havior [6]. Thus, learning from the behavior of each individual variant of a family helps
to understand the scope of a malware family, and to detect or classify unseen variants of
the malware family. Malware detection, another popular cybersecurity application, deter-
mines whether the examined software is a malware or not, which also requires knowing
the common characteristics of malware to make the decision.

Representation learning learns the characteristics of input data (such as execution
traces) and transforms to a low-dimensional representation [7] using neural networks with
little or no domain knowledge that the learned representation can be for later uses, such as
malware detection, classification or clustering. Representation learning has been shown
a great success in the field of Artificial Intelligence, especially in Natural Language Pro-
cessing (NLP) [8—10]. The representation learning of cybersecurity emerged, such as bi-
nary code similarity detection [11], cyber-attack [12], and static malware analysis [6, 13].
However, the representation learning of common behaviors from dynamic malware exe-
cution traces has rarely been investigated.

Inspired by the recent advances in the deep representation learning, this paper in-
troduces a malware representation learning framework, composed of two components,
RASMMA and RASNN, accounting for the common characteristics of a set of labeled
malware samples. First, a malware sample is executed in a VM or sandbox [14, 15] and
its dynamic execution trace, represented as a sequence of API calls with its parameters
and return values is collected. Second, the collected execution trace is used to extract
the common behaviors of a family by using the RASMMA algorithm. Finally, the output
from RASMMA is fed into the proposed neural network model, RASNN, to capture the
invariant representation of the set of malware. The learned representation can be used
for cybersecurity tasks, such as malware family classification. For the case of family
classification task, when an unknown malware sample is given, its representation can be
calculated from the learned representation and compared with the representations of mal-
ware families. Sufficient matching score can identify the malware family that the sample
belongs. The advantage of invariant representation is that it needs to be trained one time
for various application with fine-tuned only.
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This paper makes the following contributions.

* We employ the RASMMA algorithm, a motif-based mining algorithm, to extract
common behavior from a collection of run-time API call sequences of malware.

* We develop a neural network model, RASNN, to learn a malware representation
preserving the invariant characteristics of a malware family from the output of RAS-
MMA.

* We design an embedding function to preserve the semantics of API parameters as
well as temporal relationships of relevant events in a malware run-time trace.

* We conduct an empirical study on a cybersecurity task, malware classification, to
examine the efficacy of the proposed framework. It performs well that indicates
that the learned representation is effective and explainable with physical meaning.

2. PROPOSED FRAMEWORK

Fig. 1 depicts the workflow of the proposed framework with components for realizing
each step of our proposed approach. The proposed approach consists of the following
steps.

* Malware Profiling. To obtain the execution profiles of malware, we employ an
automatic dynamic malware profiling system [14, 15] for preventing malware eva-
sion. As a malware is composed of several processes collaboratively conducting
malicious intents, we record trace for each process to observe its individual behav-
ior. This yields the input data for Common Behavior Mining in Section 2.2 and
Neural Representation Learning in Section 3.

* Common Behavior Mining. The run-time API call sequence-based motif mining
algorithm (RASMMA), extracts the common behaviors of a collection of labeled
malware samples. RASMMA, introduced in Section 2.2, is a clustering algorithm
which aligns and groups profiles and captures the common characteristics of the
families.

* Neural Representation Learning. Using the recorded traces and their common be-
haviors, we train a neural network model (RASNN) to learn a malware profile rep-
resentation as a pre-training model for the fine-tuning to construct task-specific
model. Details are in Section 3.

* Task-Specific Modeling. When the profile of a given unknown sample is taken,
the pre-trained RASNN model transforms its profile into numerical vectors as its
behavioral patterns. Potential tasks, such as malware detection and malware classi-
fication, as the downstream tasks, finetunes the parameters to learn the task-specific
representation. Details are in Section 4.2 respectively.
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Fig. 1. Workflow of the proposed approach; () The profiling system records malware execution
traces; @ The RASMMA recognizes the common behavior patterns s of traces; 3) The RASNN
learns malware representation; 3) Using malware representation, a task-specific model can be fine-
tuned and produce the resulting labels for an unknown malware.

2.1 Execution Trace Generation

To capture the essentials of the execution behavior of a malware program during the
course of the execution of the malware, we use an automated dynamic malware behavior
profiling and analysis system based on virtual machine introspection [14,15]. The advan-
tage of the system is that it records only selected API calls (while it allows a user to add
more API hooks) rather than all system calls, which reduces trace sizes dramatically.

Each malware is profiled for five minutes to generate the trace of Windows API calls.
An execution trace contains a sequence of API call invocations of the hooked API with
the parameter names and their values, as well as the returned value. Fig. 2(a) show an
execution trace of a malware with MD5 value, 4ee776bc7e11de7afb1f847a8f73d445 and
in Fig. 2(b), each API call in the execution trace is winnowed into a reduced format that
will be fed into the following processes. For example, for the first API call LoadLibrary
with the timestamp #36437000, the parameter value C:\ WINDOW S\ system32\icmp.dll
is reduced to SYS@icmp@DLL.

2.2 Common Behavior Mining

A hierarchically clustering algorithm, named RASMMA, is used to extract common
behaviors (called motif) in the form of API calls from the winnowed traces of malware
variants for malware clustering. The resulting hierarchically structured clusters reveal
the relationship among different malware variants from their assigned clusters. A trivial
example, as shown in Fig. 1, with given common behavior and similarity score of each
pair of variants, RASMMA firstly combines two variants G1 and G2 into a cluster G5
since they have the highest similarity score ¢4 in the first iteration, and so on RASMMA
combines another variant G3 with G5 as they have the highest similarity score among
all remaining pairs in the next iteration. Finally, RASMMA terminates when there is no
pair of clusters with similarity score higher than a predefined threshold. The root of the
resulting tree has the most common sequence of all malware variants. Note that some
variants may not have common behavior with others, such as G4, called loner hereafter.
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#364370000

LoadLibrary

lpFileName=C: \WINDOWS\system32\icmp.dll
EAX=74290000

Return=SUCCESS

#364860000

CreateFile

lpFileName =\\.\Ip
dwDesiredAccess=GENERIC_EXECUTE
dwCreationDisposition=OPEN_EXISTING
dwShareMode =FILE_SHARE READ FILE SHARE WRITE
EAX=54

Return=SUCCESS

#367160000

RegCreateKey

hKey=HKEY CLASSES_ROOT

1pSubKey=CLSID\ {4AEDBC33-8B19-7F8D-B932-E844B2219184}\LocalServer32
EAX=0

Return=0

#367230000

RegSetValue

hKey=
HKEY_CLASSES_ROOT\CLSID\{4AEDBC33—8B19—7F8D—BQ32—E844B2219184)\LocalServer32
dwType=REG_SZ

lpData=malware.exe

EAX=0

Return=0

(a) An execution trace.

LoadLibrary#PR@SYS@icmp@DLL#Ret#0
CreateFile#PRE@\\.\ip@NON#PRRGENERIC EXECUTE#PRGOPEN EXISTING#PREFILE SHARE R

RegCreateKey#PREHKCR@hkey classes root#PRE@clsid\{REG}\localserver32#Ret#0
RegSetValue#PREHKCR@clsid\ {REG}\localserver32#PREREG_SZ#PREmalware.exe#Ret#0

(b) The winnowed trace.
Fig. 2. An example of execution trace (a) and its winnowed trace (b) from a malware sample with
MDS5 value, 4ee776bc7el 1de7afb1f847a8f73d445.

The idea behind RASMMA is the Global Sequence Alignment Algorithm (also
known as Needleman-Wunsch algorithm) [16] for identifying the common behavior
of two sequences of API calls. Given two sequences A = (a1,42,...,4,), and B =
(by,b3,..,b,), the matches score (@), mismatches score () and gaps score (%), the score
function is defined as S(a;,b;) = a if a; = bj, S(a;,b;) = B if a; # bj and S(a;,—) =y
where “—" is an inserted space. The Global Sequence Alignment Algorithm using dy-
namic programming generates a sequence C = (cy,¢3,..,¢;) with the maximum score in
terms of the given score function. For instance, given two sequences ABACABDCB and
DBACDCDD, and 8, -5, —3 as matches, mismatches, and gaps scores, respectively, the
computation result is shown in Fig. 3 and the output sequence is BAC*DC with score 21.
In general, the time complexity of the algorithm is O(nm).

RASMMA includes three advantages; (a) a heuristic procedure that can combine
multiple items in one iteration to boost the performance; (b) a new distance function
to evaluate the distance between two text-based sequences, API calls, to find two clos-
est variants for clustering; and (c) an alignment-based feature extraction and selection
method for the representation of a cluster, to extract common behavior from a collection
of malware. More details can be found in [17,18].
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Fig. 3. An example for global sequence alignment.

3. NEURAL REPRESENTATION LEARNING

The purpose of the neural model, RASNN, is to compute a malware representation
of representative motif sequences from a given execution profile. Two proposed modules
include a) an embedder to transform each Windows API call into a numerical vector (em-
bedding), which preserves the relations within API calls and the semantics of parameter
values, and b) an encoder to process sequences of Windows API call vectors and calculate
the attention weights among them to examine the importance of each Windows API call.
Fig. 4 describes the neural model architecture.

Sy Sy S3 Sm
; £ ¥ :

| linear and sigmoid layer ‘

Fig. 4. Model architecture.

3.1 Task Definition

Given an input malware profile x = {xi, ..., x, }, we seek to identify its representative
sequence as s = {s1,...,8,}. More specifically, each API call in x represents each line
in Fig. 2(b), its corresponding output value s = {s,...,s, } denotes whether an API call

X; is representative or not, as the outcome of RASMMA. The malware representation is
obtained by y; = §; ~x§, where x’ is the API call embedding from the embedder and §; is
the predicted API call’s importance score from the RASNN.
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3.2 Embedder

An embedder takes a variable-length execution trace x = {xj,...,x,} as the input
and outputs a sequence of embedding vectors x’ = {x},...,x},}. A Windows API call x;
consists of an API function name, one or more parameter values, and one (if any) return
value. Previous work used one-hot encoding [19] or a learnable embedding matrix [20]
to generate input embeddings. Since parameter and return values are considered in this
work, it is difficult to adopt these approaches directly because of the infinite number of
possible values. Additionally, recent advances in deep learning first pre-train a neural
network on a task and then fine-tune it to yield a new purpose-specific model. Thus, the
embedder uses two state-of-the-art pre-trained models — BERT [10] and SENT2VEC [9]
— to build the embedding matrice.

BERT (bidirectional encoder representations from transformers) [10] is used to ini-
tialize the function name embedding #}. It yields promising results in many natural lan-
guage processing tasks such as sentiment analysis and question answering. The key in-
novation of BERT is the learning of contextual relations not only between tokens in a
single sentence but also between two contiguous sentences. The BERT model is used as
the basis for our embedder and is fine-tuned on our dataset. This allows the embedder
to enhance the semantic structure of a single Windows API call. Moreover, it yields a
better understanding of the relationships between two consecutive API calls. Here, we
take a single profile as a document and a single Windows API call as a sentence. After
the training, we extract the last four hidden states of the function names and average them
to populate the learnable embedding matrix E as

n; =En; (1)

where a parameter matrix E € R4/l where |n| denotes the number of selected function
names, and d denotes the BERT embedding size.

SENT2VEC [9] is an unsupervised learning model for sentence embeddings in the
field of NLP. The basic concept behind which is that it considers not only unigrams but
also n-gram sequences in a single sentence, allowing the model to learn the sentence
embedding based on its possible constituent words.

We treat a Windows API call as a sentence and use SENT2VEC to learn API call,
including parameters and return values, embeddings. First, a Windows API call x is
changed to lowercase and tokenized. The SENT2VEC model learns each token and n-
gram embedding within a single Windows API call. The API call embedding ¢} is then
the average of the n-gram embeddings.

Y < )

wER(x)

, 1
Ci= =
[R(x)]
where R(x) is the list of n-grams in a given Windows API call x, ¢’ € R represents the
learned source embedding.

Both BERT and Sent2Vec treat an API call as a sentence, tokenize it with the delim-
iters, and learn the contextual relations among a function name, parameter tokens, and a
return value of an API call. Both of them are trained on our dataset separately and frozen
for the following procedure. Each API call embedding x; is composed of a function name
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embedding n} and a complete API call embedding c}:
Xj= m®c 3)
where @ is element-wise addition.

3.3 Encoder

A malicious execution profile comprise sequences of interleaved API calls with dif-
ferent intentions, namely, normal behaviors, redundant events, and malicious actions.
Also, among Windows API calls there exist several types of relations. For instance, a
cross-reference relation (e.g., two API call may use the same parameter value) suggests
the associated API calls are of the same intention. This can complicate the identification
of representative API call sequences.

With the encoder, we seek to process each API call embedding X' = {x/,...,x,,}
in an execution profile and produce a series of importance scores s = {s1,...,5y}. The
encoder accounts for this using a GRU layer and a self-attention layer. The GRU layer
processes the ordinal relation over API call embeddings, the self-attention layer calculates
the association between API call embeddings, and the sigmoid layer outputs the ratio
between the probability that a certain API call is important and not. Gated recurrent
unit [21] is part of the recurrent neural networks (RNNs) family and is used to learn a
hidden state &; at timestep i which can be seen as a summary of the past sequence from
the beginning up to i — 1 and the current input x/.

]’l,' = GRU(x;,hl;l) (4)

This summary maps an arbitrary length sequence 4y,...,h;_| and the current observation
x} to a vector h;. Compared to other RNNs, GRU solves the vanishing gradient problem
[22] with equally fair results.

Next, we utilize a self-attention layer to compute the weighted API call latent vari-
able z; over the hidden state ; from the GRU layer. The attention weights are calculated
by comparing each pair of Windows API calls in Eq. (5), and normalized with the soft-
max function Eq. (6) to produce a distinct distribution for each API call in a profile.
Finally, these weights are then multiplied with the associated hidden state to obtain the
self-attended API call representations in Eq. (7).

eij = sigmoid (W, tanh (hj Wi+ h’; W; +b;) + b,) (5)

a; = softmax(e;) (6)

Zi= Zaijhj @)
J

where W;, W;, and W, are weight matrices, b; and b, are distinct bias. A self-attended
API call representation z; can be seen as the weighted summarization with respect to the
API call input i over the API call representations. The self-attention mechanism compares
the relations of each pair of API calls and captures their relative importance. This is an
improvement of previous work [20] which focuses only on consecutive API call sequences
in a given profile.



LEARNING DYNAMIC MALWARE REPRESENTATION FROM COMMON BEHAVIOR 1325

Finally, the representation Z is then passed to a feed-forward layer, which consists of
a linear layer and a sigmoid layer. The sigmoid layer outputs the conditional probabilities
of the estimation, called importance score § = {§;...5 }.

§ = sigmoid(ZW*) (8)
where W< € R,

3.4 Training

The output from RASMMA is the ground truth for the importance scores s, s €
{0,1}. We train the model using binary cross-entropy loss.

1 & N N
L= —;;silog(s;) + (1 —s;)log(1 —§;) ©)

where n is the number of profiles in a training dataset. The Adam optimizer [23] was used,
and early stopping [24] was employed on the validation dataset to prevent overfitting.

4. EVALUATION

The goal of our evaluation is to examine whether the proposed components from
RASNN is effective and whether it can be applied in other cybersecurity tasks.

4.1 Component Effectiveness

For evaluating the effectiveness of the proposed RASNN, we are interested in an-
swering the following question:
Q1: How effectively does the proposed RASNN identify important API call sequences?

4.1.1 Dataset

We selected 6,585 malware samples from NCHC!, Taiwan. Using the VMI pro-
filing system, we generated a profile per process, and obtained 9,819 profiles from the
samples. We uploaded the samples to the VirusTotal> website in May, 2019 to ob-
tain their labels. VirusTotal returned family labels defined by various anti-virus ven-
dors. However, the family labels are inconsistent. For example, the malware with MD5
value, 0d885d060776b823c9cf039695991731, is labeled WORM/Vobfus.CF, Gen: Vari-
ant.Chinky, and Win32/AutoRun.VB.AGQ, by Avi-ra, BitDefender, and ESET-NOD32
respectively. Anti-virus vendors each have their own naming schemes, and thus often
can not reach a consensus, as described in [5,6]. We determined each family label by a
majority vote of vendors.

We follow [18] to set the RasMMA similarity threshold ¢4 as 0.8 to compute Ras-
MMA behavior trees, and further removed samples with too many or too few API calls
and the final dataset included 8,176 profiles from 6,056 samples, and 133 families yield-
ing 808 behavior subtrees. We randomly divided the dataset into a training dataset (80%),

"https://owl.nchc.org.tw/
2https://www.virustotal.com/gui/home/upload
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Table 1. Descriptive statistics for training, development, and testing sets.

Training | Validation | Test
Samples 5,466 431 481
Profiles 7,215 453 508
Families 133 47 47
Subtrees 808 135 135

a validation dataset (10%), and a testing set (10%). The numbers of samples, profile,
families and subtrees are shown in Table 1.

4.1.2 Implementation details

We set the sizes of the embedding unit 7/, ¢’ to 768 and the hidden unit 4, k, g, v to
192. We used the Adam optimizer with a learning rate of 0.001. The mini-batch size for
the update was set to 128.

4.1.3 Results

In the RASNN, the embedder employs both the function name embedding from
BERT and the complete API call embedding from SENT2VEC, and the encoder uses
both the GRU and self-attention. Ablation tests are used to investigate the contribution
of each component in the neural model to overall performance. In the experiment, we
compare with the embedder using BERT or Sent2Vec only. For the encoder, we present
GRU and multi-layer perceptron (MLP) layer only. The MLP has two fully connected
layers without any recurrent neural units or attention mechanism.

We report our result on the test dataset with Precision, Recall, and F1 score. Preci-
sion denotes the ratio of correctly estimated important Windows API calls. Recall denotes
the ratio of correctly estimated important Windows API calls to all profiles, reflecting the
classifier’s ability to detect all important API calls. F1 score denotes the weighted average
of Precision and Recall. Table 2 shows the performance for each model. The proposed
RASNN outperforms all other models by a large margin, showing that the proposed em-
bedder and encoder facilitate representative API call detection. The model clearly im-
proves significantly when considering API calls with parameters and return values, as it
explicitly provides more information. In addition, the performance drops when the en-
coder only considers either GRU or MLP, suggesting that the learned self-attention and
GRUs play an important role in capturing the relative importance and preserving the or-
dinal information of the Windows API calls in a profile.

Table 2. Experimental results.
Precision | Recall F1 score

RasNN 88.15% | 86.56% | 87.35%
- BERT 85.81% | 86.00% | 85.91%
- Sent2Vec 70.95% | 85.12% | 77.37%

- Self-attention | 77.99% | 40.01% | 52.89%
- GRU 63.93% | 73.13% | 68.22%
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These findings answer our question Q1 in that considering API calls with parameter
and return values, the attention (i.e., relative importance) and the ordinal information of
API calls all together improve the overall performance of detecting significant behavior
patterns.

4.2 Malware Classification Evaluation

Section 4.1.3 demonstrated that the pre-trained malware representation outperformed
the other ablated models, the pre-trained parameters can be used to initialize a downstream
task. In this section, we use malware classification to demonstrate an extension task with
the pre-trained malware representation. For malware classification, when given a pro-
gram, the goal of family classification is to predict which known families it belongs to.
This task-specific model is formed by incorporating the pre-trained malware represen-
tation with additional RNNs and a softmax layer. Therefore, only a limited number of
parameters in the task need to be trained from scratch. For evaluating the extensibility of
the proposed RASNN, we are interested in investigating a research question:

Q2: How effectively is the pre-trained malware representation used to perform as a mal-
ware classification?

4.2.1 Experimental setting

For malware classification, we design two datasets to investigate the RASNN’s abil-
ity in identifying common and uncommon families. One is 10 families with sufficient
samples, the other one is the 10 families with uncommon families (insufficient samples).
For the first set, we selected 3,781 samples from 10 families, allaple, fakealert, fakeav,
kazy, solimba, sytro, ursu, virut, vobfus, zbot, from known malicious samples. For the
second set, we additionally selected 369 samples from bdmyj, directdow, expiro, fesber,
hotbar, picsys, vilsel. They were randomly assigned 80%, 10%, 10% of malware families
into the training, validation, and testing set. A neural malware classifications [25] , a DL-
SVM classification for processing malware binaries, is trained using labeled data in our
dataset for comparison.

4.2.2 Results

As Table 3 shown, the fine-tuned RASNN outperformed the existing neural sys-
tem [25] no matter the samples are sufficient or not. For example, sytro, RASNN can
correctly identify more samples in the family than [25] does. One of the possible reasons
is that RASNN can successfully recognize the common behavior of the family, which
sytro mainly drops copies of itself to a temporary folder , and modifies a registry key to
cause a system fault. Moreover, RASNN can successfully identify uncommon samples
from the test set, while [25] is sensitive to some significant but untypical behaviors. For
instance, a sample (MDS5: 521d02c5aad5eb050a98dd63d323d400) from fesber shares the
same behavior with sytro, which creates and writes an executable file in the location of
user folder. But [25] fails since it lacks the common characteristics of a malware family.
This suggests that the task-specific RASNN is more robust and effective, compared to the
existing end-to-end malware classification.

To better understand the neural malware representation, we selected a malware fam-
ily, Worm:Win32/Allaple, as a case study. According to [26-28], Allaple is the name of



1328

Table 3. Results of malware family classification.

YI1-TING HUANG, TING-Y1 CHEN, SHUN-WEN HSIAO, YEALI S. SUN

10 Family 10 Family + Uncommon samples

Precision | Recall | FI1 score | Precision | Recall F1 score

DL-SVM [25] | 52.70% | 44.05% | 47.78% | 42.28% | 40.46% | 40.06%
RasNN 58.69% | 57.89% | 57.21% 54.68% | 56.02% | 54.68%

a malware family that copies itself multiple times to hard drive and hijacks a COM ref-
erence for every copy of itself. It also performs denial-of-service (DoS) attacks against
targeted remote Web sites. We visualize the malware representations to investigate the
meanings of malware representations in the family and the comparison with malware rep-
resentations from other families, and to discuss the characteristics of loner trees.

Fig. 5(a) presents the malware representations extracted from each sample in Al-
laple. Based on the output from RASMMA, only four behavior trees are generated,
which exactly correspond to the four major groups in the figure. Most of the testing
profiles are located near those from the training dataset. This demonstrates that the pre-
trained malware representation could capture the main characteristics of a malware family
and be used to detect an unknown sample based on similar known representations. We
also provide a semantic description of each group in Table 4. It is obvious that G2082
and G2097 are respectively corresponding to malicious behaviors, self-propagating and
COM hijacking. G2087 and G2100 might refer to actions the malware would try to figure
out the system environment before establishing any execution. This illustrates that the
model seems to learn the hidden information behind behavior trees in both numerical and
semantic spaces.

Allaple
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Fig. 5. Malware representations; (a) 2D embedding of malware representations from Allaple family;
The points (gray from training dataset, red from test dataset) are grouped by behavior trees; (b)2D
embedding of all malware representations from training dataset.

Fig. 5(b) shows all malware representations in the training dataset, in which many
profiles in the different families overlap within the major four behavior groups in the
Allaple family. This meets our assumption, which is different malware families may
share the same characteristics. This could be due to pluralism, that is, the characteristics



LEARNING DYNAMIC MALWARE REPRESENTATION FROM COMMON BEHAVIOR 1329

Table 4. Semantic description of four clusters.

Group | Extracted sequences

A large number of functions to create files named as a crack game executable file
G2082 | or a program password generator in the temporary directory “%TEMP%” in Windows,
and to copy itself (malware) to the created files.

A number of functions to query registry values to collect information about RPC and

G2087 functions to create endpoints for RPC over SMB.

G2097 A series of functions to access registry for registering itself (malware) as a CLSID
reference to a binary path in the data field of “LocalServer32.”

G2100 A series of functions to access registry for query information about “WinSock2” on the

system.

of a behavior tree extend across more than one family. For example, the Graftor, Virut,
and Expiro families share the G2097 behavior tree, which means some of them would
performance COM hijacking. This evidence is consistent with the technical description
of threat intelligence in [29-32]. Thus, compared to a end-to-end family classification,
our classification criterion relies on the characteristics of a family. This could break the
limitation when a family may exhibit more than one type of behavior, and that some of
these behaviors are shared by different families.

These findings answer our question Q2 in that the malware representation can repre-
sent common behaviors of a malware family and can be used to recognize the members of
a malware family. This learned behavior can effectively distinguish variants from different
malware families. Thus, the proposed framework is effective for malware classification.

5. RELATED WORK

5.1 Neural Malware Analysis

A large body of literature exists in malware behavior analysis [3,4]. This can be
classified into static analysis and dynamic analysis. Static analysis collects information
from binaries or source code by decompressing or unpacking rather than executing them.
Dynamic analysis focuses on execution activities from API calls or system calls when a
device has been infected. We focus on related work that use neural networks to model
and extract malware behavior.

Malware analysis with deep neural networks, transforming various features into a
numerical vector, were demonstrated that could reach high scalability and better accu-
racy. Such as Athiwaratkun et al. [33] and Pascanu et al. [19] investigated echo state
networks (ESNs), recurrent neural networks (RNNSs), convolutional neural networks and
long short-term memory (LSTM) to learn mailicous events for malware classification.
Agarap [25] integrated deep learning algorithms with Support Vector Machine (SVM),
i.e. CNN-SVM, GRU-SVM and MLP-SVM to find the relation between a given malware
and its corresponding family. Agrawal et al. [34] demonstrated the usefulness of pa-
rameters associated with Windows API calls and developed an algorithm integrated into
neural networks. Huang et al. [20] and Yakura et al. [35] incorporating attention mech-
anism into neural networks, can respectively capture local event patterns and suspected
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code segments in malware.

We differ from all of those approaches in three main ways. First, we make use of
the pre-trained model to fine-tune embedding of Windows API calls. Second, we consider
the ordinal and association among Windows API calls, both of which showed significantly
improve recognition of the characteristics of malware. Finally, we consider to learn the
importance of Windows API call sequences as the representation of a malware. It is not
like most current malware analysis systems, focusing on developing end-to-end neural
network models to detect whether a sample is malware, or identify which malware family
it belongs to.

5.2 Representation Learning in Security

Many powerful representation-learning algorithms implemented in different data
sources and domain, such as WORD2VEC [8], SENT2VEC,PAGLIARDINI2017UNSU
PERVISED and BERT [10] in natural languages, and Gemini [11] and ATTACK2VEC,
SHEN2019ATTACK2VEC in security, ASM2VEC,DING2019ASM2VEC and ANDRE [6]
in malware analysis. We focus on related work that applies deep representation to security
problems.

Embedding application has been developed in several security tasks, such as vulner-
ability search, intrusion prevention system, and malware detection. Xu et al. [11] firstly
proposed a neural network-based approach, Gemini, to transform the control flow graph
of each binary function into a numeric vector. This was demonstrated that it worked suc-
cessfully for vulnerability search in firmware images. Shen et al. [12] introduced a tem-
poral word embedding algorithm, ATTACK2VEC, to model and monitor the evolution of
cyber-attacks. This can be effectively used to flag any emerging attack before unfolding.
Ding et al. [13] developed an assembly code representation learning model, ASM2VEC,
to model the control flow graph and assembly code syntax. This static approach demon-
strated that learning lexical semantic information behind assembly functions could be
more resilient to code obfuscation and complier optimzations. Zhang et al. [6] designed
Android Network Representation Learning (ANDRE) model to embed heterogeneous in-
formation, including Android code sequence, metadata and label information, into a latent
feature space in the network for clustering weakly-labeled malware.

The differences with related work can thus be summarized as follows: First, we
mine the behavior patterns of known malware and learn them as malware representations.
Second, the representation only considering dynamic features of malware can distinguish
one malware’s characterises from another.

6. CONCLUSION

We introduced a novel approach for generating malware representation that learning
embeddings of behavior patterns as malware characteristics. Our evaluation shows that
the proposed neural framework outperforms other components by large margins with re-
spect to utilize pre-trained models to extract the properties of a single API call as well
as consecutive API calls, and use GRU and self-attention to reflect dependencies among
API calls. We show that pre-trained representations reduce the need for many heavily-
engineered task-specific architectures. Our demonstration of a potential application, mal-
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ware classification, shows that malware representation can successfully distinguish a mal-
ware from other malware families on the basis of embedded characteristics that match
known malware families.

This study has the undeniable merit of offering valuable insights into malware rep-
resentation, but it has some limitations. First, like supervised learning-based approaches,
our framework requires malware samples for learning the characteristics of malware fam-
ilies. The more samples are given, the more accurate and robust representation is. Second,
we define the malware representation based on the malware behavior patterns from fam-
ilies, the results of malware classification are acceptable but less than 60%. To improve
the performance, we plan to explore significant behavior with self-supervised learning or
unsupervised learning approaches, rather than the common behavior of a malware family
solely. Moreover, we further consider to employ more other downstream tasks, such as
behavior detection in the future. Finally, unfortunately, for most of the other malware
analysis approaches were not publicly release. It was difficult to make a reasonable com-
parison. We further plan to release our dataset and trained model for future evaluation.
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