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Traditional engineering drawings are widely used but not easily digitally accessible 

or searchable. This paper presents a novel method for digital recognition of engineering 
drawings understanding. We investigated two tasks that determine the performance and 
accuracy of a recognition method: drawing classification and character sequence recogni-
tion. Engineering drawings consist of three types, and each type contains different geo-
metric features. First, we propose a new method combining random sample consensus and 
geometric features to address the classification problem. The classification error of this 
method is less than 5%, and we designed a strategy that enables users to correct misclas-
sifications. After precise classification of drawings, the feature information extractor can 
be applied effectively. Second, we use an end-to-end neural network combining the con-
volutional neural network (CNN) and recurrent neural network to recognize sequence la-
bels. In contrast to traditional character recognition methods such as those that use support 
vector machine and CNN technology, the proposed end-to-end neural network architecture 
integrates character segmentation, feature extraction, and character recognition. The per-
formance of this character recognition method on real-world engineering drawings was 
shown to be robust and competitive.          
 
Keywords: text recognition, deep learning, end-to-end neural network, feature extraction, 
object detection 
 
 

1. INTRODUCTION 
 

“Construction according to plan” is an important principle of quality control in civil 
engineering. Engineering drawings are the basis for construction and inspection. However, 
investigations have found that when using traditional drawings there are at least but not 
limited to the following three disadvantages. 
 
 Each set of engineering drawings contains dozens or even hundreds of papers. It is nec-

essary to copy dozens or even hundreds of drawings that have been reviewed and stamp-
ed by relevant departments. The drawing cost is very high.  

 A set of drawings is very heavy, and the drawings are at least divided into floor plans 
and node diagrams. It is not easily portable and highly inefficient when search and switch 
between those two types of drawings.  

 These drawings are reproductions produced on blue paper coated with a photosensitive 
coating. They do great harm to our body. Besides they waste a lot of paper and are not 
friendly to environment.  
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In recent years, the Chinese departments have implemented some reforms to use the 
archive’s digitization of working drawings and the electronic review of drawings. However, 
due to Chinese national laws and regulations, only the drawings reviewed and confirmed 
with a stamp and signature by the relevant departments can be used as the basis for con-
struction. Therefore, the current construction is still according to the “blueprint” but not a 
drawing of an electronic version of CAD. 

In view of the shortcomings of the traditional printed drawings, this paper proposes a 
new method of using drawings on the mobile terminals, which can greatly reduce costs, 
improve efficiency, save paper and is harmless to human body. The method photographs 
the working drawings through the mobile terminal, recognizes the type of the drawings, 
and identifies the characters of field codes, so as to realize the automatic entry and the 
inquiry of drawings.  

The proposed recognition method consists of two parts: drawing classification and 
sequence label recognition. The first step towards transforming an engineering drawing 
into a labeled image is scanning, which individuals perform using mobile phones with 
flexible image acquisition style, thus enhancing the complexity of the scanned image back-
ground. In addition, the scene complexity, uneven lighting, and image blurring, drawing 
degradation and distortion also present challenges to recognition methods for engineering 
drawings [35]. Because there are three types of engineering drawings, each with different 
geometric features, the drawings must be classified before labels are identified from their 
geometric features. In drawing classification, we focus on geometry extraction, including 
circle detection, table detection, and stroke-width detection. Most previously proposed 
classification systems [1, 10, 22, 25, 27, 33] detect circles and tables according to curvature, 
and the images are taken from a flatbed scanner, which, unlike a mobile phone camera, 
cannot detect paper degradation [26] or drawing distortion. Therefore, in the proposed 
method, we detect circles by using random sample consensus (RANSAC) technique. A 
RANSAC-table method is designed for detection of table distortion. Using these subtasks 
for geometry feature detection, a drawing can be precisely classified, and label location is 
extracted from the geometric features for further sequence recognition. 

Related studies such as [3, 8] divide text recognition into text location, text segmen-
tation, and single-character recognition. Single-character recognition involves machine 
learning [3] and convolutional neural networks [34]. In some state-of-the-art designs, net-
works combine text detection, text segmentation, and character recognition [20] or employ 
sequence recognition architecture [28]. Focusing on efficiency and drawing recognition 
performance, we designed a neural network architecture based on label segmentation and 
sequence recognition. This design is proven to be effective and efficient for engineering 
drawing recognition. 

2. RELATED WORKS 

With regard to the engineering drawings discussed in this paper, labels are identified 
according to one of three geometric shapes: a circle, table, or underline. The geometric fea- 
tures have to be extracted to precisely classify an engineering drawing before sequence 
label recognition can be performed.  

Engineering drawing recognition methods involve two main tasks: engineering draw- 
ing classification and character sequence recognition. In this section, a brief introduction 
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to related works on engineering drawing classification and character sequence recognition 
is presented. 
 
2.1 Geometric Feature Extraction 

 
In general, engineering drawings can be classified into one of three types, which are 

distinguished by label location. Different locations correspond with different geometric 
features. 

Traditional circle detection methods are roughly comprised of the following catego-
ries: Hough transforms; geometric hashing; template matching; stochastic techniques, in-
cluding RANSAC techniques; and genetic algorithms [1]. The Hough transform-based 
methods have been proven to be simple and effective for circle detection. The Hough trans-
form detects a circle through a voting procedure implemented in a parameter space. How-
ever, the greater the complexity of the background and the smaller the radius of the circle, 
the more expensive the transform becomes to compute; additionally, the performance and 
efficiency of the Hough transform decreases. Moreover, the Hough transform is not sensi-
tive to broken circles. When target circle has translation and scale change, template match-
ing method needs a lot of search time, which makes this method difficult to be applied; 
Genetic algorithm has high requirement on image and weak robustness of environment; 
The geometric hashing approach is applied to match geometric features against a database 
of such features Geometric hashing encodes the model information in a pre-processing step 
and stores it in a hash table. The major disadvantage of the method is that the same subset 
has to be chosen for the model image as for the previously acquired images. RANSAC’s 
advantage is its ability to do robust estimation of the model parameters, i.e., it can estimate 
the parameters with a high degree of accuracy even when outliers are present in the data 
set so the comparatively efficient and robust RANSAC approach for detecting circles in 
engineering drawings is adopted for the method proposed in this paper. 

Numerous methods have been proposed to address the problem of table detection, 
because tables include vital information such as summaries and comparisons. However, 
most traditional image processing methods are based on the use of a flatbed scanner [10, 
22, 27, 33]. An approach for detecting the frame lines of a table using the Hough transform 
was presented in [33], whereas the method discussed in [27] was developed to detect dif-
ferent document layouts, and the approach presented in [22] relies on the detection of dif-
ferences between table columns gaps and text line gaps. With the development of the mo-
bile devices, methods such as that detailed in [26] have been developed that focus on table 
detection in camera-captured document images where the boundary of the table is clear 
and not connected to other information. However, because of the complexity of engineer-
ing drawings, a table boundary is not isolated; rather, it is connected to the background of 
the whole drawing. Therefore, in this paper we propose a method based on RANSAC to 
solve the problem of complex table detection. 

 
2.2 Character Recognition 

 
Character recognition refers to alphanumeric recognition of printed or handwritten 

characters. Character recognition approaches can be divided into two categories: single-
character recognition and sequence character recognition. 
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2.2.1 Single-character recognition 
 
Previous research on single-character recognition has mainly been devoted to build-

ing a robust character classifier that can adapt to various font sizes and backgrounds. Most 
single-character recognition methods divide character recognition into a sequence of dis-
tinct tasks: preprocessing, segmentation, and recognition [4]. Preprocessing is performed 
to remove noise from the camera or scanner. Preprocessing includes converting the image 
to gray scale, performing blur operation and threshold to extract the foreground. After ex-
tracting the foreground of the characters, single characters can be segmented using the 
boundary of each character or the projection of a histogram when the characters are con-
nected. Single characters are then classified using pattern matching [16] or classifiers of a 
support vector machine (SVM) with manually selected features such as Hog [7].  

The recognition performance of SVMs, however, is limited by manually selected low-
level features in images [15]. To address this problem and enhance robustness, the present 
study proposes using numerous neural networks. Recent advances in deep neural network 
technology have enhanced the performance of single-character recognition systems. The 
pioneer of convolutional neural networks (CNN), Lecun, designed the first CNN architec-
ture for isolated handwriting digit recognition in [19]. Lecun’s contribution prompted the 
development of numerous recognition methods based on neural network architectures [15, 
35]. These methods usually perform two tasks: character detection and recognition. De-
pending on the mode of detection and recognition, the methods can be classified as step-
wise or integrated [35]. Single-character recognition methods mainly use stepwise meth-
odologies and include four steps: text or character location, verification, segmentation, and 
recognition. In [6], a CNN-based approach that localizes and detects horizontal text lines 
is presented. In this approach, the network learns to extract and combine text features rather 
than using handcrafted features. In [5], an improved network architecture is proposed for 
narrowing the gap between machine and human performance. In [36], a deeper and slim-
mer CNN based on GoogLeNet [32] is presented improve the performance of end-to-end 
handwritten Chinese character recognition. These methods mainly treat isolated character 
recognition and subsequent word recognition separately. Next, we introduce methods that 
perform end-to-end recognition. 
 
2.2.2 Sequence character recognition 

 
The majority of recent developments in end-to-end sequence or scene text recognition 

can be classified into two categories. The first category is sequence end-to-end recognition, 
which detects a sequence in an image [29] and then outputs the sequence. The second 
category is end-to-end text spotting, which jointly addresses the techniques of text detec-
tion, segmentation, and recognition [21]. Methods in the second category contain a neural 
network architecture that integrates feature extraction, sequence modeling, and recognition 
into a unified framework. The network architecture has three parts: convolution layers, 
which extract the feature sequence; recurrent layers, which predict the sequence distribu-
tion; and a recognition layer, which translates the prediction into a result. The advantages 
of this unified architecture are that it is not confined to a predefined lexicon and that, in 
contrast to the architecture presented in [25], it can handle a sequence of arbitrary length. 
In [21], a unified network is presented that simultaneously localizes and recognizes text 
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Fig. 1. (a) Type 1: images of engineering drawings with labels presented in circles. 

using a single forward pass, rendering image cropping and character grouping unnecessary. 
This network consists of convolutional layers, modified from the VGG network, as an 
encoder that generates a sequence of feature representations that can be used to create a 
recurrent neural network (RNN) decoder for sequence recognition. 

3. METHODOLOGY 

Recognition methods must address the complexity of engineering drawing back-
grounds, the variety of engineering drawing categories, and the variety of image acquisi-
tion conditions that may affect by a camera. In this section, we describe our engineering 
drawing recognition method, which consists of geometric feature classification and end-
to-end sequence recognition.  
 
3.1 Geometric Feature Classification 

 
As previously mentioned, civil engineering drawings comprise three types. Each type 

of engineering drawing contains many blocks, and each block includes a unique label (see 
example in Fig. 1). The difference between the three types of drawings is the location of 
the labels. Different label locations represent different geometric features. Fig. 1 (a) pre-
sents the first type of image with circle geometry. Fig. 1 (b) shows the second type of 
image with table geometry. Finally, Fig. 1 (c) illustrates the third type of image with under- 
lined geometry. To classify engineering drawings, these geometric features must be pre-
cisely extracted. This paper presents several approaches for classifying engineering draw-
ings according to whether they include circle, table, or underlined shapes. 

As Fig. 1 (a) demonstrates, the image quality of engineering drawings varies from 
clear to blurry because of variations in camera focus. The intensity of the images also dif-
fers according to their original print quality and how well they have been conserved. The 
size of the target circle in each red bounding box varies according to the distance between 
the camera and the drawing. In addition, several distortions in the images increase the dif-
ficulty of circle detection. 
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(b) 

   

(c) 
Fig. 1. (b) Type 2: images of engineering drawings with labels presented in tables; (c) Type 3: images 
of engineering drawings with underlined labels. 
 

We designed the following four steps to enhance circle detection: (1) thresholding; 
(2) identifying contours and deleting the objects that cannot be circles; (3) applying mor-
phology methods to further delete horizontal and vertical lines; and (4) using the RANSAC 
method to locate the potential circles.  

Applying this process, we begin with a raw image, which is then converted into a 
binary pattern. Because of the variation in light conditions, an adaptive threshold method 
is employed to ensure high binary performance. There are many Adaptive threshold meth-
ods. Among them Sauvola binarization is a good choice because this method can solve the 
problem of bad binarization of uneven illumination image especially in the case of docu-
ment image. After obtaining the binary image, the contours of all the connected compo-
nents of the binary image are calculated and the region whose ratio of width to height is 
too large or too small is deleted, where the ratio of width to height should be approximately 
one for a circle. Considering that engineering drawings contain numerous lines, the gradi-
ent of the object in the circle is calculated both horizontally and vertically. As shown in 
Fig. 2 when the horizontal gradient is calculated, the horizontal lines vanish because of the 
gradient in the horizontal direction is zero; the same phenomenon occurs for vertical lines 
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under vertical gradient calculation. If an engineering drawing being analyzed under this 
method contains a circle, the results after deleting the objects inside the circle should be 
like those in Fig. 2 (b). In our procedure, to detect the circle further, three points from point 
sets in Fig. 2 (b) that are not in a line are randomly selected, and the unique circle is cal-
culated accordingly. If there are not enough points from point sets of Fig. 2 (b) fall on the 
calculated circle, these three points will be thrown away from point sets and three new 
points are selected. The RANSAC procedure ends after enough points have been found to 
fall exactly on the calculated circle, indicating that the circle has been detected, or when 
no points remain on the point sets or too many iterations have been performed. 

 

  
Fig. 2. Detected circle (left) before and (right) after removal of the inside objects. 

 

 
Fig. 3. Dilate kernel used to enhance table lines. 

 

Most traditional image processing methods are based on images obtained using flat-
bed scanners, and the simple Hough transform that these traditional approaches employ 
cannot detect the table in our engineering drawings, as Fig. 1 (b) shows. In this paper, we 
propose a method based on RANSAC to solve the problem of complex table detection. A 
flowchart of the proposed table detection method is shown in Fig. 4. As previously de-
scribed, the raw image is converted into a binary image, and the gradient of the binary 
image in their direction is calculated to suppress vertical lines. Morphology methods are 
then applied using a diamond-shaped dilate kernel to enhance the lines of the tables. The 
kernel is defined as shown in Fig. 3. 

As the dilate equation shows, the diamond-shaped kernel joins adjacent horizontal 
lines in case the table is broken after thresholding: 

dst(x, y) = max(x, y):kernel(x, y)0 src(x+x, y+y). (1) 

To exclude objects in the image without table, the connected components are calcu-
lated, and after vertical gradient calculation and diamond-shaped dilation, the contours of 
the image are identified. Then, the objects whose bounding boxes are too small are deleted. 
Generally, the stroke width of an image after dilation is larger than its original stroke width; 
therefore, the skeleton of the dilated image is calculated in case of an expensive calculation. 
After obtaining the skeleton of the table, the RANSAC method for table detection is per-
formed. Before the iterations reach the specified limit and while unused points remain in 
the image; (1) a threshold of slope is set two points in the skeleton image are randomly 
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selected; if the slope between these two points is larger than the threshold, these points are 
skipped and another two points are selected until the slope between two points is less than 
the threshold; (2) the distance between each point in the skeleton image and the line cal-
culated in Step 1 is calculated, and the number of these points close to the line is counted; 
if a sufficient number of points are close to the line, the line is saved and these points are 
thrown away to prevent double-checking; (3) when the iteration limit is met or there are 
no points left in the image, the lines are analyzed and whether they constitute a table in the 
engineering drawing is judged. 

 

 
Fig. 4. Flowchart of the proposed table detection method. 

 

After determining whether engineering drawings contain circles or tables, lines under 
drawing labels become easier to detect. According to the design of the engineering draw-
ings presented in this paper, the underline, as shown in Fig. 1 (c), has a larger stroke width 
compared with other information in the drawing. To locate the label of the specific drawing, 
we use the stroke width transform (SWT), as devised in [9]. This process does not involve 
machine learning or elaborate tests. In brief, after Canny edge detection is applied to the 
input image, the thickness of each stroke that makes up objects in the image is calculated; 
thereafter, the line under the label is easily identified by calculating the ratio of height to 
width, because the line under the label has a relatively large stroke width. 
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3.2 Sequence Recognition 
 
Traditional segmentation methods such as those based on SVM, Hog, SWT [9], and 

maximally stable external regions rely heavily on character detection and therefore result 
in inadequate character segmentation performance when an image contains uneven light-
ing, blurry text, drawing degradation, and distortion (Fig. 5). Thus, we propose an archi-
tecture consisting of neural networks rather than the traditional technologies. The network 
of the proposed sequence recognition method comprises three components: a convolution 
network for sequence feature extraction, a recurrent network for prediction of each se-
quence feature, and a recognition layer with connectionist temporal classification (CTC) 
loss [12]. 

 

  
 

   

Fig. 5. Examples of uneven lighting, blurry text, drawing degradation, and a distorted image. 
 

The feature extraction layer is inspired by VGG [16] and is constructed using convo-
lutional and max-pooling layers. First, the input image containing the sequence text is fed 
into a CNN that is modified from VGG-16 network architecture. VGG-16 consists of 13 
layers of convolutions followed by a rectified linear unit [23] (i.e., 5 layers of max-pooling 
and 3 fully connected (FC) layers). Because VGG-16 is designed for large-scale image 
recognition and the sequence images described in this paper are relatively small, we re-
move some convolutional layers and max-pooling layers. To accelerate training, a batch 
normalization layer is added after the convolutional layers. Because the convolutional net-
works described in this paper are designed for feature extraction, we also delete the FC 
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and softmax layers. Before the sequence images are fed into the CNN, they are prepro-
cessed to a fixed height. The feature vectors of a sequence image after being processed by 
the CNN are generated from left to right. Consequently, the feature vectors after CNN 
processing are sequential and equal to each other in size; therefore, they can be considered 
as a sequence image feature and sent to the recurrent layers. 

After receiving the sequential feature vectors from the CNN, a deep bidirectional 
RNN, bidirectional long short-term memory (BLSTM), predicts the sequence feature. As 
shown in [29], there are three advantages to recurrent layers: first, long short-term memory 
(LSTM) [11] is extremely capable of capturing contextual information within a sequence, 
and the BLSTM takes advantage of the input image bidirectionally; second, convolutional 
layers and recurrent layers can be trained within a unified network; third, the recurrent 
layers can operate on sequences of arbitrary lengths, traversing from the start to the end. 
In the recurrent layers in this study, the input feature vectors are considered a sequence and 
are fed into the RNN. As a precaution against gradient vanishing and explosion [2], we 
apply LSTM, which addresses the problem of exponential decay of gradient information 
other than vanilla RNN. The basic unit in the hidden layer of an LSTM network is memory 
blocks, each of which contain memory cells and multiplicative gates, including input gates, 
output gates, and forget gates. In general, the memory cells store information for a period 
of time and can be reset by the forget gates once they are no longer needed. Traditional 
LSTM only uses past information. However, information from both the left and right is 
important in an image-based sequence recurrent network. Hence, we combine the forward 
and backward memory cells into BLSTM, as shown in Fig. 6. Deep BLSTM has achieved 
significant performance in speech recognition [13]. To connect the back propagation of the 
CNN and LSTM, we concatenate the sequence vectors into maps, which are fed into the 
CNN during back propagation. 

After the BLSTM has generated predictions, sequence recognition must be performed. 
In statistics, sequence recognition refers to matching the sequence label with the input im-
age that has the highest probability of all the possible sequence labels. A method for train-
ing RNNs to label unsegmented sequences directly is presented in [12]. This method relies 
on the transformation of neural network outputs into a conditional probability distribution 
over label sequences. We adopt the CTC method for the prediction of label sequences. The 
formulation of CTC can be described as follows [12]: Let the input be denoted by i, se-
quence output as o = o1, …, oT, and length of a sequence as T. ot

k represents the probability 
of output label k at time t, which is interpreted as a distribution over the set LT = L{blank}, 
where L indicates all the possible labels of the output sequence, (e.g., all the English char-
acters and Arabic numerals).  denotes the elements of LT.   

t

t

1

( | )
T

t

p i o


   (2) 

After obtaining the elements of LT, we define the map B (i.e., LT  LT), which can 
be regarded as removing all blanks and repeated labels from , (i.e. the elements of LT). 
For example, B maps ‘  h h elll  o o  ’ onto ‘hello’, where the ‘’ stands for 
‘blank’. Finally, we define the conditional probability of a given label l  LT as the sum 
of the probabilities of all the  corresponding to it: 
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Fig. 6. Neural network architecture of convolutional layers and BLSTM layers. 

1 ( )

( | )= ( | ).
B l

p l i p i




  (3) 

The conditional probabilities of p(l|i) can be calculated efficiently using a dynamic 
programming algorithm. Given Eq. (3), the output of the recognition should be the most 
probable labels for the input sequence, which can be described as B(arg max) lLT p(l|i). 
When training the dataset, the objective function can be regarded as in [12]. Because the 
cost function is calculated directly from an input image and the labeled se-quence, the 
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network can be trained end-to-end, avoiding manual, individual character labeling. Fur-
thermore, the convolutional networks and recurrent networks are trained using stochastic 
gradient descent. In BLSTM layers, back propagation through time is applied to calculate 
error differentials. The Adam [18] algorithm is performed to accelerate the training. 

The whole flowchart about sequence location and recognition as shown in Fig. 7, 
where input image is engineering drawing and output is character sequence. 

 

 
Fig. 7. Flowchart of sequence location and recognition. 

4. RESULTS AND DISCUSSION 

In this section, we describe experiments conducted to evaluate the efficiency of the 
engineering drawing recognition method. The experiments consisted of drawing classifi-
cation and drawing label recognition. The proposed method was designed using OpenCV 
and C++, and the network architecture Tensorflow was used in sequence recognition. We 
implemented the experiments using a workstation with a 3.20 GHz Intel(R) Core(TM) i5-
4460 CPU and an NVIDIA(R) GeForce GTX 1080. The neural network is trained for near- 
ly 20 hours. 
 
4.1 Evaluation of Drawing Classification 

 
As previously described, drawing classification is related to geometric feature classi-

fication. In this experiment, the engineering drawing dataset was collected using a mobile 
phone. There were three drawing categories. The recognition method processed the raw 
images to detect their geometric features, determine the drawing’s category, and locate the 
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label near the geometric feature. Numerous experiments were performed to evaluate the 
proposed geometric feature classification system. Because the geometric features were lo-
cated in the lower half of the raw images, we cropped the raw data when conducting geo-
metric feature detection. After the adaptive threshold of the lower half data was reached, 
contours of the foreground were identified and small objects were removed to accelerate 
the detection. Figs. 8 and 9 display the geometric feature classification after performance 
of different traditional methods for circle detection and table detection, respectively.  

Fig. 8 (a) presents the lower-half of a raw drawing image after the threshold was ap-
plied, indicating the input image. Fig. 8 (b) shows the result of identifying contours and 
deleting targets unlikely to be circles. Using the proposed method, we attempted to enhance 
the detection accuracy of proposed circle detection. Fig. 8 (c) shows the circle detection 
results obtained using RANSAC. As shown in Fig. 8 (d), the Hough circle transform could 
not find the circle because of its rough boundary and shape distortion. 

 

                  
          (a)                   (b)               (c)                 (d)  
Fig. 8. (a) Lower-half raw image after the adaptive threshold was applied; (b) circle proposal region; 
(c) circle proposal region after removal of inner contours, where the red circle is the circle detected 
using RANSAC; and (d) results from the same input as (c) after applying Hough Circle detection. 
 

    
(a)                       (b)                         (c) 

Fig. 9. (a) Lower-half image after the adaptive threshold was applied; (b) Table proposal region from 
which small targets have been removed; the blue lines are the table using RANSAC-table; (c) Table 
proposal region obtained using the probabilistic Hough transform. 

 

Fig. 9 (a) shows a lower-half table image after the adaptive threshold was applied, re- 
garded as the input image; Fig. 9 (b) presents the result of RANSAC-table detection, and 
Fig. 9 (c) presents the results of using the probabilistic Hough transform. Comparing these 
two table detection results, we may conclude that traditional table detection cannot adapt 
to the distortion and breakage of lines and that RANSAC-table detection is more flexible 
regarding table distortion and the complexity of the engineering drawing background. 
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(a)                                       (b)                                   

Fig. 10. (a) Underlined engineering drawing; (b) after SWT detection. 
 

SWT was used to detection underline as shown in Fig. 10. Fig. 10 (a) is the binary 
graph of the image after preprocessing. According to the calculation of the stroke width of 
the image, the connected component analysis method can usually be used to accurately 
locate the underline with wide stroke in the image, as shown in Fig. 10 (b). 

The circle detection, stroke-width detection, and proposed RANSAC-table detection 
methods were tested and validated using numerous engineering drawing images. The da-
tasets included images with uneven lighting, image blurring, drawing degradation, and 
varying degrees of distortion. The classification error obtained was less than 5%, and the 
classification data are available to download1. Additionally, we designed a strategy for us-
ers to correct misclassifications. In sum, the classification method proved to be practical 
and robust when applied to the engineering drawing understanding. 
 
4.2 Evaluation of Sequence Recognition 

 
After extracted and classified, the precise positioning of the engineering drawing 

character sequence is performed from engineering drawings so the corresponding mark of 
the drawing, that is, the character sequence can be obtained. Since the end-to-end neural 
network requires millions of marked data, the sample’s label marked by manually is too 
large so in this article we use the character sequence generated by the script first. The 
specific operation of generating the training data has the following steps: extracting the 
background information of the multiple engineering drawings as the background of the 
generated image; randomly adding the characters conforming to the engineering drawing 
font, and using the same color as the engineering blueprint characters; adding the blur noise, 
deformation, illumination and other disturbances get the final composite map. The gener-
ated data include training data set and test data set has about 1.2 million end-to-end auto-
matically labeled composite images. The ratio of the training set to the test set is 9:1. In 
[14] the authors released a synthetic dataset for text localization that requires high-perfor-
mance text detectors and recognition. The dataset consists of millions of images synthe-
sized by an engine to generate text to naturally meld with existing background images. We 
first applied the synthetic dataset to training to obtain accurate initial values for the se-
quence recognition networks. After millions of iterations, the accuracy of sequence recog-
nition reached 91.3%. As a reported in [29] that CNN and LSTM architecture has achieved 
outstanding performance with regard to four popular text recognition benchmarks, as pre-
sented in Table 1. 
 
1 www.alors.cn/mengqinli/rawdata.zip 
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2 www.alors.cn/mengqinli/dataset.zip 

Table 1. Performance of different architectures on four popular benchmarks. 
 architecture End-to-end IIIT5k SVT IC03 IC13 Size 

Bissacco et al. [3]    78.0  87.6  
Jaderberg et al. [17] CNN √  80.7 93.1 90.8* 490M 
Jaderberg et al. [16] CNN √  71.7 89.6 81.8 304M 

CRNN [29] CNN + LSTM √ 81.2 82.7 91.9 89.6 8.3M 
 

Table 2. Architecture details of the CNN+LSTM neural network. 

Type 
Kernel 

size 
Stride 

(Vert and Horz)
Output 
dim.

H * W 
Pad 
op. 

Convolution 33 1 64 3030 Same 
Convolution 33 1 64 3030 Same 
MaxPooling 22 2 64 1515  
Convolution 33 1 128 1515 Same 
Convolution 33 1 128 1515 Same 
MaxPooling 22 2,1 128 714  
Convolution 33 1 256 714 Same 
Convolution 33 1 256 714 Same 
MaxPooling 22 2,1 256 313  
Convolution 33 1 512 313 Same 
Convolution 33 1 512 313 Same 
MaxPooling 31 3,1 512 113  

BLSTM  512  
BLSTM  512  

 
In [17], the recognition accuracy for correctly cropped words is 98%, whereas the 

end-to-end text spotting F-score is only 69%, mainly due to incorrect and missed-word-
region proposals [14].  

As Table 2 shows, the network architecture in the present study consisted of the CNN, 
RNNs including BLSTM layers, and a CTC layer. Fig. 11 displays part of the sequence 
image for the engineering drawings, and the full dataset is available.2 The sequence recog-
nition accuracy was 92.97%, and the label accuracy reached 98.47%, which is highly com-
petitive. Fig. 12 shows some results of sequence recognition. The samples including une-
ven lighting, blurry text, drawing degradation, and a distorted image. Our method can cor-
rectly identify most of the sequence, but some over blurry text has the wrong results as 
shown in Figs. 12 (e) and (f). 

 
Fig. 11. Part of the sequence image from an engineering drawing. 
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Fig. 12. Some result of sequence recognition. 

5. CONCLUSIONS 

In this paper, we presented a novel engineering drawing recognition method with im-
age processing and neural networks. The method facilitates efficient image classification 
using a CNN and BLSTM. The RANSAC-table detection method was proposed for precise 
detection of tables in engineering drawings. The neural network architecture of this method 
combines modified VGG and two layers of BLSTM to extract the features of a sequence 
image. After numerous experiments, the CTC loss has proven to be efficient and effective 
in sequence recognition. In conclusion, the proposed method has been proven effective for 
the recognition of engineering drawings, and it has addressed the issues of document ac-
cessibility and searchability. Furthermore, this recognition method can be applied in other 
domains such as architecture, mechanics, transportation, and electrical engineering. 
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