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Any undirected and simple graph G = (V, E), where V and E denote the vertex set and the
edge set of G, is called Hamiltonian if it contains a cycle that visits each vertex of G exactly
once. Ore proved that G is Hamiltonian if degg(u) + degs(v) > n holds for every nonadjacent
pair of vertices u and v in V, where n is the total number of distinct vertices of G. Su, Shih,
and Kao proved that any graph G satisfying Ore’s condition remains Hamiltonian after remov-
ing any one vertex x € V unless G belongs to one of two exceptional families of graphs. This
paper proves that G — {x, y} is Hamiltonian for any two vertices x, y € V, unless G belongs to
one of the eight exceptional families of graphs, denoted by 7;, wherei e {1, ..., 8}.

Keywords: degree, Ore’s condition, Hamiltonian, 1-vertex fault Hamiltonian, 2-vertex fault
Hamiltonian

1. INTRODUCTION

In this paper, we follow the definitions and notations from [1], and consider undi-
rected and simple graphs only. Let G =(V, E) be a graph with finite vertex set V and edge
set Ec{(u,v)|(u,v) is an unordered pair of V}. Let |G| or |[V| denote the number of distinct
vertices in G, K, be the complete graph with n vertices, K, be the graph with n isolated
vertices, and H; be a simple graph with i vertices. Two vertices u and v of G are adjacent
if (u, v) e E. Given a vertex u of G, the neighborhood of u, denoted by Ne(u), is the set {v
|(u,v) e E} < V. The degree of u, denoted by degs(u), is defined by degs(u) =|Ns(u)|. The
minimum degree of G, denoted by &(G), that is min{degg(u) |u € V(G)}; o2(G) is defined
by 02(G) = min{degc(u) + degs(Vv) |u and v are non-adjacent vertices of G}. Let S be a sub-
graph of G. Ns(u) and degs(u) are defined by Ns(u) = Ne(u)nS, and degs(u) = [Ns(u)|. Two
edges in a graph G are called vertex-disjoint-edges, if the two edges have no common ver-
tex. A path in a graph is a single vertex or an ordered list of distinct vertices vo, v, ..., Vi
such that (v;-1, v;) is an edge for 1 <i < k. The first and the last vertices of a path are its
endpoints. Let Cm denote a cycle with m vertices, where a cycle is a path of at least three
vertices among which the first vertex is the same as the last vertex. A path (cycle) is a
Hamiltonian path (cycle) if it traverses all vertices of V exactly once. A Hamiltonian graph
is a graph with a Hamiltonian cycle. A non-Hamiltonian graph G is maximal if the addition
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of any edge transforms the graph into a Hamiltonian one [2]. The length of a path or a
cycle is the number of its edges [1]. The subgraph of G induced by S, denoted by G[S], is
the subgraph formed by the vertex set S and the edges of G that connect two vertices in S.
Specifically, the graph G[V —S] is denoted by G — S and for a vertex v of G, G —v is used
to denote G — {v}.

In addition, for vertices v; and v, with i <k, {v;,"v, is a path notation used for simplic-
ity to denote (vj, Vi+1, Vi+2, ..., Vi1, Vi), and (v \\V;) to denote (Vi, Vi-1, V-2, ..., Vi+1, Vi) [3].

A graph G is connected if it has a path from u to v for each pair of distinct vertices u,
veV(G). A vertex cut of a graph G is a set S < V(G) such that G — S has more than one
component. A graph is k-connected if every vertex cut has at least k vertices. The connec-
tivity of G, denoted by x(G), is the minimum size of a vertex cut. That means x(G) is the
maximum k such that G is k-connected. A graph G is Hamiltonian-connected if there exists
a Hamiltonian path joining any two different vertices of G.

Theorem 1, a well-known theorem proved by Ore [4], has inspired many studies about
Hamiltonian graphs.

Theorem 1: A simple graph G =(V, E) with |G|=|V|=n > 3 is Hamiltonian if, for each pair
of nonadjacent vertices u and v in V, dege(u) + degs(v) > n.

Theorem 2: Suppose that G is a graph and u, v are distinct nonadjacent vertices of G with
dege(u) + degg(v) = |G|. Then G is Hamiltonian if and only if G + (u, v) is Hamiltonian [4].

Theorem 3: Let G=(V, E) be a Hamiltonian graph and S be a subset of V. Then the graph
G — S has at most |S| components [1].

Givenagraph G=(V, E), EcE, and FcVUE, we use G—E to denote the subgraph
obtained by removing £ from G, and G — F to denote the graph obtained by removing F
from G, where V(G-F)=V-FnV and E(G - F) =E —{e| e is adjacent to any vertex in F
NV}—EnF. Suppose that G — F is Hamiltonian for any FcVUE and |[F| <k. Then G is
called a k-fault-Hamiltonian graph. If FcV and |F| <k, G is called a k-vertex-fault-Ham-
iltonian graph; if Fc E and |F| <k, G is called a k-edge-fault-Hamiltonian graph. It is easy
to see that every k-fault- (k-vertex-fault- or k-edge fault-) Hamiltonian graph has at least k
+ 3 vertices [1]. Moreover, the degree of each vertex in a k-fault-Hamiltonian graph is
found to be at least k + 2 [1].

To study Hamiltonian fault-tolerance, we introduce several operations for graphs. Let
G1=(V1, E1) and G2 =(V2, E2) be two simple graphs. We say that G; and G are disjoint if
they have no vertex in common, and they are edge-disjoint if they have no edge in common.
The union of G; and G, denoted by G1 U G, is a graph with V(G U G2) =V(G1) U V(G2)
and E(G1u G2) =E(G1) UE(Gy); if G1 and G, are disjoint, we sometimes denote their union
by G1+ G2, and the union of k copies of G; by kG;. The join of disjoint graphs G; and Gy,
denoted by G1 v Gy, is the graph obtained from G; + G, by joining each vertex of G; to
each vertex of G [1].

In 1985, Ainouche and Christofides proved the following two theorems [5, 6].

Theorem 4: If G’ is a connected graph of order n’ > 3 such that dege/(x) + dege(y) > n'-1
for each pair of nonadjacent vertices x, y in G’, then G’ is Hamiltonian or G'e{H1 v (Knu
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Ko, Hor-vrz v Ka +1)/2}
Theorem 5: Let G” =(V, E) be a 2-connected maximal non-hamiltonian graph of order n”
>5. If deger(a)+dege(b) > |G"| — 2 for any two non—adjacent vertices a, b, then G" is is-
omorphic to one of the following five graphs: ;= Ky VK +1/Z,n" is odd; G5 = K22
VK iz n" is even; G3 = K22 v K(n UKL, n” is even; é4 =Ky v (2K, U Ky); G =K;
\Y4 3K2.

If x(G) > 2 is added to Theorem 4, then, it can be concluded that G’ is Hamiltonian or
G' =Hu-nrv K

In 2012, Su éhrh and Kao proved in the following theorem that a graph G satisfying
Ore’s condition can be 1-fault Hamiltonian except that G belongs to two families of graphs

[7].

Theorem 6: Let G=(V, E) be a graph with |G|=|V|=n > 3. Suppose that degs(u) + degs(V)
> n holds for any nonadjacent pair {u, v} <V, then either G is 1-vertex-fault hamiltonian
or G belongs to one of the two families g1 and G.. In addition, G is either 1-edge-fault
hamiltonian or Ge g1 with se{1, 2}.
In Theorem 6, the two exceptional families of graphs are:

G ={Ks}u{Hov (Ks+Ky)ls+t=n-2,5s>1,t>1}, and G = {HsV sKi|2s=n}, where H;
is any simple graph with 2 vertices, H;s is any simple graph with s vertices, as illustrated in
Fig. 1.

s? edges

(b)
Fig. 1. An illustration of graphs of (a) {HzVv (Ks+Ki) |s+t=n-2,5s>1,t>1}in G1; (b) G2

If the condition x(G) > 3 is added to Theorem 6, and let |G| =|V|=n > 4, then, either
G is 1-vertex-fault Hamiltonian or Ge G..

In 2013, Zhao pointed out some non-hamiltonian graphs in the following two theo-
rems [8].

Theorem 7: If G” is a connected graph of order n” > 3 such that dege(x) + deger(y) = n”
— 2 for each pair of nonadjacent vertices x, y in G”, then either G” is Hamiltonian or G” is
isomorphic to one of the following nine graphs: (1) Ku3; (2) H2v 3Ky; (3) Hav (2K U Ky);
(4) Kh:w: Kt, (5) (H(n EN7AA ¢ - /2) e, (6) Ka: Cg, (7) H(n )2V K (8) H(n".z)/z\/
(K2 VK23 (9) He22v K

(n"+1)/2 ’

(n"+2)/2

Theorem 8: If G” is a 2-connected graph of order n” > 9 such that dege-(x)+dege-(y) > n”
— 2 for each pair of nonadjacent vertices x, y in G”, then G” is Hamiltonian or G"e{(Hn
D2V K e pgy2) ~ & Horne v K( 2 Horye V(K ., oz K2), Hw-22 VK., 2

The graphs (4)-(6) givenin Theorem 7 neeé further discussion. In 'Ixheorem 7, accord-
ing to [8], the notation K{ in (4) denotes a graph removing some (none, one, or more)
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vertex-disjoint edges of Ky; and the operating notation “: denotes that edges are added
from w to Ky and K{ as long as o»(G") > |G"”| — 2 holds. Apparently, x(G") = 1. See Fig. 2.
It is easy to see that Ky : w: K{ can be replaced by K, : w : K{. In the graph, “e” stands for
an edge (vi, Vi), where VieHqriy2, Vk €K ., .

In addition, based on the definition in [é], V(K1 @ Cg) =V(K1)uV(Ce) with V(K1) ={u},
Ce = {V1, V2, V3, V4, V5, Ve), V(Cg) =V(Cs), E(Cg) =E(Cs) U (v, Va) U (V3, Vs) U (Vs, V2), and
E(K1 : Cg =E(Cf U (u, ve) U (u, v2), the graph (6), G" = Ky : Cg, can be illustrated by Fig.
3 (a), that is G"= Kz v Ks — (v, vz =u). Thus G" belongs to Hz v K4 — €, which is (5) in
Theorem 7.

K; K’t Uz(h's)%l
&,4
'\
Fig. 2. G" =K : w: Ki. Fig. 3. (a) G" = (K1 : C8) =Ks Vv Ka— (va, V7). (b) Ge .

In 2016, we attempted to explore the topic of 2-vertex-fault Hamiltonian graph, and
2-edge-fault Hamiltonian graph. Some preliminary findings are presented in [9]. However,
the results there are incomplete, and no formal proof is provided.

In this paper, we aim to find the exceptional families of any 2-vertex-fault Hamilto-
nian graph satisfying the degree-sum condition in Theorem 1. Since G is not 2-vertex-fault
tolerant (2-edge-fault tolerant) when the vertex-connectivity of a graph G is equal to or less
than 3, we only consider graphs whose vertex connectivities are greater than or equal to 4.

2. MAIN RESULTS

The graph G; : G2 is defined to be a graph obtained from G; + G2 by connecting some
vertices of G; to some vertices of G, possibly with constraints on how edges are added.
For three simple graphs Gi1, G, and Gg, the notation G; : Gz : Gs is defined to be G1: G2 :
G3=(G1: G2) : Gs. S0 G1: Gy : Gy is the graph obtained from G; + G2+ G3 by connecting
some vertices of Gs to some vertices of Gy, possibly with constraints on how edges are
added, where s, t € {1, 2, 3} and s=t. Therefore, G1 + Go = G1: G2 < G1v Gy, and (Gy +
G2+ G3) =G1:G2: Gz (G1vGy) v Gs. For example, suppose Gi : G2 : Gs=H;:x:y,
where H; is a simple graph with i vertices, and x and y are two vertices not belonging to
V(Hi). Then Hi+ x+y c Hi: x:yc Hivxvy.

For studying 2-vertex-fault Hamiltonian graphs, we introduce the following definition.

Definition 9: Let Hy be any simple graph with k vertices. Define 7; for 1 <i <8 as below.

(l) m= Hav 3K,. See Flg 4.

(2) m= Hav (2K2 ) Kl). See Flg 5.

(3) 3= (Hp+ay2 v Kioy) (Va, V8), Va eV(Hps1)2), Vo eV(M), nisodd, n>9 o
(Hn+1y2) > 1, and degns1y2(Va) > 2. See Fig. 6 (a).

(4) 2= (Hpeay2 v Koay2) N isodd, n>7. When n=7, x(Hs) > 1; when n > 9, oa(Hn+1)2) >
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1. See Figs. 7 and 8.

() is=(Hw)v(K,, ,, Kz where Hy2=K_,,nisevenandn> 8. See Fig. 9 (a).

(6) 76=(Hn2) v Kiayz K2) — (e, Ve) for n even and n > 8, where the complete graph in
(Ko, Y K2) is With (v, v2), Vo€ (1, v2), and VaeHrz with degriz(Ve) > 1. See Fig.
9 (&), Eigs. 10 (a), and (b).

() mr=(Hw2) v(K oz K2) — (Va, V8) — (Vo V) fOr neven and n > 8, where the complete
graphin ( Ky ~ K2) is with (v, V2); Ve, Ve €{V1, Vo}, Vo=V, Va, Vo €Hnz, Va# Vo With
degrmz)(Va) £1and degrgm)(Ve) = 1. See Fig. 9 (d), Figs. 10 (d)-(e), and Fig. 11.

(8) m:s=Hw2vK_,, Niseven, n>8. See Fig. 12.

Itis clear that «(rmi) > 4, fori=1, ..., 8.

Fig. 4. m =Hav 3Kz. V(Ha) = {vs, vs, X, Y}. The three complete graphs in 3Kz are with V(Kz) = {vi,
visa}, fori=1, 4, 7. degy (¢) > 6 for peHs; and deg, (vi)=5fori=1,2,4,5,7,8.

Fig. 5. 2 =Ha Vv (2K2 U K1). V(Ha) ={vs, vs, X, y}. The two complete graphs in 2Kz are with V(Kz2) =
{vi, visa}, for i =1, 4; and V(K1) = {v7}. degn,(¢) > 5 for ¢ € Ha; degn,(vi) =5 fori=1, 2, 4,5 and
degn,(v7) = 4.

(b)

Fig. 6. (@) n=9, G = (Hs Vv Ka) — (v3, V6), with o2(Hs) > 1, dega(vs) = 4, degrs(ve) > 2, degas(ve) = 5,
where V(Hs) = {v2, Va, Ve, X, Y}, V(Ka) = {v1, V3, Vs, v7}; 02(G) > n, Ges; (b) n=9, G” = (Hz v Ka) —
(v3, V6), |G"|=7, 2(G") > n — 4.

Fig. 7. n=7, ma= (Ha v K3), with x(Ha) > 1. V(Ha) = {v2, v4, X, ¥}, V(K3) = {v1, V3, vs}; degn,(¢) > 3
for peHa; and degn,(vi)=4 fori=1, 3, 5.
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(b)
Fig. 11. () n=12, 777=HsV (Ka U K2) — (v3, v1) — (ve, v2) with degrs(vs) > 1 and degrg(ve) = 1; (b) n
=12, |G"|=10, G" =Hav (Ka U K2) — (v1, v3) — (s, V2).

Fig. 12. n=10, 78 =Hs Vv Ks. V(Hs) = {v2, V4, Ve, X, Y}, V(Ks) = {v1, V3, Vs, V7, va}; degug(vi) > 5 for i =
1~8, degng(x) > 5, degny(y) > 5.

Lemma 10: If Ge{n, m2, 13, 12, 15, 16, 177, e} With |G| =n, then

(1) degs(u) + degs(v) > n holds for any nonadjacent pair of vertices {u, v} in G;
(2)m, 12, m3, ma, 15, 16, 17 are 1-vertex-fault Hamiltonian; and

(3) 11, 12, M3, ma, 15, 1, 17, Mg Are not 2-vertex-fault Hamiltonian.

Proof:

(1) For any graph Ge{n1, n2, 13, 17, 15, N6, 177, e} With |G| =n, it is obvious that degge(a)
+ degg(b) > n holds for any nonadjacent pair of vertices {a, b} in G. Thus, by Ore’s
theorem, G is Hamiltonian.

For 74 = Hyy2 v_m, by c2(Hn+1)2) > 1, we can obtain that ox(72) > n. If n=7, we
have 772=(Hav Kas). To ensure “x(Hasv Kz) > 4”, we must have “x(Ha) > 1”.

For 73 = (Hpeay2 v m) — (Va, Vg), VaeV(Hp+1y2), and v@eV(m ), we have
degc(vy) = (n—1)/2. To meet the condition degg(vVs)+dege(Vy) > n, we must have degg(Ve)
> (n+1)/2, which requires degh.1y2(Va) > 2.

(2) For any graph Ge{n1, 12, 173, ma, 15, 16, 177}, it can be seen that Ge{G1, G2}, s0 G is 1-
vertex-fault Hamiltonian.

(3) For any graph G" obtained by deleting two vertices x and y from Ge{n1, 12, 113, 1a, 15,
16, 177, 18}, the number of components of G”— S is greater than |S| for some S < V(G").
Thus, by Theorem 3, G is not 2-vertex-fault Hamiltonian. a

Lemma 11: Let G’ =(V’, E’) be any graph with |V'|=n’ > 3 such that for any nonadjacent

vertices u and v, dege'(u) + dege'(v) > n’, and let G =(V, E) with [V|= |V U {x}=n"+ 1=

n. Then we have

1) FE=E"U{(x,¥)|y=u, v; where dege(u) + dege(v) > n’, and u, v are nonadjacent in
G'}, then for any nonadjacent vertices u and v belonging to G', we have degg(u) + dege
V)=n+1.

) IfE=E" U ({(x,y)|y=u,v; where degge'(u) + dege(v) > n’, and u, v are nonadjacent in
G'}—e), then for any nonadjacent vertices u and v belonging to G', we have degg(u) +
degg(v) > n.
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Lemma12: G"=(V", E") isagraph with |V’|=n—-2>5. G” is not Hamiltonian but contains
a Hamiltonian path (v, V, Vs, ..., Vn2). Let Nor(V1) ={Vi,, Vi, Vig, ..., Vit With2=1l1< < I3
<...<lq. Then (vp-2), vq,-1)) g E” for each | with 1 <r < d. On the other point of view, if v;
€Na(vn-2), then (v, vis1) 2E(G”) [7].

Proof: If (v(n-2), Vg,-1y) €E” for some I, with 1 <r <d, then G” contains a Hamiltonian cycle
V1, V2, <oy V(ir1), V(n2), Vn-3)s «- -0 Vi V1), d

Lemma 13: G”=(V”, E") is a graph. If G” is not Hamiltonian but contains a Hamiltonian
path (vi, v, V3, ..., Vn2), Where Vi, VseNer(v1), and Vi, VseNe(Vn-2), for r <s, then, (Vr-1, Vs
1)E” and (Vr+1, Vss1) 2E".

Proof: G” has a Hamiltonian path {vi, Vo, ..., Vr-1, Vi, Vrs1, ..., Vs1, Vs, Vs, ..., Vn-3, Vn-2).
If (vr-1, Vs.1) €E”, then G” contains a Hamiltonian cycle:
V1, V2, 7, Ve, Vs1, N\ Ve, Vi Vo2, N\, Vs, V).
If (Vr+1, Vs+1) €eE”, then G” contains a Hamiltonian cycle:
V1, V2, /', V1, Vi, V2, O\, Vset, Vi, 7 Vst Vs, V). a

Lemma 14: G" =(V", E") isa graph with |V”|=n-2 > 5 that is not Hamiltonian but contains

a Hamiltonian path HP =(v1, V2, V3, ..., Vn.2). Let No(Vn-2) = {vm,, Vm,, Vm,, ..., Vm.} with m;

<m,<mg<...<mg,=n-3, and (vy, Vn3) eE".

If Vin,, Vimse NG"(V-2), w.l.0.9., my < ms, then

(1) Vi V) 2E(G"); (2) (Vineass Vo) 2E(G”); () (Vineays Vn2) 2E(G”); (4) (Viney, Vi) €
E(G"); (5) if dege"(Vn-2) = (n—2)/2, then there is a Hamiltonian cycle in G”.

Proof: G” has a Hamiltonian path (v, Va, ..., Vin.1, Vs Vineats -+ -5 Vimgs Vimg, Vingers -« -5 Vn-3, Vin-2),

and Vm,, VmseNa(Vn-2).

(1) If (Viny1s Vimgn) €E(G), then (v1, Vi3, iy Vs Vimg V-2, Vines Vimrazs s Vimgsy Vimeas Ny V2, V1) 1S
a Hamiltonian cycle.

(2) If (Vinysrs Vings) €E(G), then (va, Vnz, i, Vingss Vimesss Vimeas s Vimgs Ving V-2, Vi, N\, V2, V1) IS
a Hamiltonian cycle.

(3) If (Vmpsy, Vn2) €E(G), then (v, Va3, \, Ve, Vo2, Vi, i, V2, V1) is @ Hamiltonian cycle.

(4) If (Vs Vn-2) €E(G), then (v1, Vo3, i, Vi, Vn-2, Vi, N\, V2, V1) IS @ Hamiltonian cycle.

Hence, in the Hamiltonian path HP, there are no two consecutive vertices that belong
to Ner(Vn-2). It can be seen that the vertices of {vm,-1, Vm,-1, Vmj-1, ..., Vme-1} U {Vn-2} = NG (Vi
2) W{Vn-2} are mutually nonadjacent to each other; and the vertices of {Vmy+1, Vm,+1, Vmge1, ...,
Vme+1} U {v1} = N&-(vn-2) U {v1} are mutually nonadjacent to each other too.
(5) If dega(vn-2) = (N—-2)/2, {V2, Vs, ..., Va-3}| =Nn—4, and (n—4)/2+1 = (n—-2)/2 < deg c"(Vn-2),
there must exist some i with 2 <i < (n — 4) such that both v; and vi.1 are adjacent to V..
This contradicts with statements (3) and (4). a

Definition 15: Let G” = (V", E”) be a graph with |V"| =n-2 containing a Hamiltonian path
HP =(v1, v, V3, ..., Vn-2). No (V1) = {Vi, Vip, Vi, ..., Vigd With2=11 <, <I3< ... <lq. For the
sake of simplicity, we define some notations that we will use in the rest of this paper.

(1) Su=A{vi[ (v1, vi+1) eE(G")};
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(2) Tu=A{vil| (vi, vn2) eE(G")}, which is Ne"(Vn-2);

(3) Wu={vi|vi eV(G") — {Vn2}, VigSh, and vi g Th};

(4) NG"(Vn-2) ={Vs-1| VseNe(Vn-2) };

(5) N&+(Vn-2) = {Vs+1 | VseNe(Va-2) };

6) VLD ={vi|l¢+1<i<n-2};

(7) GIVLD w{vi,}] denote the subgraph induced by VLD U {v,};

(8) Kvip be a complete graph formed by the vertices of VLD;

(9) K'vip denote a graph removing some (none, one, or more) vertex-disjoint-edges of
Kvip;

(10) KvLpugy,y denote the complete graph with vertex set VLD U {vi,};

(11) K'vibugy, denote a graph obtained by removing some (none, one, or more) vertex-

disjoint-edges from the complete graph Kvipogy,

(12) Vin=4vilvigNe"(v1), i < Ig};

(13) Va={vi} U {vi|vi eNer(va), i < lg};

(14) G[Vaw{vi,}] denote the subgraph induced by Vqu{vi.};

(15) Kv,ugwg be a complete graph formed by the vertices of Vg {vi.};

(16) K'v,uqv,3 denote a graph removing some (none, one, or more) vertex-disjoint-edges of

deu{vld}.
Table 1. Hamiltonian path and row of “Sn, Tu, WH”.
1 2 . t .. w .. b1 b=ly .. n-3 n-=2
1| w V2 v | Ve | Ve | e | Vb Vb ceo | Vn-3 | Vn2
2 Vip Vig
SH oo | TH oo [ WH | ... | SH wo | TH

In Table 1, we put each element of the Hamiltonian path HP in the first row and
examine every element. There is no doubt that vieSy because v, = vi,. So, we denote the
(3,1) entry as Sy. For element vy, we denote the (3,2) entry as Sy if voeSy, as Th if v2 €Ty,
or as Wy if v.eWn. We repeatedly perform the examination from vs to vi.4, and then place
the appropriate symbol on the corresponding entry. Since (Vn-3, Va-2) eE(G”) indicates vn3
€Tu, we denote the (3, n—3) entry as Tu. When vy = vy, the (3, b—1) entry is denoted by Sh.
Since lq is the largest index, it can be seen that either vie Ty or vie Wy for each i where b <
i < n—4. Furthermore, Ty is the entry of (3, t) which implies (vi, vn2) eE(G"”). When Wy is
the entry of (3, w), then we must have (Vw, Vn2) 2E(G") and (v1, Vu+1) 2E(G").

Lemma 16: Let G=(V, E) be a graph with |V|=n >7, and 0»(G) > n. For some vertices X,
yeV, let G"=(V", E") with V"=V —{x, y} and E"=E—{(x, s) and (y, t) | s, teV}. Suppose
that G” is not Hamiltonian but contains a Hamiltonian path (v, v, Vs, ..., Va2). Then the
following three statements are true:

(1) degg(v1) + degg(vn-2) =n—4 or n =3.

(2) If deger(vi)+deger(vn-2) =Nn-3, then Ne"(vn2) = {Va]l <a <n-3} — {vb|(V1, Vo+1) eE(G")};
Namely, if any vertex v, in G"—{v1} is not adjacent to vi, then va.1 must be adjacent to vn.o.
(3) If deger(va) + deggr(vn-2) =Nn—4, then Ne(Vh-2)c{Vall < a < n—3} — {vb|(V1, Vb+1) €E(G)},
and |No(Vn-2)| = {vall < @ < n—3} — [{Vol|(v1, Vb+1) €E(G)} -1 [7].
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Proof: Note that Su, Ty, Wx are defined in Definition 15, and dege-(u)+dege'(v) > n—4
holds for any nonadjacent pair {u, v}<V". If G” is not Hamiltonian but contains a Hamil-
tonian path (vi, Vo, Vs, ..., Vn2), then it is easy to see that (vi, vn2)2E”, which implies
deger(va) + dege'(Vn-2) = n—4.

Since Vn-2&SHuTh, we have |[ShuTw| < n—2. Furthermore, we claim that SunTw = &.
If SunTu= I, there must be some vertex, called v, such that vee SunTw. This implies that
(v1, Var1) €E(G"), and (Va, Vi-2) eE(G"). By Lemma 12, this is a contradiction.

Clearly, degg'(v1) + degc(vVn-2) = |ShuTh| < n—2. Consequently, we have deggr(vi) +
dege'(Vn-2) =n—3 or n—4 and TucV(G") «(Suq{Vn-2}). Note that [SuUTH| + [{Va2} + [Wy|=
n — 2. If deger(v1) + dege'(vn2) =n — 3, then |Wn| =0 and Ng(vn2) ={Vva|l <a < n-3} —
{Vb|(v1, Vb+1) eE(G)}. If degg(v1) + deger(Vn-2) =n — 4, then |Wu| =1 and [Ne"(Vn-2)| = [{Vall
<a<n-3}-Kvo|(v1, vor1) € E(G)} - 1. a

The above proof shows that when dege(v1) + dege(vn2) =n — 3, we must have either
VieSh or vie Ty V vie V'—{vn2}, which indicates that there is a row of “Sy, Tw” correspond-
ing to the Hamiltonian path. On the other hand, when degc(v1) + dege (Vn2) =n — 4, then
we must have any one of the three: (1) vieSw; (2) vie Tw; (3) VieWn V vie V'—{vn2}, Which
indicates that there is a row of “Sn, T, W™ corresponding to the Hamiltonian path. In the
following, we will only use “Sn, Tw, W™ to represent a row of “Sy, Tn, Wy” or a row of
“Sh, TH™.

Lemma 17: Let G" =(V", E") be a graph with |[V"|=n—-2>7, and 02(G") > n — 4. Suppose
that G” is not Hamiltonian but contains a Hamiltonian path (vi, vz, Vs, ..., Va3, Vn-2) With
NG"(Vn.z) = {le, Vmy, Vmg, ..., Vme}, inwhichm;<m,<ms<...<me=n-3, and (V1, Vn.3)€E”.
Then, we have

(1) (n - 5)/2 < deger(Vn-2) < (n — 3)/2.

(2) If n'is odd, for each element vm.1eNg"(vn-2), we have (n-5)/2 < deger(vme-1) < (n-3)/2;
and for each element vmq+1€NG+(Vn-2), We have (n-5)/2 < deger(vVma+1) < (n-3)/2.

(3) If nis even, for each element vm.1€Ng(Vn-2), we have (n—-4)/2 < dege (vm-1) < (n-2)/2;
and for each element Vg1 NG (Vn-2), we have (n—4)/2 < dege(Vime1) < (n—2)/2.

Note that if there exists one vm.1 with dege(vm-1) = (n—2)/2, then, vm.1 is the only one
vertex of degree (n—2)/2 in N&(vn-2). Similarly, if there exists one vmq1 with dege(Vimg1) =
(n—2)/2, then, vme+1 is the only one vertex of degree (n—2)/2 in Ng(Vn-2).

(4) dege’(vmp-1) + deger(vms-1) < (n—3) for each vmy1, Vmg-1€Ngr(Vn-2); and deger(vm+1) + dege”
(Vmg+1) < (n=3) for each Vi1, Vimgr1 NG (Vn-2).

(5) If dege"(Vn-2) = (n—5)/2, then deger(Vm-1) = (N—3)/2, VVmp1€Ng(Vn-2); and deger(Vmgr1) =
(n=3)/2, Vth+1€NE"(Vn.z) — {vn2}.

(6) If there is an element vm.1€Ng(vn-2), with degree (n—5)/2, then the degrees of all other
vertices vmg1€NG(Vn-2) are equal to (n—-3)/2, and dege(Vn-2) = (n-3)/2.

(7) If there is an element vme+1€ NG (Vn-2) With degree (n—5)/2, then the degrees of all other
vertices, vmg+1€NG(Vn2), are equal to (n-3)/2.

Proof:
(1) Lemma 14 (5) has proved that degcr(vn-2) < (n—3)/2 for n is odd; and degc"(vn-2) <
(n—4)/2 for n is even. By Lemma 14, “the vertices of Ng'(Vn.2)u{Vn-2} are mutually non-
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adjacent to each other”, we have deger(vm-1) + dege(vn-2) = n — 4, for every vme1€Ngr(Vn-2).
If deger(Vn-2) < (n-5)/2, then we must have dege'(vm-1) > (n—3)/2, that is deger(vVmy-1) >
(n=1)/2. This implies that dege(vms-1)+deger(vmy-1) > (n—=2), for every two vertices Vmg.1, Vm-1
€Ng(vn-2). By Lemma 14, G"+(Vms-1, Vmy-1) is Hamiltonian, but, by Theorem 2, G” is Ham-
iltonian, which is a contradiction to the assumption that G” is not Hamiltonian.

(2) When n is odd, for each vm.1€ Ng"(Vn-2), if dege(vmi-1) < (n-5)/2, then, by (1), deger(vmy-1)
+deger(Vn2) <n—4, which is a contradiction. On the other hand, since the vertices of Ng"(Vn-2)
{Vn-2} are mutually nonadjacent to each other, for each vm.1€NG"(Vn-2), we have Ng"(Vm1)
Q{Vl, V2, V3, ..., Vn-3, Vn.z}—{{le-l, Vm,-1, Vmg-1, ...y Vme.1}U{Vn.2}}, hence

degar(Vmp-1) < (N—2) —|Na"(Vn-2) U {Vn2}| £ (n-3) — |NG"(Vn-2)|. (1)

By statement (1) of this Lemma, when n is odd, we have dege'(vn-2) = (n—3)/2 or dege"(Vn-2)
=(n-5)/2. If dege(Vn-2) = (n=3)/2, Eq. (1) shows that dege"(vmy-1) < (n—3) — (n—3)/2 < (n-3)
/2. If deger(Vn-2) = (n-5)/2, we have dege"(vmy-1) < (n—1)/2 by Eq. (1). In order to maintain
the condition of dege(vmy-1)+dege (Vn-2) > n—4, for each vm-1eNg(Vn-2), we must have

deger(Vme1) 2 N — 4 — deger(Vn2) = (n-3)/2. (2)

Hence, if there exists a vertex vmg1€Ngr(Va-2) and dege'(vms-1) = (n=1)/2, then, by Eq. (2),
we will have dege'(vme1)+deger(Vms-1) > n—2. Thus, by Lemma 14, G"+(Vmg-1, Vmi-1) is Ham-
iltonian, and by Lemma 2, G” is Hamiltonian, which is a contradiction. Therefore, we ob-
tain (n-5)/2 < dege(vVm-1) < (n-3)/2, for each vm-1eNg(Vn-2).

In a similar manner, for each Vmq+1eNG"(Va-2), We have (n-5)/2 < dege(Vme1) < (n-3)/2.
(3) When n is even, in a similar manner, we can prove that the statement holds.
(4) Obviously, the statement is true.
(5) Since deger(Vn-2) + dege (Vmy1) > (n—4), VVm1eNG (Vi-2), if deger(Vn-2) = (n-5)/2, we
have deger(vm-1) > (n—3)/2. However, we have learned from (2) that deger(vm-1) < (n—3)/2.
Hence, we have dege"(vmy-1) = (n=3)/2.

Similarly, we can prove that dege(Vme+1) = (N—=3)/2, VVmgr1€ NG (Vn-2) — {Vn-2}-

The proofs of (6) and (7) are similar to the proof of (5). This completes the proof. U

Theorem 18: (Erd6s) Suppose that G is a graph such that any two nonadjacent vertices of
G satisfying dege(u)+degs(v) > n(G)+1. Then G is Hamiltonian-connected [1, 10, 11].

Lemma 19: G” =(V”, E”) is not Hamiltonian but contains a hamiltonian path HP = (v, vy,
V3, ..., Vn2) With [V"|=n—-22>7, 62(G") 2 n — 4, Nor(v1) = {Vi,, Vi,, Vis, ..., Vig} With 2 =11<
l,<I3< ... <ly. Then the following statements are true.
(1) If deger(v1)+dega(Vn-2) =n — 3, then dege-(vi)+deger(vi) =n — 3 or n—4 for any i, where
lg+1<i<n-2.

(2) If la<n—6, then G[VLD U {vi,}] is Hamiltonian-connected.
(3) If [Vin| =0, then

(i) G" is not 2-connected:;

(II) G"EK'VdZ Vi - Kvip.
Note that VLD, G[VLD U {vi.}], Kv.ougwiay, K'viougvig, Vine Va, GIVa Vi, Kvaopvig, K'veo
g, Kvio and K'yip are defined in Definition 15.
Proof: Let Ig=b. In Table 2, we place the vertices of the Hamiltonian path HP =(v,, ...,
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Vig-1y Vigs Viges «- -5 Vigis Vighi+ly Vighi+2, -+, Vigho ---» Vn-3, Vn-2) ON the entries in the first row, in
which vy, is in the b™ column, vy is in the (I¢+i)" column, vi.« is in the (Is+k)™ column, and
so on, where i < k. The entries of the 2" and 3" rows are assigned to be “Sy, Tn, Wy”
corresponding to the Hamiltonian path HP (note that Sy, Tw, and Wy are defined in De-
finition 15).

Table 2. Hamiltonian paths HP and Pigi.

1 . b-1b lotl . gt g+l dg+i+2 . on+ik2 . lgtk . n=3 n-2
1|ve| . [Vigt| Vig [Vigre| o | Vigh | Vighist | Vigrie2 | . | Viwik2 | . | Vigsk | . Vn-3 V-2
2 |SH SH | Tu | TH Th Th ... Tu [Tu| Tn Th
3 |SH SH | Tu | TH WhH Th ... ce |Tu| Tu Th
5 vi| . [Vigt| Vig | Vo2 | . | Vnia | Vni2 Vnia | . | Vkiti#lg| .« | Vnka | .| Vige2 VigH
6 |Vi| . [Vigt| Vig |Vight| . | Vi Vni-1 Vni-2z | . | Vkit2#ly| . | Vnk | .| Viges Vig+2
7
8 |vi| . [Vigt| Vig |Vigh| . | Vn2 Vn-3 | Vigrk || nsisk2 | | VigHiel | Vigri
9 [SH SH | Tu | TH Th Th ... WhH Th Th

10 [ SH SH | Th | TH WhH Th ... Th Th Th

11| ve| . | Vigt| Vig [ Vigra| . | Vigsi V-2 Vn-3 .| Vgt | | Vil | .| VigHiv2 | Vigriet
12 | vi| . | Vigt | Vig |Vigrn | . | Vigsi | Vigrist Vn-2 L Vigrke2 | L | Vinsick | L | VigHies | Vigie2
13| ve| . [ Vigl| Vig [Vigrn| . | Vighi | Vigeiv2 Vigh+d | . | Vntik1 | o | Vigrk+d | . Vn-2 Vig+i+l
15| v | . | Vigt| Vig |Vigrn| o | Vigri | Vigrist | Vigrie2 | . | Virik2 | . Vn-2 .| Vigrk+1 | Vigrk
16 | SH SH | Tu | TH Wh Th ... TH TH Th

17

18 [ vi| . [ Vigr| Vig [Vigrn| o | Vighi | Vigrien | Vigrise2 | . | Vneik2 | . | Vigek | . Vn-2 Vn-3

(1) If dege(v1) + dege (va-2) = n—3, then, by Lemma 16, we have (vy, Vn2)€E", and the
entries of (2, x) are all Ty for each x, where 13< x < n-3. This results in the following new
Hamiltonian paths:

Pigr1 = V1, V2, .« o Vig, V2, Vi3, « oy Vige),
Pigr2, «-os Pig#i = V1, V2, « . o Vig, Vigrs, Vigr2, ooy VigH-1, V-2, V3, « « , Vighi),
Pigri+t, Pigtiv2s <oy Pigtky ooy Pna=(V1, V2, . . ., Vig, Viget, Vige2, Vige3, -y Vn-dy V-2, Vn-3).

They are illustrated in the 5%, 6™, 8, 111, 12t 15" and 18™ rows of Table 2. We can
see that vi in the Hamiltonian path Py, is located in the (n+i—k-2)" column, not in the
(I+k)™ column.

In the 5% row of Table 2, since v1 and vi,:1 are the two end vertices of the Hamiltonian
path Py.+1, we have, by Lemma 16, dege-(vig+1)+deger(vi) =n—3 or n—4. This can be applied
to the rest rows. Thus, we have dege(vi)+dege~(vi) =n-3 or n—4, for any i, where lg+1 <i
<n-3.

For each Hamiltonian path P4+, where 1 <i < n—I3—3, the entries may vary starting
from the column (lg+1) to column (n-2), but the entries before the column (Ig+1) remain
unchanged. In other words, we can find that the vertices vi, vy, ..., vi, are always in the
same positions respectively, as observed in a comparison of the Hamiltonian path HP and
all Hamiltonian paths Py, where 1< i < n—I3—3. So, all vertices belonging to Nor(v1)
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remain in the same entries, respectively. This indicates that each Sy in the row of “Sy, Ty,
Wy corresponding to each Hamiltonian path must remain in the same positions, respec-
tively. Moreover, besides Sy, all other entries are Tw only, or several Ty and one W,

(2) We consider the following cases:
Case 1 deger(v1)+dege(vn2) =n-3.

As proved previously, we have (v, Vn-2) eE” for Iy < x < n-3 and Hamiltonian paths
P+ for 1< i <n-lg-3.

Case 1.1 If deger(v1) + deger(vig+i) = n—=3 for each i, where 1< i < n—lg—3, we have, by
Lemma 16, (vx, Vig+i)€E", for lg < x <n-=3, x # l¢ +i. So, the induced graph G[VLD U {vi,}]
is a complete graph, denoted by Kvipug,y. Consequently, G[VLD U {v }] is Hamiltonian
connected.

Case 1.2 If there is an i, where 1<i<n-Iq—3, such that dege~(v1) + dege~(Vviy+i) = n—4, then,
by Lemma 16, there exists a vertex v, such that (va, vig+i)2E", and (Ve+1, V1) 2E(G"). By
Definition 15, we have v, Wy. We can find that only one entry is different in a comparison
of the row of “Sy, Ty, Wy” that corresponds to the Hamiltonian path P+ and the row of
“Sh, Tn, Wy that corresponds to the Hamiltonian path HP. Among the entries formed by
Sw and Tw, which are corresponding to the Hamiltonian path HP, only one Ty is replaced
by Wy in the row of “Sy, T, W™ corresponding to Py+i. The entries of Py« are shown in
the 8" row of Table 2.

Case1.2.1 a<lq.

This indicates that the Wy is located before the (Ig)™ column, and the vertex vy« con-
nects to each vy, where lg<x <n-2, x # lg +i.
Case 1.2.2 o> lg.

This indicates that the Wy is located in or after column lq. W.L.O.G., suppose a=lq
+k, k > i. Then we have (vi,+«, Vig+i) € E”. It can be seen that in the Hamiltonian path P,
Vigek IS in the (n+i—k—2)™ column; hence in the row of “Sy, Ty, W™ corresponding to Py,
W is in the (n+i—k—2)™ column. See the 9" row of Table 2. By Lemma 16, there is only
one Wy in the row of “Sy, T, WH” corresponding to Hamiltonian path. We can see that
whenever (vi+k, Vii+i) 2E"” in the corresponding Hamiltonian path Py i, we will always have
(Vig+i, Vigs) 2E” in the corresponding Hamiltonian path P, where lg+i and lg+k are not
consecutive integers. The entries of Py, are shown in the 15" row of Table 2. In addition,
Vi is in the (lg+i)™ column in the Hamiltonian path Py,.; hence, in the row of “Sy, Ty, Wy
corresponding to P, the only one “Wy” must be in the (Is+i)" column. See the 16" row
of Table 2.

In the graph G[VLD w {vi;}], if deger(v1) + deger(viy+s) =Nn—3 for all other Hamiltonian
paths Py +s, where 1<s <n-lg—3, s # i, and s # k, then G[VLD U {v,,}] is a graph removing
one edge (Vig+, Vig) from the complete graph Kvipugvgy (Definition 15 (10)), where lg+i
and lg+k are not consecutive integers. Thus G[VLDW{v,,}] is Hamiltonian-connected. On
the other hand, there are total (n—2)—Iqs Hamiltonian paths, so we have (n—2)—I4 rows of
“Sh, Tw, Ww”, which indicates that the number of “Wy” is at most (n—2)—ly. Therefore,
G[VLD U {v\;}] is the graph K'vLpuqv; Obtained by removing at most [(n—2)—l4]/2 vertex-
disjoint-edges from the complete graph Kviougvig, where [V(Kvipoig)| = (n=1) — la. The
degree of each vertex of G[VLD U {vi,}] is one less than or equal to |VLD U {v }| - 1.
Because lg <n-6 means |G[VLD u {vi,}]| > 5, we prove that G[VLD u {v,}] is Hamiltonian-
connected by Theorem 18.
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Case 2 deger(v1) + deger(Vn-2) = n—4.

By Lemma 16, there exists a vertex v, such that (v, Va-2)2E”, and (v, Va+1) 2E(G”);
by Definition 15, voe Wy, and there is only one “Wy” in the row of entries formed by “S,
Th, Wh” corresponding to the Hamiltonian path HP.

Case 2.1 a<lq

In this situation, the Wy is located before the (lg)™ column, so the vertex vn.» connects
to each vy for Ig< x < n-3, which shows that P, are Hamiltonian paths for 1<i<n-I3-3.
Further analysis is similar to Case 1.

Case 2.2 a> lq.

In this situation, the Wy is located in or after column lq. Suppose vy is not a neighbor
of Vi, that is (vig+i, Vn2) 2 E”. Then, we will always have (va-2, vi+i) 2E" in the corresponding
Hamiltonian path Py.i. The entries of HP and of Py, are shown in the 1% row and the 8"
row of Table 2 respectively, which show that the “Wy”s in rows of “Sy, Tw, Wy that cor-
respond to the Hamiltonian path HP and Hamiltonian path Py, are both in the column (lg
+i), as illustrated in the 3" row and the 10" row of Table 2.

By Lemma 16, we have (v, Va-2)€E”, and the entries of (3, x) are all Ty for each x,
where Ig < x < n-3, x #lg +i. This leads to new Hamiltonian paths, Pi1, ..., Pigi, Pig+i+1,
Pig+i+2, ..., Pn-3, Which are similar to statement (1) but its Pyi+1 is replaced by
P/ttt =<VL, V2, + ooy Vigy Vigets «oer Vigtis Vigri+2, Vigri+d, o Vn-3, Vn-2, VigHi+1).

The entries of P’1,+i+1 are shown in the 13 row of Table 2.
The reason to replace Pyi+1 by P’i+i+1 IS given below.
Because (Vig+, Vn-2) 2E”, Pi+i+1 does not exist. But Py« exists as shown in the 12 row of
Table 2. If deger(v1)+dege (Viqiv2) = N—3, then (vy, Vigiv2) €E”, for Iy < x <n-3 and x = lq +i
+2. If dege(v1) + degar(vig+i+2) = N—4, then there is one and only one va with (Va, Vigri+2) &
E" and vo e W4 in the row of “Sy, T, Wy corresponding to the Hamiltonian path Pyg+i+2. If
(Vig+i,Vn2) 2 E” and (vig+i, Vig+iv2) 2 E”, then there are two vertices not connecting to vii. This
is a contradiction. Hence the only one v, must not be v+, indicating (visi, Vig+i+2)€ E”.
Through a proper conversion, we can obtain P’,+i+1 from P +is2. Further analysis is similar
to Case 1. In addition, from this statement, we can also obtain that there exists a Hamilto-
nian path from v to any vertex in VLD, and dege-(vi) + dege"(vi) =n — 3 or n — 4 for any i,
where lg+1<i<n-2,
(3) Vil =0
(i) When |Vis| =0, the Hamiltonian path can be written as (v, Vo=V, V3=Viy, ..., Vg+1=
Vig, ..., Vn2). By the proof of (2), none of {Viy1, Vigso, ..., Vn2} is adjacent to {vs,
Va2, ..., Vi1 }- Obviously, {vi,} is a one element vertex cut. Therefore, graph G” is
not 2-connected.
(ii) There are two cases to consider.
Case 1. If deger(v1)+deger(Vn-2) = n—3, then degs(va-2) = (n—3)—d.
In Case 1 of (2), we have proved that G[VLD U {vi3}] is a graph removing some (none, one,
or more) vertex-disjoint edges of the complete graph KvLpugy,}-

Since dege’(Vn-2)+deger(vi ) = n—4 holds for any 1< i < lq—1, we have degc(vi) > (n —
4)—((n-3)—d) =d-1.

Thus, G[Vqu{vi,}] is a graph removing some (none, one, or more) vertex-disjoint-
edges of the complete graph Kv,ogu,-

Case 2. If deger(v1) + dega(vn-2) = n—4, then degar(vn-2) = (n—4)—d. We have proved in Case
2.2 of (2) that G[VLD U {v,,;}] is a graph removing some (none, one, or more) vertex-
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disjoint-edges of the complete graph Kviougug-
Since deger(Vn-2) + dege(vi) > n—4 holds for any 1< i < lg—1, we have dege(vi) > (n —4) —
((n—4)—d) =d.

Therefore, G[Vqu{vi,}] is a complete graph Kv,ug,3. On the basis of these two cases,
we can conclude that G"eK'y, : vi, : K'vip.

Theorem 20: For a graph G =(V, E) with |G|=|V|=n>7, if «(G) > 4 and 6»(G) > n, then
either G is 2-vertex-fault Hamiltonian or G belongs to one of the families {1, 72, 73, 7a,
15, 16, 17, N}

Proof: Note that Su, Tr, Wy are defined in Definition 15. For any two vertices x, yeV, let
G'=(V', E"), with V' =V-{x}, E' =E-{(X, ) |seV}, and |[V'|=n"=n-1.

Case 1. If G is 1-vertex-fault Hamiltonian, G’ must have a Hamiltonian cycle with x(G") >
3, and degg'(u) + dege(v) = n—2=n'- 1 for any nonadjacent pair {u, v}cV(G’), based on
previous discussion.

Delete a vertex y from V' to obtain a graph G”, where G” = (V", E"), with V"=V’ —{y},
E"=E-{(t, )teV'}, V'|=n-2=n"-1=n", k(G") 2 2, and c»(G") > n —4=n"-3=n"-2.
Then we have two possibilities: G” is Hamiltonian or it is not.

Case 1.1. G” is Hamiltonian. Then G is 2-vertex-fault Hamiltonian.
Case 1.2. G” is not Hamiltonian.

In this case, G"” must contain a Hamiltonian path HP =(v1, v, Vs, ..., Va2). Clearly, (vi,
Vn2) ¢ E(G"); otherwise, G” is Hamiltonian. The condition “x(G) > 4” indicates that dega(v1)
> 4. Let Nor(v1) ={Vi, Vip, Vigy ..., Vigy Where 2=h< < lz< ... <lq.

According to Lemma 12, (Vn-2, Vi-1) ¢ E for all I, with 1 <r <d; otherwise G" is Ham-
iltonian. By Lemma 16, degcr(v1) + dege(vn-2) =N — 4 or n — 3. Note that v, is the neighbor
of v, that has the largest subscript. It follows that there are two possibilities: l¢=n-3 and lq
<n-3.

Case 1.2.1 ly=n-3; that is, (v1, Vn-3) eE(G").

Since degcr(v1) + deger(vn2) = N—4 or n-3, we have two possibilities to consider:
deger(v1) + dege"(Vn-2) = -3 and deger(v1)+dege(vn-2) = n—4.

Case 1.2.1.1 deger(v1) + dege”(Va-2) =n — 3.

On the basis of (n—5)/2 < dege"(Vn-2) < (n =3)/2 from Lemma 17, we have three pos-
sibilities: deger(vn-2) = (n—3)/2 for n is odd, dege-(Vn-2) = (n—4)/2 for n is even, and degc"
(Vn-2) = (n=5)/2 for n is odd.

Case 1.2.1.1.1 dege"(Vn-2) = (n—3)/2 for n is odd.

With dege(vn-2) = (n—3)/2 and Lemma 14 — there are no two consecutive vertices in
the Hamiltonian path HP in Ne"(Vn-2), we have Ne(Vn-2) = {Vn-3, Va5, ..., Va, V2} = Th. And,
by Lemma 16, we have Sy = {Vn.4, Vns, ..., V3, Vi} = Ng"(Vn-2). SO, Ne(V1) ={Vn-3, Vnss, ...,
Va, Vo} ={viJlr =2 x r, 1 <r < (n-3)/2} = Nor(Vn-2). See Fig. 13.

SN

‘§=__,

Vp_2 Vn_a V2k+1V2k-1 V2i+1V2i-1 Yy Vg

Fig. 13. An illustration of Case 1.2.1.1.1 for Ner(v1) = Ne"(Vn-2).
By Lemma 17, VVm.1€Ng"(Vn-2), we have (n—5)/2 < deger(vm-1) < (n—3)/2. In this case,
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VVaxi-1€Ng(Vn-2) for 1 <i < (n—-3)/2, we have (n—5)/2 < degg"(Vzxi-1) < (n—3)/2 which ob-
viously has two subcases to consider.
Subcase 1.2.1.1.1.1 YVaxi-1€Ng"(Vn-2), deger(Voxi-1) = (n=3)/2.

With deger(Vaxi-1) = (n—3)/2 and Lemma 14 — the vertices in Ng"(Vn-2) W {Vn-2} are mu-
tually nonadjacent, we have No'(Voxi-t) ={wi ]k =2 x r, 1 <r < (n-3)/2} forall 1 < i <
(n—3)/2. Let V(H(n-3)2) = Nor(Vn-2), and Ng(Vi-2) U {Vn-2} = V(r_w). Then G” can be writ-
ten as H(n.3)/zvr_l)/2. For n=9, the graph G” is illustrated in 1:ig. 8 (c). Since the number
of components o% G” — {Vn-3, Vns, ..., V4, Vo} is greater than [{Vn-3, Vn-s, ..., Va, V2}|, G” is not
Hamiltonian by Theorem 3. There are two possibilities to reconstruct G from G”, as shown
below.

Adding two vertices x, y to the graph G”, we can obtain G = (Hg+1)2 vm) with
o»(Hn+1y2) 2 1 whenn > 9 and k(Hs) > 1 when n=7. Hence Ge na.

Adding two vertices X, y to the graph G”, and deleting one edge (Va, Vo) Where vae{X,
y} and v@eV(m), with deghns1y2(Va) = 2, o2(Hm+y2) = 1, and n > 9, we have G =
(Hp+z v K a2 )— (Ve, Vo). Thus, Ge .

Subcase 1.5.1.1.1.2 There exists an element Vaxt.1 € Ng(Vn-2) With dege(Voxt.1) = (n—5)/2.

Based on Lemma 17, the degrees of all other vaxs.1e Ngr(Va-2) must be equal to (n—3)/2.
So, G" is of the form in Fig. 6 (b) when n=9, which is not Hamiltonian. Let vox1 = Vg, G”
can be written as Hp-3)2 vm— (Vay Vo), Where voeV(Hp-3)2). By adding two vertices X,
yto G”, we can find G= (H(n+1)/2VM) ~ (Ven V), With deghne1y2(Ve) = 2, and cz(Hn+1y2)
> 1. Consequently, G e 5. See Fig. 6 (a).
Case 1.2.1.1.2 deggr(Vn-2) = (n—4)/2, n is even.

On the basis of dege’(vn-2) = (n—4)/2 and Lemma 14 — there are no two consecutive
vertices of the Hamiltonian path HP in Ng"(Vi.2), we have Ng"(Vn-2) = {Vn-3, Va5, ..., Vs, Va}
= Tu, and Ne"(Vn-2) = {Vn-a, Vns, ..., Va, V2}. By Lemma 16, Sy = {Vn-4, Vns, ..., V4, V2, V1};
therefore, No(v1) = {Vn-3, Vns, ..., Vs, V3, Vo} and deggr(v1) = (n—2)/2. See Fig. 14.

By Lemmas 14 and 17, the vertices in Ng(va-2) are all mutually nonadjacent, and
(n—4)/2 < degg"(vm-1) < (n —2)/2. There are two subcases to consider.

Vn-2 Vn-a Vak V2i+2 V2i Vg V2 Vg

Fig. 14. An illustration of Case 1.2.1.1.2 for dege"(vn-2) = (n—-4)/2.

Subcase 1.2.1.1.2.1 There exists one vertex Vm.1€Ng(Vn-2) with dege'(vm-1) = (n-2)/2.

By Lemma 17, except vertex vme1, all other vertices vms.1€Ng"(Vn-2) have degg(vVms-1)
= (n—4)/2. Since, as discussed previously in Lemma 14, all elements belonging to Ng'(vn-2)
w{vn2} are mutually nonadjacent, we have Ng'(Vmg-1) ={Vn-3, Vo5, ..., V5, Va} = Ng"(vn-2) and
deggr(vVms-1) = (n—4)/2 for each vmg.1€Ng(vn-2) — {v2}. As for vo, we have Ng(V2) = {Vn-3, Vn-
5, ..., V5, V3, V1} and degG”(Vz) = (n—2)/2. Let V(H(n,4)/2) = NG”(Vn.z), V( K(n74)/2 ) = Né"(Vn.z) )]
{Vn-2} — {v2}. Then G” can be written as Hg.ay2 v (Mu K2), where V(Kz) = {v1, v2}.
Thus G” is of the form in Fig. 9 (b) when n=10. The number of components of G"—{vn.3,
Vnss, ..., V5, V3} is greater than [{Vn.3, Vns, ..., Vs, V3}|. Consequently, by Theorem 3, G” is




2-VERTEX-FAULT HAMILTONICITY FOR GRAPHS 849

not Hamiltonian. There are three possibilities to reconstruct G from G”, as shown below.
Subcase 1.2.1.1.2.1.1
Addmg two vertices x, y to G” such that G = ((Hp-ay2 : X : Y) V(K. .. WK2)=Hn2
(n—4)/2
, W Kz), we have 5(G) (n/2) and (G) =n.

in the graph G, if Hn2 = K, 5, thenk KooV (K, o Knayz UK?>) is a special case ofK_v Hn.

OtherW|se we will have G=Hn, v (K. .. UK3) = 75, in which the complete graph in
K. UKy) is with V(Ky) = {vi, v2}. 1Sh|s case shows that n > 8 is required for ensuring

K(é) > 4 The graph s for n=10 is illustrated in Fig. 9 (a).

Subcase 1.2.1.1.2.1.2

We can delete one edge (v, Vo) from Hypo v (K o, UK2), where vee{x, y} and ve
e{v1, v2}, with degr(z)(ve) = 1. Then we obtain the graph G=HnpVv (K a2 UK2) = (Vo
Vg), which must belong to 7. For n =10, the graph G is illustrated in Fig. 9 (c).

Subcase 1.2.1.1.2.1.3

We can delete two edges (Va, Vo), and (Ve, Vo) from Hozv (K. K, s, | Ke), Where ve, v.
e{Vi, Va}, Vo#Vs Vo, Voe{X, Y} Va7 Vo With degrpz)(Ve) = 1 and degH n2)(Ve) = 1. Then we
obtain G=Hmev(K, ... o, IK2) = (Va, Vo) = (Ve, Ve), Which must belong to 77. For n =10,
the graph G is illustrated in Fig. 9 (d).

Subcase 1.2.1.1.2.2 For each element vm.1€Ng"(Vn-2), dege(Vme-1) = (n—4)/2.

In this case, deger(v2) = (n—4)/2. There must be an element vo € Ng(Vn-2), (Vo V2) &
E(G"). Let V(H(n-4y2) = Ng"(vn2) and V(K a2 ) = Ng"(Vn-2) U{Vn2}—{Vv2}. Then G” can be
written as Hp-gy2 v (K~ UK2) = (Vo V2), Where V(Kz) ={vi, v2}. Thus G” is of the form
in Fig. 10 (c) for n= 12 There are two possibilities to reconstruct G from G”, as shown
below.

Subcase 1.2.1.1.2.2.1
Adding two vertices x, y to G”, we can obtain G=((Hp-a2 : X Y) V(K . K a, U K2)
- (Ve Vo) =Hmv (K o, IK2) = (Va, v2), in which the complete graph in (K a2 UKZ)
is with V(K2) ={v1, v2}. To ensure 0»(G) = n, we must have degr2)(ve) = 1, which implies
that G e 56. This case shows that n > 8 is required for ensuring k(G) > 4. The graph G of n
=12 is shown in Fig. 10 (b).
Subcase 1.2.1.1.2.2.2

We can delete one edge (Vo, v1) from Hoov (K. K o, UK2) = (Ve V2), where Vo € {X,
y} with degrms)(Ve) = 1. Then we have G = Hyz v( K a2 Y K2)—(Va, V2)—(Ve, V1), Which
must belong to 7. This case shows that n > 8 is required for ensuring k(G) > 4. The graph
G of n=12 is shown in Fig. 10 (d).

Case 1.2.1.1.3 dege”(Vn-2) = (n-5)/2, n is odd.

In this case, deger(vi) = (n—1)/2. By (vi1, Vm+1) 2E(G) from Lemma 12 and Vvme1e
NG (Vn-2)—{Vn-2} from Lemma 17, we have dege"(vme+1) = (n—3)/2, which leads to dege-(v1)
+ dege'(Vmi+1) = n—2. Connecting vi to vmi+1, by Lemma 14, we can see that G” + (v1, Vmg+1)
is Hamiltonian. But, by Theorem 2, G" is Hamiltonian too. This is a contradiction.

Case 1.2.1.2 deggr(v1) + dege (Va-2) =N — 4.
Case 1.2.1.2.1 degg"(Vn-2) = (n—=3)/2, n is odd.

In this case, deger(v1) = (n— 5)/2 This is a special case of ve=vy in Subcase 1.2.1.1.1.2.
Similarly, we have G" =Hpn3y2 v K 2 —(Va, V1), Where voeV(Hn-3)2). By adding two ver-
tices to G”, we obtain G = (H(n+1)/z\/ m )—(Ve, V1), in which ox(Hp+12) 21 and
degr(n+1)2(Ve) = 2. It can be seen that Ge 7.

Case 1.2.1.2.2 degg"(Vn-2) = (n—4)/2, n is even.
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This case is similar to Case 1.2.1.1.2. In this case, deger(v1) = (n—4)/2. Because of
dege'(Vn-2) = (n—4)/2 and Lemma 14 — there are no two consecutive vertices of the Hamil-
tonian path HP in Ng"(Vn-2), we have Ng"(Vn-2) = {Vn-3, Vn-5, ..., Vs, V3} = Tn, which shows
NG"(Vn-2) ={Vn-4, Vs, ..., Va, V2}. By deger(v1) = (n—4)/2 and Lemma 16, we have Sy = {Vn.4,
Vin-6y «vy Va, V2, V1 }—{Vy } and Wh = {v } with vy, # Vna, Which result in Ner(v1) = {Vn-3, Va5, ...,
Vs, V3, V23 — {Vars1}- L€t Vo =Va. Then, there are two subcases in this case.

Subcase 1.2.1.2.2.1 There exists one vertex Vm.1€Ng"(Vn-2) with degg"(Vme1) = (n—2)/2.

The vertex vm.1 must be v, because Ng"(v2) = {Vn-3, Vo5, ..., V5, V3, V1} as described in
Subcase 1.2.1.1.2.1. The graph G” can be written as H.ay2 v ( Ke UK2)—(Ve, V1). The
graph G” of n=12 is shown in Fig. 10 (f). There are two p035|b|I|t|es to reconstruct G from
G”, as shown below.

Subcase 1.2.1.2.2.1.1

We can add two vertices x, y to G”such that G=((Hp-ay2 * Xt y) V(K .. a2 UKy)) —
(Vay Vi) =Hm2v(K K a2 UKz) = (Vg V1), where the complete graphin (K, U K>) is with
(v1, v2). To ensure O'z(G) n, we must have degh,(Va) = 1, which implies that G e 76, as
shown in Fig. 10 (a) for n=12.

Subcase 1.2.1.2.2.1.2

We can delete one edge (Vo, V2) fromHnov (K
with degHg)(Ve) = 1. Then we have G = Hnz V(K
plies that G € 777, as shown in Fig. 10 (e) for n=12.
Subcase 1.2.1.2.2.2 For each element vm.1€Ng"(Vn-2), dege(Vme-1) = (n—4)/2.

In this case, degc(v2) = (n—4)/2. There must be an element vo € Ng(Vn-2), Vo# Vo, Vo
# vz and (Ve, V2) ¢ E(G"). Let V(H(n-4)2) = Ng"(Vn-2), V(m ) = No(Vn-2) U {Vn-2} — {Vv2}.
Then G” can be written as Hp-a2 v (K. K a2 U K2)—(Vay V1) — (Vo, V2). The graph G” of n=
12 is shown in Fig. 11 (b). Adding two vertlces X,y to G", we can obtain G=(Hp-ay2 * X ©
y) v(Kn a2 UK2) = (Vay V1) = (Va, V2) = Hn/z\/(Kn ayp JK2) = (Ve V1) = (Vo, V2), in which
the complete graphin (k. UKy) is with V(Kz) v1, V2}. To ensure o»(G) = n, we must
have degh,(Va) = 1 ané degH(n,z)(vw) > 1, which implies that Hy» v (K U K2)—(Va
V1)—(Vw, V2) € 777, @S shown in Fig. 11 (a) for n=12.

Case 1.2.1.2.3 dege”(Vn-2) = (n-5)/2, n is odd.

By Lemma 16, deger(v1) = (n—3)/2. There are two cases to consider: “n>9”and“n=9".
Case 1.2.1.2.3.1n>09.

Subcase 1.2.1.2.3.1.1 NG"(Vn.z) = {Vn.3, V-5 weey V2(s+2), V2(s+1), V25, V2(s-1)y V2(5-2)5 ey V4, Vz}—{st}
where Vs, # Vi3, that is Ng"(Vn-2) ={Vi[lr=2 % r, 1 <r < (n-3)/2}—{Vvas} =Tw.
Subcase 1.2.1.2.3.1.1.1 v, # Vo, that is, s = 1.

It can be seen that
V(G")—{Vn-2}— Trr = SHOWH = {Vn-s, Vs, .., V2ss5, V2s+3, Vas+1, Vos, Vos.1, V253, V2s5, ..., V3, Vi};
Ng(Vn-2) = {Vn-4, Vs, ..., Voss3, Vas+1, Vs 3, Voss, ..., V3, Vi};

NG"(Vn-2) = {Vn-2, Vi, Vs, ..., V2s+5, V2si3, Vos-1, V23, ..., Vs, V3,

NG (Vn2) NG (Vn-2) = {Vn-a, Vnss, ..., Voses, Vast3, Vas:3, Vass, ..., Vs, Va};

NG (Vn-2)UNG"(Vn-2) = {Vn-2, Vng, V-6, - .., Vas+5, Vase3, Voset, Vas-1, Vos-3, Vosss, ..., Vs, V3, Vi};

V(G")—Na”(Vn-z) U N(;rn(Vn.z) = {Vn.s, Vns, ..., V2(s+2), V2(s+1), V2s, V2(s-1), V2(s-2)y - -5 V4, Vz}
={vi|lr = 2xr, 1<r<(n-3)/2}, and |V(G")~Ng"(Vn-2) U N&"(Vn-2)| = (n—3)/2.

For each vertex voeNg(Va-2) NNG"(Vn-2), We have dege(Vve) = (n—3)/2 by Lemma 17;
by Lemma 14, Ng+(Vn-2) U{Vn-2} are mutually nonadjacent to each other, and N&-(va-2) U
{vi} are mutually nonadjacent to each other too; therefore, we have Ng'(vo)SV(G")—

UK2) = (Va, V1), Where voe{x, y}
U K2)—(Vay V1)—(Va, V2), Which im-

n-4)/2

(n-4)/2

n-4)/2
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NGg"(Vn-2) U NG (Vn-2) = No"(Vn-2) U {V2s}. Since [V(G")—Ng(Vn-2) U NG (Vn-2)| = (n-3)/2, we
conclude that Ng"(ve) = Ng"(Vn-2) U {Vas}.

As for the vertex V,,;eNG(vVn-2), we have dege(Vy.1) = (n—3)/2 by Lemma 17, and
NG”(VZS_l)CV(G")—NE"(Vn.z)—{Vl} = {Vn.3, V-5, voey V2(s+1), V2s+1, V2s, V2(s-1)y +oey V4, Vz}. Note that
V2s-3E Né"(Vn.z)ﬁNE”(Vn.z); therefore, VZSENG"(V25.3). If (V25+1, V25.1)€E(G"), then (vi, Vn3,\,
Vas+1, Vas-1, Vas, V2s-3, Vas-2, Vin-2, Vas-a, ™\, V1) IS @ Hamiltonian cycle, which is a contradiction.
Hence NG”(st.l) = V(G")—NE;”(Vn.z)—{Vl}—{V25+1} = NG”(VB). For the vertex vas+1eNg” (Vn.z),
we can prove that Ng"(V2s+1) = Ng(ve) in a similar manner.

Note that Ng+(Vn-2) U {Vi} U {Vas+1} = Na"(Vn-2) U {Vn-2} U {v2s.1}; the vertices belonging
to Ng(vn-2) U {vn2} are mutually nonadjacent to each other; the vertices belonging to Ng-
(Vn-2) U {v1} are mutually nonadjacent to each other; Vas.1 € NG"(Vn-2) and Vas+1 € Ng(Va-2); and
(Vas+1, V2s-1) 2E(G™); hence, we can conclude that the vertices in Ng(Vn-2) U {Vn-2} U{V2s-1}
are mutually nonadjacent to each other too.

Subcase 1.2.1.2.3.1.1.1.1 v,,€Sh.

If v, Sy, this implies that v, e Ne+(Vv1). For a vertex Ve e Ng+(Va-2) "NG*(Vn-2), W.l.0.g.
let 6 > 2s; we have (vi, 7, Vas, Ve, ./, Vn2, Vo-1, \, V2s+1, V1) IS @ Hamiltonian cycle. This is
a contradiction.

Subcase 1.2.1.2.3.1.1.1.2 v, Sh, that iS, Sh={Vn-4, Vn-6, ---s Voss1, Vos.1, --s V3, V1} and Wy =
{VZS}-

We have Ng"(v1) = {Vn-3, Vn-5, ..y Va, Vo} ={Vi|lr =2 x 1, 1 <1 < (n=3)/2} = Ng(Vn-2) U
{vas}, and Ng"(Vn.2)SNa(v1). This is a special case of vy =Vy. in Subcase 1.2.1.1.1.2.

Let V(Hn-3)2) =Na"(Vn-2) U {Vos}, V(K (012 ) = Ng"(Vn-2) U {Vaxs-1} U {Vn2}, and vos =Vg;
then G” can be written as Hp-3)2 v K (12 —(Va, Vn-2). Adding two vertices to G”, we can find
the graph G = (Hn+y2v m )=(Vey Vn-2), where ox(Hn+1)2)21 and deghgyn(Va) = 2.
Hence, Ge 7.

Subcase 1.2.1.2.3.1.1.2 vy =V, that is, s=1.
We have Ng(Vn-2) ={Vn-3, Vn-s, ..., Vs, V6, Va};
V(G")—{Vn.z}— Tu=SHUWy = {Vn.4, Vn-6, ..., V7, V5, V3, V2,V1};
Ng"(Vn-2) = {Vn4, Vi, ..., Vo, V7, Vs, V3}; NG"(Vn2) = {Vn2, Vna, Vs, ..., Va1, Vo, V7, Vs};
NG (Vn-2) ANG"(Vn-2) = {Vn-4, Vin6, Vg, ..., V1, Vg, V7, Vs};
NG"(Vn-2) UNG"(Vn-2) = {Vn-2, Ving, V6, .-, Va1, Vg, V7, Vs, V3};
V(G")~Ng(Vn2) UNG"(Vn-2) = {Vn3, Vns, ..., Vs, Vs, Va, V2,V1}.

In a similar manner, we can find that for each voeNg'(Va-2) NG (Vn-2), No+(ve) =
V(G")-Ng"(Va-2) U N&(Vn-2)—{vi} = Ne"(Vn2) U {v2}; (v1, va)2E(G"); Ngr(v1) = Ner(vs) =
Ng"(ve), as shown in Subcase 1.2.1.2.3.1.1.1. We can obtain that G” = Hn.3)2v m—(w,
Vn2) and G = (H(nﬂ)/zvm)—(w, Vn-2), where o»(Hp+1)2) >1 and degH(M),z(vZS >2ina
similar way, as shown in Subcase 1.2.1.2.3.1.1.1.2.

Subcase 1.2.1.2.3.1.2 Ng"(Vn-2) £{Vn-3, Vn-5, ..., Va, Vo}—{Vos}

Since Vi3 € Ng"(Vn-2), Vna must not belong to Ngr(vn-2). It follows that we will examine
each vertex sequentially. The next vertex to be examined is Vy.s.
Subcase 1.2.1.2.3.1.2.1 Vn.5&Ng(Vn-2).

With deger(vn-2) = (n-5)/2 and Lemma 14 — there are no two consecutive vertices in
the Hamiltonian path HP in Ng(vn-2), we have either Ng"(Vn-2) = {Vn-3, Vn-6, V-8, ..., Vs, V3}
or Ne'(Vn-2) = {Vn3, V7, Voo, ..., Va, V2}. Based on “Ne(Vn-2)E{Vn-3, Vns, ..., Va, V2}—{Vas}”,
we must have Ng(Vn-2) = {Vn-3, Vn-6, Vn-8, ..., Vs, Va}, which leads to Ng"(Vn-2) = {Vn-4, Vn-7, Vi
9, ..., Va, V2} and N&+(Vn-2) = {Vn-2, Vn-s, V-7, Vng, ..., Ve, Va}. It can be seen that vn.7e Ng (Vn-2),
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Vp7€ Né”(Vn.z), and NE;”(Vn.z)UNE”(Vn.z)U{Vl} = {Vn.z, Vn-4, Vn-5, Vn-7, Vn-9, ..., V6, V4, V2, V1}.
Based on Lemma 14 — the vertices in Ng"(vn2){Vn-2} are mutually nonadjacent and the
vertices in N&+(vn-2) U {v1} are mutually nonadjacent, the neighbors of vn.7 are in the set of
{V1, V2, V3, Vs, ..., Vo7, Vs, V-5, Vined, Vi3, V2 }— NG (Vn2) UNG (Vin2) U{Va} = {Vn3, Vo6, Vg, -y
vs, Va}, from which we can see that |[{Vn3, Vn-s, Vn-8, ..., V5, V3}| = (n-5)/2. However, by
Lemma 17, degc(vn-7) = (n—3)/2, which is a contradiction. The graph G” for n=23 is shown
in Flg 15, in which NG"(V21) = {Vzo, V17, V15, ..., Vs, V3}, Né"(V21) = {V19, Vie, V14, ..., V4, Vz}
and NE”(Vzl) = {V21, V1s, V16, V14, ..., Vs, V4}, Vig€E NE;”(V21), V16€NE”(V21), |{V1, . Vn.2}—NE;”
(Vn.z)UNE”(Vn.z)U{Vl}l = |{V20, V17, V15, ..., V5, V3}| =09.

Fig. 15. G” for n=23.

Subcase 1.2.1.2.3.1.2.2 Vi.5 € Ng"(Vn-2).

For vnseNg"(Vn-2), Vn-s must not belong to Ne'(vn-2). Therefore, the next vertex to be
examined is Vp.7. If vn.7¢Ngr(Vn-2), this, similar to Subcase 1.2.1.2.3.1.2.1, will result in a
contradiction. If vn.7eNg"(Vn-2), Vn-s must not belong to Ne(va-2). Hence, the next vertex to
be examined is vn.o. Continuing this examining process, we will arrive at either a case of
Subcase 1.2.1.2.3.1.1 or a contradiction.

Case 1.2.1.2.3.2 n=0.

There is a Hamiltonian path (vi, Vo, V3, Vs, Vs, Ve, V7), Where (v1, Vs)€E(G"), deger(v1)
=(9-3)/2=3, and degc(v7) = (9-5)/2=2.

Subcase 1.2.1.2.3.2.1 Ng"(v7) = {V2, Va, Ve}—{V,s} Where v, # Ve.
Subcase 1.2.1.2.3.2.1.1 NG"(V7) = {Vz, Ve}.

In this case, we have V(G")—{v7}-Tn = SHUWn = {v1, V3, V4, Vs}, Na(v7) = {v1, Vs},
N&+(v7) ={vs, v7}, by Lemma 17, we have dege-(vs) = dege-(vs) = 3. It can be seen that Ng-(v1)
c V(G")—Ng(v7)—{vr}={v2, Vs, V4, V6}. If vseNgr(v1), then v, must belong to Sh. However,
V2 ¢ Sy lUWh; hence, vo¢Sh. Consequently, vagNg(v1) and Ng(v1) ={v2, Vs, Ve}. For Ng+(vs)
c V(G")=NG&(v7) —{vi} = {v2, V4, Vs, Ve}, if (Vs, Vs)€E(G"), then (vi, Vs, Vs, Vs, V6, V7, V2, V1)
is a Hamiltonian cycle. This is a contradiction. Therefore, Ng(vs) ={V2, V4, V6}. Moreover,
for Ne'(vs)cV(G")—Ngr(v7) —{v7} ={Vv2, Vs, V4, Ve}, and (vs, vs)gE(G"), then Ng~(vs) = {v2,
Vs, Ve}. Obviously, the four vertices vi, vs, vs, vz are mutually nonadjacent to each other.
Let V(Hs) = Nor(v7) U{V,}, V(Ka) = Na(v7) U {vs} U {v7}; then G” can be written as Hs v K4
— (va4, V7). See Fig. 3 (a). Since the number of components of G” — Hs is greater than |Hsj,
G”, by Theorem 3, is not Hamiltonian. By adding two vertices to G”, the graph G can be
found as: (Hs v Ka)—(V4, V7), 02(Hs) > 1, and degus(v,) > 2. See Fig. 3 (b). Hence, Ge 7.
Subcase 1.2.1.2.3.2.1.2 Ng"(v7) = {Va, Ve}-

In this case, we have V(G")—{v7}-Tu = SuUWw ={v1, V2, V3, Vs}, Nar(v7) = {vs, vs},
NG&-(v7) = {vs, v7}, and, by Lemma 17, degc-(vs) = dege-(vs) = 3. In addition, Ng-(v7)"Ng-
(v7) = {vs}, Nor(v7) UNG(v7) = {vs, Vs, vz}, and Ng(vs) = V(G")-Ng(v7) UNG (v7)—{vi} =
{V2, V4, Ve}. If voeSy, then (vi, v3)eE(G"), and (v1, V3, V2, Vs, V4, V7, Ve, V1) is @ Hamiltonian
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cycle. This is a contradiction. Therefore, Sy ={v1, V3, vs}, Wn ={v2}, and Ng"(v1) = {Vv2, Va4,
Ve}. Since vzeNg'(v7), we have Ng(v3)cV(G”) — Ngr(v7) —{v7} = {V1, V2, V4, Ve}. Since v
#Ngr(v1), we have Ng-(vs) = {v2, V4, Vs}. Obviously, the four vertices vi, vs, vs, v7 are mu-
tually nonadjacent to each other. Let V(Hs) = Ng"(v7) U{v,}, V(Ka) = No-(v7) U{vi} U{v7};
then G” can be written as Hs v K4 — (v2, v7). By adding two vertices to G”, the graph G can
be found as: (Hs v Ki) — (v, V7), 02(Hs) > 1, and degns(v,) > 2. Hence, Ge 7.

Subcase 1.2.1.2.3.2.2 Ng"(v7)Z{V2, Va, Ve }—{V,.} Where vas # Ve.

In this case, we have Ng(v7) ={vs, Ve} which implies Na+(v7) = {v2, Vs}, N&(v7) = {va,
v7}, and V(G")—{v7}—Th = Su U W ={v1, V2, V4, V5}. Moreover, we can obtain Ng(vi)c{vz,
V3, Vs, Vo }; Nor(Va)cV(G") — {vi}-N&-(v7) = {V2, V3, Vs, Ve}, No(v2)cV(G")—{v7}-Ng(v7) =
{V1, V3, Va, Ve}, and NG"(Vs)C{Vl, V3, Va, Ve}. By Lemma 17, degG”(Vz) = degG”(Vs) = dege”(V4)
= (n—3)/2 = 3. Hence, we have either Ng"(v1) = {V2, Vs, V6} Or Ng(v1) = {Vv2, Vs, Ve}; either
NG"(V4) = {Vz, V3, V5} or NG"(V4) = {V3, Vs, Ve}; either NG”(Vz) = {Vl, V3, V4} or NG”(Vz) = {Vl, V3,
Ve}; either Ng(vs) = {Vv1, Vs, Ve} Or Ner(vs) ={Vs, Vs, Vs}. We can find that there are only four
possible arrangements, as shown below.

P1: NG”(V;L) = {Vz, V3, Ve}, NG"(Vz) = {Vl, V3, V4}, NG"(V4) = {Vz, V3, Vs}, NG"(Vs) = {V3, Va, Vs}.
P2: NG”(V;L) = {Vz, V3, Ve}, NG"(Vz) = {Vl, V3, Ve}, NG"(V4) = {V3, Vs, Ve}, NG"(Vs) = {V3, Va, Vs}.
P3: NG”(V;L) = {Vz, Vs, Ve}, NG"(Vz) = {Vl, V3, V4}, NG"(V4) = {Vz, Vs, Vs}, NG"(Vs) = {Vl, Vg, Vs}.
P4: NG”(V;L) = {Vz, Vs, Ve}, NG"(Vz) = {V1, V3, Ve}, NG”(V4) = {V3, Vs, Ve}, NG”(Vs) = {Vl, V34, Ve}.

We find that P1 gives a Hamiltonian cycle {vi, vz, Va, Vs, Vg, V7, V3, V1}; P3 gives a
Hamiltonian cycle {v1, Vs, V7, V3, V2, V4, Vs, V1}; P4 gives a Hamiltonian cycle {va, Vs, Va, Vs,
V7, V3, V2, V1}; P2 sets up a non-hamiltonian graph G”. Since Ng~(v1) ={vz, Vs, V6}, We can
conclude that Sy ={vi, V2, Vs}, Wn ={va4}.

Thus, G” can be written as G” = Hav(2K2UKj3); the two complete graphs in 2K, are
with V(K2) = {vi, vi+1} for i = 1, 4; and with V(K1) = {v7}. Since the number of components
of G"—H; is greater than |Hy|, by Theorem 3, G” is not Hamiltonian. We can add two ver-
tices x and y to G” to obtain G = Hav(2K2UKy) = 72, and o2(G) = n. See Fig. 5.

Case 1.2.2 Is < n—4.

Let Is=b. We place the vertices of the Hamiltonian path HP =(v1, v, ..., Va, Vas1, ...,
Vig1, Vigs VigH, - Vo3, Vn2) ON the entries in the first row of a table, in which v, is in the a®
column, vy, is in the b™ column, vy; is in the (n—2)™ column, and so on, where a < b. “Sy,
Th, Wy corresponding to the Hamiltonian path HP are the entries of the 2" row. It can be
seen that there are four possibilities for “Sy, Tw, Wh” to appear before the (Ig)™ column, as
shown in the following cases:

Case 1.2.2.1 If each entry from (2,1) to (2, Is—1), is Sw, then G” has a Hamiltonian path
(V1, V2=Viq, V3=V, . . ., Vd+1 =V, ..., Vn-2). By Lemma 19 (3), G” is not 2-connected.

Case 1.2.2.2 If there exist two consecutive entries, (2, a) = Ty and (2, a+1) = Sy, before
column Ig, then vae Ng"(vn-2) and va+2eNgr(v1). By a proper conversion, we can find a Ham-
iltonian Path PT =(v1, V2, 7, Va, Vn-2, “\, Va+2, Vas1). NoOte that vas, is located in the (n-3)"
column. That means, in the Hamiltonian Path PT, the neighbor of v, that has the largest
subscript is in the (n—3)" column, as shown in the third row of Table 3.

Specifically, rename the vertices in the Hamiltonian path PT such that vi' =v; for 1 <
i <aand Vi =Vpaia for a+ 1<i <n — 2, as shown in the 4™ row of Table 3. Then we can
find that (v, vi.3) €E. It follows that the further discussion of this case is similar to that in
Case 1.2.1.
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Table 3. Hamiltonian Paths HP and PT.

1 2 a a+l at+2 T ! b=lg la+1 ... n—4 n-3 n-2

HP 1 Vi V2 | Va Va+1 Va+2 - Vig-1 Vig Vigrr | Vn-4 Vn-3 V-2
2| Su | T Sh w || Su Th ] Tw Ty

PT 3| Vi Vo || Va V-2 Vn-3 | Vnradlg Va+2 Vat1

41 v Vo' || v Var1' Vard' |- | Vnd Vns' Vno'

Case 1.2.2.3 If there are three consecutive entries with (2, w—1)=Tn, (2, w) =Wy, (2, w+1)
= Sy before column lg, then vw-1€eNg(Vn-2), VwgNg"(V1), Vw&Ne"(Vn-2), Vw+1& Ng(V1), Vw+1 &
Ng"(Vn-2), and vw+2 € Ng(v1). The Hamiltonian path HP ={v1, vz, V3, ..., Vw-1, Vw, Viw+1, ..., Vn-4,
Vn-3, Vn2) IS shown in the 1% row of Table 4. The sequence “Sw, T, Wy corresponding to
the Hamiltonian path HP are the entries of the 2™ row.

In this case, degg(v1)+deger(vn-2) = (n — 4), if dege (v1) > (n — 4)/2, then degg (Vn-2) <
(n — 4)/2. Converting the Hamiltonian path HP to the following Hamiltonian path PT1:
PT1=(V1, V2, ./, Vw.1, Va2, "\, Vws1, Vw), as shown in the 3 row of Table 4, we can see that
deger(v1) + deger(vw) = (n — 4), which implies that dege"(vw) < (n — 4)/2. Hence, degg’(Vn-2)
+ deger(vw) <(n —4). This is a contradiction. Therefore, we must have degg(v1) =dege(Vn-
2) and n is even.
Subcase 1.2.2.3.1 n > 12.

Convert the Hamiltonian path HP to the Hamiltonian path PT1 as below:
PT1=(v1, V2, 7, V-1, Via, NG Vinzelghwn N Vige2s Vigr, Vi N Vw2, Vw1, V). Note that vz
is located in the (n—4)™" column. That means, in the hamiltonian Path PT1, the neighbor of
vy that has the largest subscript is in the (n—4)™ column, as shown in the third row of Table
4. The sequence “Sn, Tw, Wx” corresponding to the Hamiltonian path PT1 are the entries of
the 4™ row. Note that vy, is the end point of the Hamiltonian Path PT1. The (4, w) entry is
not Sy because vnszNgr(v1). The (4, w) entry is also not Ty because vwe N (Vi-2). Hence,
the (4, w) entry must be Wy. In addition, the (4, n+w—Is—4) entry is not S, because vi 1 is
not a neighbor of vi; the (4, n+w—l¢—4) entry is not Wy because entry (4, w) = Wy; conse-
quently, entry (4, n+w—I3—4) = Ty. This shows that (vi,+2, vw)€E. Thus, PT1 can be con-
verted to Hamiltonian path PT2 as below:
PT2 =(v1, V2,7, V-1, Vn2, "\, Vin-2-lgtws Ny Vigr2, Vi Vi, 7, Vi, Viger). It can be seen that the
neighbor of v; that has the largest subscript is in the (n—3)" column, as shown in the 5
row of Table 4. It follows that the further discussion of this case is similar to that in Case
1.2.1.

Table 4. Hamiltonian paths HP, PT1, and PT2.

w=1 w w+1 w+2 . b= 1 I+l . ntw-lg-4  n+w-1-3  ntw-1s-2 n—-4 n-3 n-2
1 - M| Vw Vw+1 | Vw+2 | - Vig Vigra | . ... ... .. . .. V-3 Vn-2
d Tl wa [ sa | T Th Th T | Tu
PT1 . Vw1 Vn-2 Vn-3 e . Vin2-lg+w e . Vige2 Vige1 Vig .| Vw+2 | Vw+1 Vw
4 Wh Th
PT2 . Nwi Vno V-3 .. . Vi-2-Ig+w . . Vig+2 Vi Vw+1 | - .. Vig Vig+1

Subcase 1.2.2.3.2 n=10.

On the left part of Table 5, the Hamiltonian path HP ={v1, V2, V3, Va4, Vs, Vs, V7, V8) and
the sequence “Sp, T, W™ are shown in the 15t and 2" rows. From which we have Ner(v1)
={Va, V3, V6}, and Ne~(vs) = {V7, V3, Ve}. The Hamiltonian path HP1 = (v1, V3, V3, Vs, V7, Vs,
vs, Va) obtained by converting HP and its sequence “S, Tr, W™ are shown in the 4" and



2-VERTEX-FAULT HAMILTONICITY FOR GRAPHS 855

Table 5. 71 = Ha v 3Ka.
78 12

1 2 3 4 5 6 3 4 5 6 7 8

HP Vi \Z V3 \2 Vs Ve V7 Vg Vi A V3 2 Vg Ve Vg V7
2 | Sy | Su | T [Whu | Su | Tul| Ty Su | Su Wh | Su | Tu | Tn
3 | Ner(va) = {va, va, Ve, Ne"(Ve) = {Va, Ve, v7} (va, v7)2E(G"), (v, v5) 2E(G"), (v3, v7)€E(G")
HP1 Vi \Z V3 Vg V7 Ve Vs \2 Vo V1 V3 Vs Vg Ve V7 Vg
5 SH SH TH SH TH SH SH TH TH TH
6 | (v4, Vg) 2E(G")&(V1, V7) 2E(G")=(5,4)=Wy (Vs, Va) 2E(G")&(V2, V5)2E(G")=(5,4)=Wi;
degg(Va) =3 = (v4, V6) eE(G")&(5,6)=Tn degcr(v2) =3=(v2, V6)eE(G")
7 Vs ' V3 Vo Vi Ve V7 Vg
8 | Su Th Su [ Tw [ Tw
9 | (v1, Vs) 2E(G")&(V2, Vs) 2E(G")=(8,4)= Wy;
degc(vs) =3 = (v3, v5)eE(G")&(8,2) = Sy

5™ rows. It can be seen that entries (5,1), (5,2), and (5,5) are all Sy; by (v4, v3) eE(G") and
(v, v5) eE(G™), we have entry (5,3) = Ty and entry (5,7) = Tw; since (va, vg) 2 E(G”) and (vs,
v7)¢E(G"), we have entry (5,4) = Wy; based on deger(va) =3, we can see that (v, V) €E(G")
and entry (5,6) = Ty. Thus Ngr(vs) = {vs, Vs, V6}. Similarly, by proper conversions, we can
find that Ng"(vs) = {Va, V3, Ve}, Nor(v7) = {Vs, V3, Ve}, and Ngr(v2) = {v1, V3, Ve} as shown in
Table 5. Hence G” = Hav(3K>). Since the number of components of G” — H; is greater than
|H2|, by Theorem 3, G” is not Hamiltonian. By adding two vertices x and y to G” such that
G = Hav3Ky, we have &(G) =5, 02(G) = 10, where 71 is used to denote this kind of graph;
that is 771 = Hav3Ko. See Fig. 4.

Case 1.2.2.4 Only one entry in (2, 2) to (2, l4 —1) is Wy and all others are Sy, as shown in
Table 6.

Table 6. Only one Wh.

1 2 w-1 w w+1 -1 b=lg lg+1 lg+(i-1) L+ n-3 n-2
Tlvi | Vo [] Vwa Vw | V|- Vig Vig+1 Vn-3 Vn-2
2| Sy Su || Su Wy S || Su Tw Th Th
3| Vg Vo || Vwl Vi Vg |- Vig Vigrt | =+ | Vig(i-1) Vna |+ | Vigriet Vigi
4| Sy S || SH TH Sy || SH Ty

Subcase 1.2.2.4.1

If there is an i such that (vw, vi+i) € E”, where i {1, ..., n—3-l4}, we can convert the
Hamiltonian path whose vertices are shown in the first row of Table 6 to the following
Hamiltonian path: Py = V1, V2, . . Vi Vigts, -.-, Vigh-1, Vo2, i, Vig+i), @S shown in the third
row. Then the entry (4, w) will be Tw, as shown in the 4™ row. This is a case belonging to
Case 1.2.2.2.
Subcase 1.2.2.4.2

If there is no (vw, vig+i)eE”, where ie{l, ..., n—-3-I4}, then, by the assumption that G”
is not Hamiltonian, none of {Vi1, Vige2, ..., Vn2} is adjacent to {vi, vz, ..., Vi-1}. Obviously,
{vi.} is one element vertex cut. Therefore, graph G” is not 2-connected.
Case 2. G is not 1-vertex-fault Hamiltonian.

By Theorem 6 and x(G) > 4, we have GE G». According to Theorem 4, 0»(G') > n'-1,
G’ is not Hamiltonian,ﬂj k(G") >3, we have G’ =Hn-2)2 vm . Adding vertex x to G', we
haﬁG =(Hp22: X) VK, ,=H2 VK, ,, AG)=n/2, 5»(G)=n, and x(G) > 4. Note that Hy
vK,, has been defined as 7s, which is isomorphic to G,. It is easy to see that n > 8 is
required for ensuring &(G) > 4. See Fig. 12.
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This completes the proof that either G is 2-vertex-fault Hamiltonian or Ge { m1, 72, 75,
T4, 775, M6, 177, 78} - a

3. CONCLUDING REMARK

Following previous studies, we have completed the proof of the 2-vertex- fault-toler-
ance for graphs satisfying the degree conditions given by Ore. Since the 1-fault tolerance
has been thoroughly studied, we further explore the 2-vertex-fault tolerance for any graph
G with 62(G) > n and |G|=n. This paper concludes that any G with ¢»(G) > n and «(G) >
4 must be 2-vertex-fault tolerant unless G belongs to one of the eight graph families. For a
given graph G under the same conditions, other required conditions and other exceptional
graph families for 2-edge-fault tolerance, or 1-vertex-1-edge-fault tolerance remain to be
studied further.
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