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Commutativity of subsystems (SSs) in cascade connected forms to form larger sys-

tems gets worthy to improve noise disturbance, stability, robustness and many other pro-
perties in system design. There is a huge amount of work on the subject of commutativity 
of linear time-varying (LTV) systems and the mentioned improvements; these are 
referenced in the introduction. In this paper, another benefit of commutativity property is 
investigated in detail and illustrated by examples. This benefit is the gain of a new and 
original method for hiding the original (possibly secret) signals when sending them from 
one local area to another. Switching, pseudo-commutativity, and power-spectrum which 
are important for communication channels are extensively studied. It is shown that 
switching used for increasing safeness and slight deformations in commutativity condi-
tions hardly spoil to attain the mentioned benefit. Hence, the paper presents an original 
and alternative method in cryptology. The results are all validated by illustrative examp-
les and Matlab simulation toolbox Simulink.   
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1. INTRODUCTION 
 

Second-order differential equations appear in many branches of engineering. They 
are used for a huge range of applications, including electrical systems, fluid systems, 
thermal systems and control systems. Especially, they are utilized as a powerful tool for 
modelling, analyzing, physical simulations and solving problems in modern system 
theory which is essential in any field of engineering and science. 

In many cases, engineering systems are designed by interconnection of simple first 
or second-order systems to achieve beneficial properties such as easy controllability, 
design flexibility, less sensitivity to disturbances and robustness. Feedback and cascade 
connections are among the commonly used interconnection structures in control and 
communication systems, respectively. Cascade connection being an old but still an up to 
date design method [1-4] can be used to improve further different system performances 
in connection with the commutativity concept. Commutativity of traditional linear time-
invariant systems is straightforward; however, LTV systems have found many applica-
tions recently [5-10]. Therefore, the subject of this paper is devoted on the commutativity 
of LTV systems only. 

It is well-known that a cascade-connected system is a combination of two SSs so 
that the output of one is the input of the other [11]. If the input-output relation of the 
combination of two SSs in cascade form is not affected by the order of the connection 
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then, these two systems are said to be commutative [12]. 
There is a great deal of literature about the commutativity of continuous LTV sys-

tems. Some of the important results about the commutativity are summarized in the seq-
uel superficially. 

J. E. Marshall is the first scientist studying on commutativity. In 1977, he proved 
that “for commutativity, either both systems are time-invariant or both systems are time-
varying” [12]. Moreover, he proved necessary and sufficiently conditions for commutati-
vity of first-order LTV systems. Then, investigations of commutativity conditions for 
second-order, third-order and fourth-order continuous LTV systems were studied in [13-
17], respectively.  

In 1988, M. Koksal introduced the basic fundamentals of the subject [18] which is 
the first and one of two tutorial exhaustive journal papers. The second work joint by the 
same author has presented explicit commutativity conditions of fifth-order systems in 
addition to reviews of commutativity of systems with non-zero initial conditions (ICs), 
commutativity and system disturbance, commutativity of Euler systems [19].  

In [20], all the second-order commutative pairs of a first-order LTV analogue system 
are derived. In [21], the decomposition of a second-order LTV system into its first-order 
commutative pairs are studied. This is important for the cascade realization of second-
order LTV systems.  

Even though there is a large cycle of works on the commutativity of continuous-time 
systems, there is only one journal literature on the commutativity of discrete-time sys-
tems [22]. 

Some benefits of commutativity of LTV systems have already been appeared in the 
literature; for example, designing systems less sensitive to parameter values [23], reduc-
ing noise interference and disturbance [20], improving robustness [19]. 

The rest of paper is organized as focusing attention to the use of commutativity pro-
perty in encrypting data transmission as follows: The next section constitutes the main 
idea of the paper as a new and original encrypting method using the commutativity pro-
perty. Section 3 presents an example illustrating this original application. In the case of 
transmission using a single transmission channel (TC) which must be used in time-
sharing for transmission paths AB and BA switching is necessary; switching and 
switching effects are investigated in Section 4. Further applications are possible by using 
nearly commutative (or pseudo-commutative) SSs and this is subjected in Section 5. For 
the same input-output signal pairs, the frequency spectrums of different transmitted sig-
nals (TSs) proceeded in the TC are compared in Section 6 to better illustrate the 
differences. Finally, the paper ends with Section 7 which includes conclusions.   

2. NEW ENCRYPTING METHOD 

This paper focuses attention on a new encrypting method of obscuring the infor-
mation transmitted through any communication channel by disguising it between trans- 
mitter and receiver. More precisely, consider a communication system as shown in Fig. 1. 
In the figure, A and B represent commutative LTV systems so that both channels AB and 
BA produce the same output signal for any applied input signal. But the transferred signal 
from transmitter to receiver proceeds in completely different shapes through the trans-
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mitting medium. Hence, this generates somewhat prevention against the infiltrators to 
stealing the secret information during transmission.  

More professional communication structure is indicated by using a single TC which 
is used by time-sharing between two channels of Fig. 1 is shown in Fig. 2. 

 

    
Fig. 1. Transmitting a secret input signal  through a 
double  TC. 

Fig. 2. Transmitting a secret input signal 
through a single TC.  

                        

The above concept can be extended to more complex structures by using higher 
number of switching greater than 1. For example, with two identical SSs A and two iden-
tical SSs B (commutative with A) 4 communication passages of the input signal can be 
achieved through transmitting medium to obtain the same output signal. In fact, the 
structures A→ABB, AA→BB, AAB→B, AB→AB where the arrow “→” separates SSs 
appearing in the transmitter and receiver sides. All these structures transfer any input 
signal to the same output signal which is transmitted in different shapes in transmitting 
medium of all four structures. The concept can be extended for more complicated cases 
by using more than two different commutative pairs. 

3. ILLUSTRATIVE EXAMPLE 

To see how any input signal is transmitted to the same output signal in different 
forms of the transmitting medium, consider the communication structure in Fig. 1 with 
the following example: 

Example 1: Let the LTV SSs A and B be described by  

 0 0 0 0 0

1
: 2 2 5 2 2 ,

2A A A AA y sinw t y cos w t sinw t w cosw t y x        
 

   (1) 

0 0 0 0 0

1 3 409 3 1
2

2 4 32 4 2

1
,

4B B B BB y sinw t y cos w t sinw t w cosw t y x
             
   

   (2) 

where xi and yi represent the input and output, respectively, of SSs i = A, B; (double) dot 
on the top indicates (second) time derivative. 

This example due to the author is the first one appearing in the literature and it in-
dicates the use of commutativity in cryptology [24] where some important aspects such 
as switching, pseudo-commutativity, power spectrum are not considered at all. This is 
not abnormal since the main aim of that paper is to study commutative pairs of well-
known second-order differential systems. In this paper, we repeat this example in order 
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to set up a base for the mentioned aspects and these subjects are considered in the sequel 
with this example and/or the others (Exs. 2, 3, 4). For example, power spectrum is 
studied using Ex. 1 as seen in Section 6. 

It is straight forward to show that A and B are commutative since the time-varying 
coefficients of B can be obtained from those of A by the relation (3a) in [20] 

2 2 2
0,5

1 1 2 1

0 0 0

( ) ( ) 0 0

( ) ( ) ( ) 0 ,

( ) ( ) ( ) 1A

b t a t k

b t a t a t k

b t a t f t k

     
          
          

                  (3) 

where k2 = 1/2, k1 = 1/4, k0 = 4213/400 and fA = [2a1  (a2)]/[4(a2)0.5] = 1 + sinw0t. Since 
k1  0, the second one of the sufficient conditions of commutativity A0(t) = a0  (fA)2  

(a2)0.5fA(t) = 3.5 is satisfied for A0(t) being constant (see Eq. (2b) in [22]). It is easy to 
show that when the average values of coefficients are considered, both systems are asym-
ptotically stable with eigenvalues A1,2 = 1 ± j2, B1,2 = 0.75 ± j5. This implies though not 
guaranties, the high possibility of stability of actual time-varying SSs A and B defined by 
Eqs. (1) and (2), respectively [24]; in fact, simulation results show that both systems are 
asymptotically stable. 

To observe that both of the switching alternatives A→B and B→A shown in Fig. 1 
where A and B are defined in Eqs. (1) and (2) with w0 = 2π yield the same output at the 
receiver side, an input signal (30sin1.2πt + a saw-tooth of period 3.3 s and increasing 
from 30 to +30) is applied on the transmitter side. As observed in Fig. 3, the transmit-
ssions A→B and B→A yield the same output signal (see Output signal *10). In spite of 
the same input-output pairs for switching AB and BA, the travelled signals processed 
through transmission medium (TM) (see Transmitted s. AB, Transmitted s. BA) are 
quite different. 

 

      
Fig. 3. Input, output and TSs in the communi-
cation  system of Ex. 1.    

Fig. 4. Input, output and TSs in the communi-
cation  system of Ex. 1 for a pulse train.   

 
To verify that the discussions are independent of the input signal applied, the simu-

lations are repeated with a pulse train of amplitude 30, period 5, and with a pulse width 
of 10 %. The input signal and the same output of both transmission switching paths A→B 
and B→A are shown in Fig. 4 (see Input signal/10, Output signal*10, respectively). It is 
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also seen in this figure that the signals proceeded through the TM, namely (Transmitted s.  
AB) and (Transmitted s. BA), are quite different. Hence, the same output signal is 
received by channels AB and BA for the same input signal irrespective of the shape of the 
input signal whilst different signals are transmitted through the TM. 

4. EFFECTS OF SWITCHING ON COMMUTATIVITY 

When commutativity concept is used to transmit a signal through a TM secretly us-
ing a single TC time-shared by transmissions A→B and B→A as described in Section 3, a 
sufficiently high rate of switching is necessary to puzzle malicious persons or infiltrator 
to resolve the transmitted information. At the beginning of each transmission slots (say 
A→B), some ICs had been formed in SSs A and B during the previous slot (B→A in this 
case) and these ICs may not satisfy the second commutativity condition for unrelaxed 
systems A and B at the initial time of the current time slot [6, Theorem 3.1 (Koksal 2)]. 
Therefore, the output of the switched transmission system will be different from those of 
non-switched systems AB and BA. This difference will be more appreciated if the 
damping properties of SSs A and B are weak (time constants are large with respect to 
switching period). This is because large time constants will elongate natural responses of 
SSs and the effect due to ICs that had been formed improperly for commutativity in the 
previous time slot. Hence, SSs used in single channel transmitting system described in 
Section 3 would better to have high damping coefficients for the output signal not 
affected by the switching considerably. This argument will be illustrated by the follow-
ing two examples, namely Exs. 2 and 3: 

Example 2: To illustrate the mentioned effect above, first consider SSs A and B which 
are commutative under zero ICs:  

: ( ) (1 cos ) ( ) ( ); (0) 0,A A A AA y t t y t x t y     (4) 

: ( ) (2 cos ) ( ) ( ); (0) 0,B B B BB y t t y t x t y     (5) 

where B is obtained from A by using constants c1 = c0 = 1 (see Eq. (26) in [25]); namely, 

1 1

0 0

1 0 1 0 1 1
.

1 1 1 1 1 2

b c

b ccos t cos t cos t  
          

                        
 

Note the eigenvalues of A and B are A(t) =  1  cosπt and B(t) =  2  cosπt, respective-
ly. These eigenvalues remain in the left half of s-plane all the time (except the instants y 
= 1, 3, 5, … when it moves to origin instantly for subsystem A), hence both SSs are 
likely asymptotically stable [26]. 

For the commutativity of SSs under non-zero ICs as well, it is required by the above 
mentioned second commutativity condition (Theorem 3.1 in [19], Eq. (27) in [21]) that  

c1 + c0 = 1, (6) 

yA(ts) = yB(ts), (7) 
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where ts is any switching instant (see Eqs. (11) and (12) in [25], respectively). When 
either one or two of these conditions are not satisfied, the systems AB and BA may not 
have the same output when excited by any input. In the present example, Eq. (6) is not 
obviously satisfied; further, there is no guaranty that Eq. (7) will be valid at the initial 
time of any switching slot since the ICs have been formed in the previous slot according 
to the dynamics of A and B rather independently. But, it is intuitively expected that the 
IC responses will decay fast to zero for highly damped SSs and the outputs of AB and BA 
will dominantly be determined by the forced response generated by the input signal. 
Hence, the coherence between the outputs AB and BA will not be affected considerably 
due to nonsatisfaction of the second commutativity condition spoiled by switching. SSs 
A and B defined by Eqs. (4) and (5), respectively, are examples of low damping systems 
(compared to SSs that will be considered in Ex. 3), so that switching is expected to will 
cause a great difference in the outputs when compared with the same output of AB and 
BA resulted without switching. 

For an input 10sin2t + saw-tooth wave with period 3 magnitude ±30, both systems 
AB and BA give the same output (Output signal*2.5) as shown in Fig. 5; in the same fig-
ure, the input signal, the TSs A→B and B→A are shown by (Input signal/2), (Transmitted 
s. AB), Transmitted s. BA), respectively.  

    
Fig. 5. Input, Output and TSs by paths A→B and 
B→A for Ex. 2.

Fig. 6. TS in the single channel transmission  
and the output signals for Ex. 2. 

 
To observe the effect of switching on the shape of the output signal, the paths A→B 

and B→A are switched periodically in sequence for durations of 10 seconds. The output 
signal at the receiver end is shown in Fig. 6 (Output signal *2.5 with switching); on the 
same figure, the output signal of connections AB  and BA which appear in Fig. 5 (Output 
signal*2.5) is replotted. As it is expected, there is a difference between the direct com-
munication with two lines without switching and communication by switching with a 
single transmission line; this difference is really apparent just after each switching instant 
for about 4-5 second duration and then disappears in the rest of the switching period so 
that the output coincides with the ideal case of direct communication without switching. 
This vacancy of switching can be reduced by using SSs having higher damping. Fig. 6 
also includes the TS on the single line time shared by transmissions A→B and B→A 
(Transmitted s.). 

Example 3: To observe the reduction of difference between two channel transmissions 
without switching and single channel transmission with switching, we consider similar 
SSs in Ex. 2 but having relatively higher damping then SSs of Ex. 2. 
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Consider the SSs A and B which are commutative under zero ICs: 

: ( ) (5 cos ) ( ) ( ); (0) 0,A A A AA y t t y t x t y      

: ( ) (2 cos ) ( ) ( ); (0) 0.B B B BB y t t y t x t y      

Here, B is obtained from A by using constants c1 = 1, c0 = 3 (see Eq. (26) in [25]); namely, 

 1 1

0 0

1 0 1 0 1 1
.

5 1 5 1 3 2

b c

b ccos t cos t cos t  
          

                         
                           (8) 

Note the eigenvalues of A and B are A(t) =  5  cosπt and B(t) =  2  cosπt, respective-
ly. These eigenvalues remain in the left half of s-plane all the time; in fact, exception of 
some instants for subsystem A in Ex. 2 does not occur in this case. Note also that the 
subsystem of Ex. 2 having larger damping or being more stable (subsystem B) is pre- 
served in this example. Speaking about both SSs generally, those of Ex. 3 are more likely 
asymptotically stable and have higher damping than those of Ex. 2 [26]. Therefore, due 
to the reasons explained in Ex. 2, using a single channel by switching is expected to 
cause less deviation in the outputs when compared with the same output of AB  and BA 
resulted without switching. 

For the same input as in Ex. 2, both systems  AB  and BA give the same output (Out-
put signal*2.5) as shown in Fig. 7; on the same figure, the input signal, the TSs A→B 
and B→A are shown by (Input signal/2), (Transmitted s. AB), (Transmitted s. BA), 
respectively.  

 

     
Fig. 7. Input, Output and TSs by paths  A→B 
and B→A for Ex. 3. 

Fig. 8. TS in the single channel transmission and 
the output signals for Ex. 3.

 

To observe the effect of switching on the shape of the output signal, the paths A→B 
and B→A are switched periodically in sequence for durations of 10 seconds. The output 
signal at the receiver end is shown in Fig. 8 (Output signal*2.5 with switching); on the 
same figure, the output signal of connections AB  and BA which appear in Fig. 5 (Output 
signal*2.5) is replotted. As it is expected, there is a difference between the direct 
communication with two lines without switching and communication by switching with 
a single transmission line; this difference is really apparently just after each switching 
instant for about smaller than 1.5 second duration and then disappears in the rest of the 
switching period so that the output coincides with the ideal case of direct communication 
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without switching. Note that this vacancy of switching is reduced from 5-7 of Ex. 2 to 
values less than 1.5 s by using SSs having higher damping in Ex. 3. Fig. 8 also includes 
the TS on the single line time-shared by transmissions  A→B  and B→A (Transmitted 
signal). As a conclusion, effects of switching between the TCs can be better reduced by 
using highly damped SSs A, B. 

5. USE OF PSEUDO-COMMUTATIVE SUBSYSTEMS 

In the following example, how the use of commutativity in cryptology can be ex-
panded by using the concept of nearly-commutative SSs. Since the purpose is just to in-
troduce this goal, first-order SSs are considered for simplicity. 

Example 4: Let A be the first-order LTV system of Ex. 3, namely defined by 

: ( ) (5 cos ) ( ) ( ); (0) 0.A A A AA y t t y t x t y      

The system is chosen purposely as to have highly damped characteristic value al-
ways remaining in the left half of s-plane far away from the imaginary axis. This is be-
cause to have sufficiently fast decaying natural responses due to mismatching ICs pre-
venting commutativity as mentioned before. Otherwise, when switching takes place as 
described in Section 4, nonzero ICs not satisfying the commutativity conditions that had 
been formed before the switching from A→B to B→A or vice versa will occur and these 
paths will not give the same responses. We now consider the transformation in Eq. (8) 
which gives all the commutative pairs of Subsystem A; instead of choosing c1 and c2 as 
constants, let us choose them as parameters varying slowly with respect to the natural 
dynamics of SSs A and B. This is expected to result with nearly commutative SSs so that 
the cascade connections AB and BA will yield almost the same outputs whilst the spec-
trum of the TS trough the communication medium continuously changing with varying 
parameters c1 and c2; this will puzzle the third persons trying to catch the actual infor-
mation illegally. To observe this, we choose c1 = 2 + sin0.1t and c0 = 3cos0.2t in the 
mention respect and by a similar equation to Eq. (8) we obtain Subsystem 

: (2 sin 0.1 ) ( ) (105sin 0.1 3cos0.2 ) ( ) ( ); (0) 0.B B B BB t y t t t y t x t y        

For an input x(t) = 12sin2πt which is shown in Fig. 9 (Input/10), the outputs of trans-
missions A→B and B→A are also plotted in the figure (Output*50: AB and Output*50: 
BA, respectively). Even though A and B are not exactly commutative. It is seen that AB 
and BA almost produce the same output owing to the slow variations of parameters c1 
and c0 used to obtain A from B through a similar equation to Eq. (8). Further, on the same 
figure is shown the output (Output*50: ABBA switched.) of the single line system 
which is used in time-sharing between transmissions A→B and B→A. It is obvious that 
switching used for a single channel transmission does not spoil to achieve the same 
response of systems AB and BA. 

In Fig. 10, it is seen that although all outputs are almost the same, the shape of the 
proceeding signals on the channel A→B (Transmitted s. AB), on the channel B→A (Tran-
smitted s. BA), and on the common channel (Transmitted s. ABBA switched) are quite 
different. Hence, the same output signal is transferred through the TM in different forms 
and this complicates attaining it by unauthorized persons. 
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Fig. 9. Output signals obtained at the receiver 
side for Ex. 4. 

Fig. 10. TSs travelling through TM for Ex. 4. 

6. POWER SPECTRUMS 

On the base of their frequency spectrums, this section explains the use of commuta-
tivity for encrypting signals when travelling through the TCs. Since the power or fre-
quency spectrum is an important subject for comparing signals and is a very essential 
analysis tool in communication theory, especially for studying different modulation 
techniques, the comparison of signals transmitted through the TM depicted in Fig. 1 by 
comparing their spectrums is essential and this is considered in this section.  

For Example 1, the spectrums of the TS from Subsystem A to Subsystem B and the 
TS from Subsystem B to Subsystem A are shown in Fig. 11 by (Transmitted AB) and 
(Transmitted BA), respectively. Obviously, the spectrums are quite different in spite of 
the fact these signals produce the same outputs at the receiver end (see Output signal*10 
in Fig. 3). 

It has been already noted that the distortive effects of using switching for single 
channel communication as described in Section 4 and pseudo-commutative SSs to 
strength cryptologic actions as illustrated in Section 5 are hardly seen at the receiver 
output, the propagating signals from transmitter to receiver side depicted in Figs. 5, 7, 
and 10 will naturally contain quite different spectrums similar to those in Fig. 11; whilst 
they are producing almost the same output signal on the receiver side (See Figs. 6, 8, and 
9, respectively). Therefore, it is satisfied with this much dealing about the frequency 
spectrums characteristics.  

 

 
 Fig. 11. Power spectrums of the signals transmitted A→B and B→A for Ex. 1. 
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7. CONCLUSIONS 

Cryptology is an important subject for hiding signals in communication systems 
transferring information from one local area to another. In this paper, how commutativity 
property of SSs in a communication system can be used for transmitting signals safely by 
reducing the probability of stealing by unauthorized persons. In fact, it is shown that the 
same output signal at the receiver side of a communication channel can be transmitted 
simultaneously through the same channel by using commutative SSs at the transmitter 
and receiver sides together with switching while changing its transmitted version through 
the TM. 

Instead of fixing some system parameters as in c1 and c0 in Ex. 4, some certain time-
change for c1 and c0, for example changing them arbitrarily but slowly with time, will 
yield using pseudo-commutative SSs and thus additional alternatives for hiding the 
transmitted information.  

Moreover, the TS trough the TM in case of communication on a signal channel can 
be further puzzled by changing the switching strategy; for example, changing the 
switching frequency and switching periods of channels AB and BA unsymmetrically will 
produce extra advantages for a safe communication. And this can be forwarded as a 
further research subject on the area. 
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