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As networks become ubiquitous in our daily lives, users rely more on networks for 

exchanging data and communication. However, numerous new and sophisticated attacks 
that endanger security of users have been reported. In practice, blacklisting illicit sources 
has been a fundamental defense strategy in recent years. In this paper, we propose a pre-
dictor that is based on the observations from a centralized log-sharing infrastructure. Our 
observations include the direct relation between attackers and victims, victim similarities, 
and attacker correlations. We compile a customized blacklist for each Dshield.org con-
tributor using a weighted function of direct and indirect relations between victims and 
attackers. This list not only offers a significantly higher prediction ratio, but also includes 
source addresses with potentially higher threats. We evaluate our predictor using two 
months of malicious activities acquired from Dshield.org. The experimental results 
demonstrate a significant improvement over previous algorithms.  
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1. INTRODUCTION 
 

Developing network-based intrusion detection systems (NIDS) has become com-
mon practice to respond to Internet security concerns. Generally, the goals of NIDSs are 
to detect attacks and prevent potentially harmful interaction with an entity from taking 
place. Several NIDS approaches have been proposed for providing the first level of pro-
tection. As a result, network administrators frequently utilize security logs produced by 
NIDSs to prevent malicious activities from traveling in and out their networks. Yet, fur-
ther analysis of the collaborative security logs contributed by various NIDSs worldwide 
can provide a secondary level of protection against broader attacks.  

Our work makes use of a central repository, such as Dshield.org, of shared security 
logs from NIDS or network firewalls of victims all over the Internet. The intention for 
sharing security logs is to help produce better prediction of future malicious activities. In 
practice, such data have been used to compile a blacklist: a collection of source IP ad-
dresses that are suspected to be involved in illicit and malicious activities. For instance, 
Dshield.org [1] regularly processes NIDS logs contributed by thousands of victim net-
works worldwide and publishes the most prolific attack sources seen by its contributors. 

Blacklists need to be frequently updated to keep pace with the attempt of attackers 
who utilize various IPs in various attack phases. Blacklisting all offenders is not an op-
tion. Firstly, such a long blacklist creates a nuisance for administrators and may cause an 
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unacceptable delay in the network. Secondly, not necessarily all offenders worldwide 
have the same interest in all networks. This is coupled with the fact that each network 
has a different payoff for offenders to attack. Therefore, a customized blacklist needs to 
be compiled for each individual with respect to its similar victims and attack history. 

In recent years, a large number of organizations have adopted blacklists to combat 
attackers. These blacklists include the source IPs of spam senders1 and malicious web 
pages2. Earlier research about blacklisting can be categorized into two types: Local 
Worst Offensive List (LWOL) and Global Worst Offensive List (GWOL) [2]. GWOL 
leverages large online repositories (e.g. Dshield.org) and offers a list of highly prolific 
and global attackers. Such an approach may not necessarily deliver a valuable service to 
victims. The reason is that the highly prolific attackers reported in security logs may be 
irrelevant to a victim’s local network. In some cases GWOL may cause a high miss rate 
for those attackers who choose their targets more strategically. Such attackers may target 
just a few networks and hence are not prolific at all [3]. In LWOL, each individual vic-
tim creates its own history of malicious activities. LWOL that uses a private security logs 
may fail to predict the malicious activities that have never attacked a certain network in 
advance. Therefore, LWOL is reactive in the sense that it cannot predict attack sources 
before these sources reach a network.   

From the above discussion, a high quality prediction algorithm should be coupled 
with similarity among victims, in addition to correlation among attackers. Furthermore, 
predictions should be proactive  that is, they should incorporate those IP sources even 
when they have not been seen previously in the victim network. Our goal is to deliver a 
better prediction algorithm with higher prediction ratios3 by uncovering the correlations 
among victims and attackers. We study prediction of malicious activities at the IP level 
for each individual victim using the information of attacker IP’s, victim networks and 
time stamps of malicious activities in the logs. Our prediction algorithm integrates a 
novel time-based logistic regression model to address direct interaction between an at-
tacker and a victim on evolution over time basis. We use similarity analysis to assign 
weights to victims and attackers based on their closeness. Finally, we use a weighted 
function of direct and indirect relations among victims and attackers to compile a cus-
tomized blacklist for each Dshield.org contributor. 

Our work improves upon the results [4] (SLM). We evaluate our algorithm using a 
one-month data October 2008 (DS1) and a recent one October 2016 (DS2) from Dshield. 
org. DS1 is used to compare with previous results and DS2 shows that our algorithm still 
works today. Our experimental results indicate that for all of contributors, our blacklist 
has significantly higher prediction ratios on all testing days. Over DS1, our pre- diction 
ratios are higher than 70% on most days, while the prediction ratios of the SLM algo-
rithm are all lower than 40%. Overall, our average prediction ratio is 62%, which is al-
most twice that of the SLM algorithm. Over DS2, our average prediction ratio is 64.7%, 
which is 1.3 times higher that of the SLM algorithm. 

We measure robustness of our algorithm against noises with respect to noise per-
centages and the number of fake contributors. The prediction ratio decreases almost lin-
early as the percentage of noisy reports increases. Moreover, the prediction ratio de-
creases slightly as the number of fake contributors increases. 

1 SpamCop 
2 PhishTank, SafeBrowsing 
3 We define prediction ratio as a ratio of the hit count over the total number of attacks. 
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The rest of the paper is organized as follows. Section 2 discusses related work. Sec-
tion 3 presents some preliminary notations and formulates the prediction problem. Sec-
tion 4 covers our prediction algorithm. Section 5 presents an experimental evaluation of 
our algorithm using a real-world dataset of security logs. Finally, the paper concludes in 
Section 6. 

2. RELATED WORK 

Recently a number of research papers have proposed algorithms to generate black- 
lists against specified attacks. For instance, spam constitutes a noticeable portion of at- 
tacks that users directly experience. Therefore, some researchers have attempted to solve 
the phishing problem at the e-mail level by generating a blacklist of spammers [5-7]. In a 
slightly different attempt, some companies (e.g. Google, Microsoft and McAfee) scour 
millions of web pages to identify and maintain blacklists of malicious URLs.  

Dshield.org is a centralized repository providing a daily malicious activity collected 
from a large number of contributors all over the Internet. Dshield.org dataset consists of 
a set of contributors each has its own share of information. Each contributor can com-
municate with others and also provide its information to a central authority. Contributors 
can choose to submit their logs without a validation technique at the expense of anonym-
ity. Therefore, a Sybil attack may occur when an adversary introduces many counterfeit 
identities corresponding to a single contributor. Using Sybil contributors, an adversary 
may provide bogus reports for his benefits which reduce the utility of Dshield.org dataset. 
The current research to deal with Sybil attacks [8-13] has gone into the study of trust 
relationships in social networks to reduce the influence of Sybil attacks. Our method dif-
fers from Sybil attacks detection schemes. It aims to neither detect the faulty contributors 
nor locate the correct contributors. Nevertheless, Sybil attack detection schemes can be 
applied as a preprocessing module in order to sanitize the Dshield.org dataset.  

Some recent research analyzes social network relationships to identify faulty entities, 
in particular, the attackers in the Sybil attack. In the Sybil attack, a single entity controls 
multiple identities in order to defeat security mechanisms and attack its users [14]. Some 
defense mechanisms [8-13] have been developed and evaluated through trust relation-
ships in social networks. They identify faulty entities (attackers) by exploring direct and 
indirect social-network relationships among entities. Nevertheless, they all assume ex-
istence of static social networks, the trust relationships remain unchanged after estab-
lishment. We make no such assumption. Our prediction model can deal with temporal 
dynamics and relationships among victims and attackers.  

Another line of research aims to improve the quality of the blacklisting algorithm 
with a broader perspective. Zhang et al. [2] (HPB) argued a multipurpose blacklist of 
malicious source IPs that are predicted to be harmful for an organization. They improved 
IP level blacklisting by compiling a compact and customized blacklist which is more 
likely to be relevant to a victim. The main idea is that victims can share their security 
logs and similarity is defined as the number of common attackers. They used a relevance 
ranking process to propagate the likelihood of the given attacker to attack other victims, 
given a correlation attack graph. To this end, they represented the correlation as a graph 
that captures the relationships between victims. Finally, they utilized a severity assess-
ment algorithm to compile the final blacklist.  
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Soldo et al. [4] extended the HPB results by reformulating the problem as a recom-
mendation system. They included a temporal consideration in the prediction algorithm 
and quantified the direct relations between attackers and victims as a ground truth. Fur-
thermore, they developed a variation of Pearson similarity to measure the victim similar-
ity. That is, when victims share attacks from the same source address within the same 
time intervals, they are more related to each other than the victims sharing common at-
tackers but from different time intervals. Therefore, giving higher priority to attacks oc-
curring within the same time interval captures a stronger correlation among victims. Ad-
ditionally, they clustered attackers and victims jointly in order to discover the strength of 
correlation among the attackers and victims within the group. Clusters are regarded as 
regions in the attacker-victim graph in which the nodes are dense. A highly dense region 
resembles a complete attacker-victim graph, which indicating strong correlation. That is, 
the denser a region is, the more probable that its attackers will attack its victims.  

Zhang et al. [2] and SLM focused on blacklisting at the IP level by finding correla-
tions among victims and attackers from shared security logs. They differ in both model-
ing and underlying techniques. The experimental results of SLM completely dominate 
the prediction ratios of previous work, including HPB, LOWL and GOWL. Thus, we 
compare our experimental results with the previous result (SLM) [4].  

We use a novel temporal predictor function with an exponentially updating param-
eter to reflect direct and timely relation between an attacker and a victim. In addition, we 
tackle the victim/attacker similarity problem by the method of association rule mining. 
Our technique is very efficient at unscrambling the similarities.  

Finally, there are studies loosely related to ours, such as predicting cyber attack 
rates [15, 16], Internet background radiation [17, 18] and one-way traffic [19]. Predicting 
cyber attacks rates aims to predict the intensity of cyber attacks against a target. This pre- 
diction enables the defender to efficiently allocate defense resources on demand to cope 
with the extraordinary large cyber attack rates. The other two studies propose to classify 
the data as scanning, peer-to-peer applications, misconfigurations, worms etc. and do not 
provide a prediction. 

3. PROBLEM DEFINITION  

3.1 Notation 

An uppercase boldface letter represents matrix B of n  m dimension. A lowercase 
boldface letter denotes a vector x = (x1, x2, …, xm). B⊤ and x⊤ are the transpose matrices 
of B and x. Let A denote the set of attackers and V the set of victims. The number of el-
ements in a set is denoted by |A|. t indicates the time that an attack was reported in the 
log files. We treat a log dataset, such as the Dshield.org dataset, as a set R = {(a, v, t) | a 

 A, v  V, t  T}, where the tuple (a, v, t) represents that attacker a  A attacked v  V at 
time t  T. The attacks occur non-uniformly over time. Hence, we chop the dataset ac-
cording to small time intervals of size ∆t, where ∆t could be an hour or a day. Let τi be 
the starting time of the ith time interval and ∆i = [i, i + ∆t] the ith time interval, i  1. 
Let ra,v(i) represent the number of attacks from attacker a to victim v within time inter-
val [i, i + ∆t]. The |A|  |V|-dimensional binary matrix Bi indicates occurrence of illicit 
activities in the ith time interval ∆i. That is, the (a, v)-entry bi(a, v) = 1 if some (a, v, t)  

R and t  [i, i + ∆t], and bi(a, v) = 0, otherwise. 
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3.2 Prediction 

We are interested in finding the most probable attackers that aim to harm victim v 
within the time interval ∆+1 or later, where  denote the latest time interval4. Thus, given 
w as the window size, training window Ttrain is {B-w+1, …, B-1, B} and the testing win-
dow Ttest is {B+1, …} for verifying the results of the prediction algorithm. 

The prediction algorithm generates a blacklist BL(v) = {a1, a2, ..., aN}  A that con-
tains top N probable attackers to victim v in time interval ∆+1. Given such a blacklist, we 
use the hit count as the number of correctly predicted attackers reported in Ttest to meas-
ure effectiveness of the prediction algorithm. 

3.3 Association Rule Mining 

Association rules mining (ARM) is developed to analyze the transactional sale data. 
The goal of ARM is to locate the items that are frequently bought together in the same 
transaction. The sets of items are known as itemsets. The goal of our analysis is to find 
the similarity among attackers and victims and capture them as rules. Hence, throughout 
this paper, items are victims/attackers.  

Let I = {i1, i2, ..., im} be a set of m items. Let D = {tid1, tid2, …, tidn} denote a data-
base of n transactions, where tidi  I. A transaction tid  D is said to contain an itemset 
II if I⊆tid. 

 
1. The support of an itemset II is defined as support(I) = |{tidi|I  tidi, tidi  D}|/|{tidi 

 D}|.  
2. A rule I1  I2 is defined as a conditional implication among itemsets, where itemsets 

I1, I2I and I1∩I2 = . 
3. The support of a rule I1  I2 is the percentage of transactions in D containing I1I2.  
4. The confidence of an association rule r: I1  I2 is the conditional probability that a 

transaction contains I2, given that it contains I1. Thus, confidence(r) = support(I1∪I2) 
/support(I1).  

5. The lift of a rule is defined as: lift(I1  I2) = support(I1I2)/support(I1)support(I2). 
lift assesses the rule I1 ⇒ I2 in terms of applicability and relevance. A lift(I1 ⇒ I2) > 1 
implies that the probability of occurrence of I1 and I2 are positively dependent on one 
another. If lift(I1  I2) < 1, then I1 and I2 appear less often together than expected. A 
value of 1 implies that I1 and I2 are independent and the occurrence of I1 has almost 
no effect on the occurrence of I2.  
 

Given a transactional database D, the objective of ARM is to extract the rules of form 

I1  I2[support, confidence, lift]  

satisfying user-defined thresholds for the admissible minimum support, confidence and 
lift. Eventually, we use the lift metric to discard weak rules. For further details, we refer 
interested readers to [20].  

We design our ARM based on the Apriori algorithm [21]. It identifies all frequent 
itemsets of two items. Hereafter, we use our ARM algorithm for mining association 
rules.  

4 Intervals before ∆+1 are used for training. 
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4. MODEL OVERVIEW 

We define the prediction function of estimating the possibility that attacker aAtrain 
will attack vVtrain in time interval ∆τ+1 as follows:  

, 1 1( ) : ,..., [0,1]a v wP       B B  (1) 

where Atrain and Vtrain are the sets of attackers and victims in Ttrain, respectively. We in-
clude all attackers and victims into our computation since we observe that any small cor-
relation among attackers and victims is not a negligible phenomenon.  

In the rest of this section, we investigate the relations between attackers and victims 
including direct relation, victim similarity and attacker correlation. For each case, we 
observe the data and design a prediction method.  

4.1 Temporal Attack Predictor 

We begin by quantifying the likelihood that an attacker aA attacks a victim vV. 
Each bi(a, v) shows the interaction between the given attacker a and the victim v within 
time interval ∆i. For every pair (a, v), we extract a signal from the training data:  

b1(a, v), b2(a, v), …, bn(a, v) (2) 

that shows its evolution over time. 
 
Observation. By the Dshield.org dataset, an attacker usually has two attack strategies. 
One is to attack only once and the other is to attack multiple times. For the latter strategy, 
the attacks are more likely to happen within a small time period. The data shows that the 
majority of consecutive attacks happen within a time period between 3 to 10 minutes and 
the rest scatter throughout the rest of the day [22].  

This observation indicates that the prediction should mostly rely on recent past ac-
tivities. Thus, the recent past activities are more important than the old ones. Further-
more, the attacks vary over time as the number of reports submitted by victims vary on 
different days. Hence, the evolution of attacks over time is also an important phenome-
non [4]. Consequently, Eq. (2) accounts for both the time when an attack was reported 
and its evolution over time.  
 
Design. We use a parametric predictor to capture the aforementioned observation. The 
prediction problem is to estimate from past information the one-step conditional proba-
bility 

1 1( ( , ) 1| ( , ), ( , ),...).P b a v b a v b a v     (3) 

We wish to approximate the conditional probability at time  +1 by the past w ob-
servations with a predictor function h that yields the lowest error when predicting b+1(a, 
v). Let Ta,v(, w) = (bτ-w+1(a, v), bτ-w+2(a, v), …, bτ(a, v)) denote a sequence of w observa-
tions known to the observer at time τ. We define predictor function h as  

h(Ta,v(, w)). (4) 
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Algorithm 1 shows the description of predictor function h, where  is the sigmoid 
function and  is a discount parameter. The idea is to update the model parameter θ in 
order to reduce the error for the next prediction. Our formula makes the update rate as an 
exponentially decreasing function. Therefore, the last iterations cause large changes in 
the parameter, while the first ones do only fine-tuning.  

It begins by initializing the prediction parameter θ = [θ1 θ0] with θ0 as the scalar bias 
term. In each iteration (lines 5 to 6), it uses xi-1 and current parameter θ to compute (z) 
the next prediction xi. The value (((z)  xi)·θ (z)·[xi-1 1]) updates θ according to the 
gradient of the error w.r.t. the single training instance xi-1. The magnitude of the update is 
proportional to the gradient term θ (z)·[xi-1 1]. For instance, if we are encountering a 
training example on which our prediction does not match the actual value of xi, i.e. ((z) 

 xi)  0, then we update θ proportionally to the gradient term. Furthermore, the expo-
nentially decreasing function γ(1  γ)t-i-1 associates an adaptive update rate to the overall 
change of parameter θ. The significant advantage of our predictor is that the prediction is 
more dependent on recent past observations than the past ones. For old data, i.e. i = 1, 
γ(1  γ)t-i-1 ≃ 0, it assigns a small update rate, and for the recent data, i.e. i = t  1, γ(1  

γ)t-i-1 = γ, it assigns a large update rate to the prediction parameter θ. Therefore, the future 
activity strongly relies upon the recent past activities. Finally, Algorithm 1 uses the op-
timal prediction parameter and the latest observation xt to approximate the conditional 
probability (3). The value h(.) is the probability that the attacker a will attack the victim v 
in time interval ∆τ+1.  

 
Algorithm1: Predictor Function h 
1 Function h(x1, x2, ..., xt) 
2  θ = [θ1 θ0].Initialize(); 
3  x0 = 1  
4  for i = 1 to t1 do 
5    z = θ⊤·[xi 1 1] 
6    θ←θ  γ(1  γ)t-i-1·(((z)  xi)·θ = (z)·[xi-1 1])  
7    end  
8 return (θ⊤·[xt 1]); 

 

Another issue is to initialize γ. We choose γ in the range [0.5 0.8]. If γ is close to 1, 
the recent attacks aggressively change θ. The initialization value for θ doesn’t have any 
significant impact. If γ is close to 0, it acts as a smoothing factor. We empirically inves-
tigate the range of γ to support our observations.  

h(.) is a LWOL approach that captures the attacker in its active time by observing 
recent past activities. It complies with the observation that a large number of attackers 
are highly active within 1 to 3 days, and during this period they conduct many attacks. In 
fact, there is a correlation between the active time and the number of attacks [22].  

Moreover, our predictor quickly excludes inactive attackers after observing the re-
cent past activity of the attackers. We remove inactive attackers from the blacklist 
quickly and fill the blacklist with active attackers. This guarantees that there is sufficient 
space for putting more serious attackers on the list since the length of blacklist is fixed. 
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4.2 Victim Similarity 

The prediction solely based on Eq. (4) cannot capture the correlation among attack-
ers (or victims). A persistent attacker can frequently switch its targets and evade the level 
of prediction by Eq. (4). Hence, we introduce victim similarity (N) and attacker correla-
tion (C).  

The neighborhood model is an effective way to predict user behavior in recommen-
dation systems [23]. The idea is to estimate the likelihood of a victim v being attacked 
using other victims, called neighbors. Such victims build a group called neighborhood. A 
victim gets prediction about those attackers that have not been reported before, but were 
already reported by victims in its neighborhood. That is, when a victim v reports an illicit 
activity, the neighborhood model propagates the effect of the attack to similar victims of v. 
 
Observation. An analysis on the number of common attackers between a victim and its 
neighbors in the Dshield.org dataset illustrates that similar victims do share some com-
mon attackers. Majority of similar victims share 20 to 60 common attackers [22]. This is 
because similar victims might have identical benefit for an attacker or share the same 
vulnerability. When a victim shares common attackers with another victim, it is more 
likely for both victims to receive attacks from the same attacker within a very short peri-
od of time. In other words, when attacker a attacks many victims, it likely attacks them at 
about the same time [24]. 

 
Definition 1: We define victims v and u to be similar (close) if they both report an attack 
within some time intervals ∆i. The degree of their similarity (closeness) is measured by a 
conditional probability P(u|v) = p(u, v)/p(v), where the joint probability p(u, v) is the p(v) 
probability that both v and u report illicit activities within some intervals over the num-
ber of intervals. p(v) is the marginal probability of v. 
 
Design. We wish to estimate the probability of victim v being attacked, given that its 
neighbors were attacked. Let the set Nv = {v1, v2, …, vk} contain similar victims of v. We 
compute the corresponding conditional probabilities as: 

( | ) ( ), 1,2,..,i iP v v Confidence v v i k    (5) 

where P(v|vi) as in Definition 1 is the probability of victim v to be threatened given that 
its neighbor vi was attacked. 

The problem of finding similar victims can be solved by the association rule mining. 
A similarity algorithm constructs a function that maps a pair of objects x and y to a 
number in [0, 1]. This function measures the degree of similarity between x and y. In 
terms of association rules, the objects can be treated as items. We find similar victims as 
follows.  

We prepare a transactional database TD. A transaction has a unique transaction id 
tid and a list of items. Consider Ttrain with a window size of length w. There are w binary 
matrices Bτ-w+1, …, Bτ-1, Bτ. A transaction tidi, v1, v2, ..., vl associated with a tidi is a list 
of victims that reported at least one attack in Bi. TD is the set of all such transactions. 
This captures our intuition that victims that have been attacked within the same time in-
tervals are more similar to each other.  
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We invoke the ARM algorithm with input TD, min_support, min_confidence, and 
min_lift to determine similar victims Nv. In the basket mining problem, the generated 
rules  

)]  Lift(,)  (Confidence,)  [Support(   

...

])  Lift(,)  (Confidence,)  [Support(   1111

vvvvvvvv

vvvvvvvv

kkkk 


 

indicate that item v should be recommended to the customer by observing the set {v1, 
v2, ..., vk} in the basket. In our reasoning, Nv = {v1, v2, ..., vk} retrieves the most frequent 
victims that were attacked at about the same time as victim v. Therefore, {v1, v2, …, vk} 
are treated as similar victims of the given victim v. Moreover, Confidence(vi  v) as in 
Eq. (5) estimates the conditional probability of v being attacked given that its neighbor vi 
was attacked. 

We calculate the neighborhood influence of victim v as follows:  

,
=1
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Confidence v v h T w
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 (6) 

Notice that if v and vi are similar victims, Confidence(vi  v) outputs a higher value for 
stronger neighborhood influence. h(Ta,vi (, w)) estimates the probability that neighbor vi 
will be attacked by attacker a in time interval ∆+1. Malicious activities fluctuate over 
time. Eq. (6) models the intuition that victims receiving an attack from the same source 
within the same period of time are more similar to each other. This implies that victim 
similarity not only depends on the number of common attackers, but also on the time 
interval in which the malicious activities are reported. In this case, they are more likely 
influenced by the same type of attacks. Intuitively, Eq. (6) combines LWOL (h(Ta,vi(, 
w))) and GWOL (Confidence(vi  v)) approaches. That is, Eq. (6) proactively incorpo-
rates those attackers even when they have not been seen previously in the victim network, 
but are determined to be relevant to the victim network through its neighbors. 

4.3 Attacker Correlation 

Consider a DDoS attack launched by a botmaster to attack a victim, the botmaster 
dedicates a subset of bots under its control to scan and find vulnerability of the target. 
Later, the botmaster may command some previously-unseen bots (IPs) to execute the real 
attack [25, 26]. Therefore, identifying similarity among attackers, even just discovering a 
few of them, privileges the victim to preemptively include other similar attackers into his 
blacklist. 

Another scenario is that a newly joined victim v that reported a few malicious ac-
tivities does not have similar victims in the neighborhood model. The new user problem 
(a.k.a cold start) is one of main difficulties faced by recommendation systems. Since 
there are not yet enough ratings, the system fails to identify neighbors of the given user. 
There are a number of solutions discussed in [23]. One effective solution is to use a hy-
brid technique of combining user-based (i.e., victim similarity) and item-based (i.e., at-
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tacker correlation) predictions. Therefore, leveraging attacker correlation not only in-
cludes similar attackers into the blacklist preemptively, but also solves the cold start 
problem. 
 
Observation. In analysis of the Dshield.org dataset, Soldo [22] found that a bulk of at-
tackers only harm one victim. Therefore, it is beneficial to explore correlation among 
attackers.  

Soldo studied temporal dynamics of malicious source IPs within one month and 
observed that only 13% of the IPs are reported as malicious within two consecutive days. 
This number decreases rapidly to 8% for 3 consecutive days. Overall, only 4% of source 
IPs are continuously reported as malicious for the whole month. Furthermore, bots are 
programmed to expand their population by transferring an infected code to other ma-
chines. Shin et al. [27] showed that it is more likely for a bot to infect another machine 
within the same subnet.  

The distribution of (attacker, victim) pairs over a time period shows the following 
issues. Firstly, attackers are not evenly distributed in network classes. For instance, fewer 
attackers are from network class A, which mainly belongs to governmental organizations 
and large IT companies. Secondly, many new attackers are within previously seen sub-
nets. This is likely due to DHCP configuration that assigns a new IP for the same ma-
chine at different times.  

In order to capture a higher level of abstraction for attacker correlation, we inspect ma- 
licious activities from the subnet level, instead of individual IPs. We tag risky subnets and 
measure the critical level of a given subnet by malicious activities reported in the dataset. 
 
Design. The key idea of attacker correlation is to estimate the likelihood of a possible 
attack from similar attackers to those that are reported by victim v. There are two types 
of victims as presented below: 

If victim v is an active contributor of Dshield.org, then given a set of attackers Av = 
{a1, a2, …, al} reported by victim v, we define two tiers of correlated subnets. The first 
tier is determined directly from A as S(1) = {s1, s2, ..., sl}, where si is the subnet of ai. The 
second tier consists of all relevant subnets that are similar to those in the first tier, i.e.  

(1)

(2) { | ( ) min_ } .
i v

v i s S
S s Confidence s s confidence

 
    (7) 

Let Sv = S(1)S(2) be the set of all such direct and indirect subnets. 
Otherwise, if victim v is a newly join victim (i.e., Sv = ), we investigate the at- 

tacker correlation over all attackers in Atrain by setting Sv = {s|s = subnet(a), a  Atrain}. 
That is, in the absence of security logs, the attacker correlation model is a GWOL tech-
nique that incorporates highly prolific and global attackers. As a result, our algorithm 
tackles the cold start problem by predicting potential global attackers using the attacker 
correlation model.  

Upon receiving a request to estimate the probability that the given attacker a (with s 
= subnet(a)) harms victim v, if sSv, the attacker correlation algorithm halts and outputs 
zero. Otherwise, we inspect the correlated subnets Sv = {sj|Confidence(sj  s) > min-con- 
fidence} for a possible threat. The correlation between subnets is formulated as a condi-
tional probability: 
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( | ) ( ), 1, 2,.., .j jP s s Confidence s s j m    (8) 

Let Psub(si) and Patt(a) denote the threat levels of subnet si and attacker a, respec-
tively. Psub(si) is defined as the number of malicious activities originated from subnet si 
over all malicious activities reported in Ttrain. Similarly, Patt(a) is the number of malicious 
activities originated from attacker a over all malicious activities reported in Ttrain. Patt(a) 
discards those IPs that are used in less prolific networks such as class A.  

We calculate the attacker correlation influence of attacker a as:  

, 1

( ) ( )

( ) , if ( ( ) )
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                      0,                            otherwise
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 (9) 

Notice that attacker correlation model locates the potential attackers only based on 
the attacker activities and the values are not restricted for a specific victim.  

4.4 Combining the Predictors 

 There are many ways to combine predictors, such as averaging. Our empirical analy-
sis leads us to use weighted predictor, similar to the one in [4]. We embed weights to 
estimate the prediction Eq. (1) as  

, 1 , , , 1 , , 1( ) = ( ( , ))  ( )+ ( )ns ca
a v a v a v a v a v a vP h T w W N W C           (10) 

where the weight of victim similarity is  
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1 is a parameter in range [0, 1]. Na,v(∆τ+1) is larger for a victim v with more similar neigh- 
bors. The more similar neighbors the victim v has, the larger Wa,v

ns is. This increases the 
effect of the neighborhood model by assigning higher importance for Na,v(∆τ+1) in Eq. (10). 

Likewise, we define the weight for attacker correlation as 
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. (9) 

Where 0 ≤ 2 ≤ 1. The stronger attacker relation the attacker a has, the larger Wa,v ca is. 

4.5 Compiling Blacklists 

For the final blacklist, we include more severe attackers which not only have been 
reported to be prolific, but also have been discovered to be more relevant to the given 
victim. We use the predictor Eq. (10) to generate an ordered candidate list and pick top N 
ranked attackers. 
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5. PERFORMANCE EVALUATION 

5.1 The Dataset 

Dshield.org is a repository of firewalls and NIDS logs collected from a large num-
ber of contributors all over the Internet. Every time an alarm is raised by a contributor’s 
network, the contributor submits a log to the Dshield.org repository. The log contains 
Contributor ID, target port, source IP, source port, Protocol ID, and time stamp, with 
source IP referring to an attacker and Contributor ID referring to a victim.  

Two datasets DS1 and DS2 from Dshield.org are involved in evaluation of our algo-
rithm. Dataset DS1 consists of one month data (October 2008) that was used in the ex-
perimental evaluation of SLM [4]. DS1 contains 500M logs from 500K distinct contribu-
tors. The logs consist of more than 16M malicious source IPs. The second dataset DS2, 
one month (October 2016), is used for verifying the prediction performance of our 
method for latest attack events. We observe that only 0.008% and 0.001% of victims and 
attackers within first 5 days of DS1 also appear in DS2, respectively. Moreover, only 
0.019% of malicious subnets appear in DS2. Both datasets are different in terms of con-
tributors and attackers.  

5.2 Setup 

We use sampled datasets DS1 and DS2 of real logs of malicious activities from Oc-
tober 2008 and October 2016, respectively. The blacklist length N is bounded, say by 
1000. For each victim, we define the prediction ratio to be the ratio of the hit count over 
the total number of attacks on the victim, where hit count represents the number of cor-
rectly predicted attackers. It outlines the portion of the attackers that have been correctly 
predicted and the malicious activities of these sources are reported in the Ttest

5.  
The training window Ttrain contains data of some consecutive days. The testing 

window Ttest contains the data of the day after the training data. The training and testing 
window sizes are obtained in Section 5.3.6. We use the training window data to empiri-
cally obtain γ, 1, 2, min_support, min_confidence, and min_lift in Section 5.3.7.  
 
5.3 Performance Evaluation 
 

We arrange the predictors in two groups provided whether they use local or global 
information. In the local group, there are our predictor function h, Time Series (TS) 
model in [4], and LWOL, as they use the local logs. We use the LWOL prediction ratio 
as the ground truth. In the global group, there are our predictor Eq. (10), the SLM meth-
od, Victim Similarity, Attacker Correlation and GWOL as they all use the information 
shared by different networks.  

5.3.1 Prediction performance over DS1 

Fig. 1 compares the prediction ratios of our predictor function h, Time Series (TS) 
model in [4], and baseline prediction LWOL over DS1. The x-axis is the test day, from 
day 6 to day 11. The first 5 days are for training. The y-axis is the prediction ratio on the 
given day. The prediction ratios of our predictor function h range between 26% and 63% 

5 A perfect prediction ratio (i.e., equals to 1) indicates all attacks are included. 
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on the given days depending on the available data on different days. The predictor func-
tion h outperform both T S and LWOL over all days. Overall, average prediction ratio of 
h is 48%, which is twice that of the (TS) model in [4] algorithm.  

 

 
Fig. 1. Prediction ratios of our predictor func-
tion h, Time Series (TS) model in [4], and base- 
line prediction LWOL over DS1. 

Fig. 2. Prediction ratios of our algorithm, SLM 
algorithm, neighborhood models, and the base- 
line prediction GWOL over DS1. 

 

Due to exponential characteristics of the sigmoid function, predictor h expresses the 
probability of an attack in an exponential manner. Therefore, our predictor function h 
converges to 1 faster than the Time Series (TS) model in [4]. Our predictor quickly re-
sponds to the rapid change of attackers and makes faster decisions for blacklisting an 
attacker in its initial attacking phase. On the other hand, when an attacker decides to 
cease attacking, our predictor function h converges to 0 rapidly and eliminates such an 
attacker from the blacklist to make space for another severe attacker. h and TS share 
20% of predicted common attackers. However, h solely blacklists additional 42% attack-
ers that are not captured by TS. 

Fig. 2 shows the prediction ratios of our proposed algorithm Eq. (10), the SLM 
method6, Victim Similarity (N), Attacker Correlation (C), and the baseline prediction 
(GWOL) over DS1. Our predictor has the best performance on all 6 days. Our pre- dic-
tion ratios are higher than 70% on days 7, 10 and 11, whereas the prediction ratios of the 
SLM algorithm are all lower than 40%. Overall, our average prediction ratio is 62%, 
which is almost twice that of the SLM algorithm. In Fig. 2, we plot both Victim Similari-
ty (N) and Attacker Correlation (C). Their prediction ratios consistently over-perform 
GWOL over all days. They capture different concepts of similarity (victims vs. attackers). 
Hence, they potentially capture different set of attackers, which shows the difference in 
prediction ratios. For instance, we observe that Victim Similarity (N) and Attacker Cor-
relation (C) share some attackers range between 3% and 49% on the given day.  

Another reason for our better performance is that we discover stronger correlations 
among victims and attackers by leveraging lift to measure the stability of discovered 
rules and discard the misleading ones. In addition, if a victim is an active contributor of 
Dshield.org, the attacker correlation model discards highly prolific and global attackers 
that may be irrelevant to the victim by only considering the attackers in direct and indi-

6 We implemented the SLM algorithm in order to conduct a comparison using the same dataset. 



AMIR REZAPOUR AND WEN-GUEY TZENG 

 

610

 

rect subnets. Since we apply the same weight function in combining individual predic-
tors as in SLM, the significant improvement in prediction performance is due to better 
correlations among victims and attackers and the fast-responding predictor function h.  

Our prediction ratios range between 43% and 74% with large variance. This is due 
to variance among the number of attackers which the networks experience in different 
testing windows. The prediction ratio starts to decrease as several unseen attackers in the 
training window appear in day 8 of the testing window. In our sampled dataset, 70% of 
reported malicious activities on day 8 are newly joined attackers. Our predictor function 
h fails to capture new attackers since there are no interactions between victims and new 
attackers. The attacker correlation model also fails since there are no similar attackers to 
new attackers. Our algorithm cannot properly predict a zero-day attack that has no simi-
larity to the attackers reported in Ttrain (see Section 5.3.3 for more details).  

5.3.2 Prediction performance over DS2 

This analysis attempts to verify correctness of the observations (4.1, 4.2, 4.3 and 
4.4). We repeat the previous experiments on new malicious activities available in DS2 
using the same parameters as in DS1.  

Fig. 3 compares the prediction ratios of our algorithm and the SLM algorithm. Our 
prediction ratios are higher than 60% over all days, whereas the prediction ratios of the 
SLM algorithm are all lower than 56%. The average prediction performance is higher 
than the SLM algorithm. Overall, our average prediction ratio is 64%, which is 1.3 times 
higher that of the SLM algorithm.  

 
Fig. 3. Prediction ratios of our algorithm, SLM algorithm, neighborhood models, and the baseline 
prediction GWOL over DS2. 

 

In DS2, networks experience fewer unseen attackers in different testing windows 
than DS1. For example, on average, only 7% of reported malicious activities are newly 
joined attackers. This experiment further shows that the SLM algorithm performs better 
over a stable network as its average prediction ratio increases from 33% (Fig. 2) to 49% 
(Fig. 3), whereas our average prediction ratio remains stable from 62.7% (Fig. 2) to 
64.7% (Fig. 3). This illustrates that our algorithm performs better in both stable and un-
stable networks with significantly higher average prediction ratios. 
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5.3.3 Predicting new attacks 

Proactive prediction is an important defense strategy for a victim to use against at- 
tackers that have not been seen previously in its network. We say that a new attack rela-
tive to victim v occurs if v has not reported this attacker in the training window. However, 
such an attacker may not be new for other victims since some victims reported this at-
tacker in the training window. Note that a new attack differs from a zero-day attack 
which introduces an attacker that has never been reported by all victims. In this experi-
ment, Fig. 4 (a) shows that our average proactive prediction ratio is 14% over DS1, 
which is 2.5% higher than that of the SLM algorithm. In Fig. 4 (b), our average proactive 
prediction ratio is 32% over DS2, which is slightly higher than that of the SLM algorithm. 
For each victim, we only consider the portion of predictions that contain new attackers. 
Since the time-based predictions (predictor function h and TS) are not useful in this pre-
diction, the performance gap demonstrates the effectiveness of our Victim Similarity and 
Attacker Correlation models. 

 
           (a) DS1                           (b) DS2 

Fig. 4. Proactive prediction ratio results over 6 consecutive days. 

5.3.4 Performance consistency 

We investigate the stability of predictions by introducing performance consistency 
that measures the strength of a prediction algorithm over some consecutive testing win-
dows. For each victim, we compare our algorithm with the SLM algorithm on intervals 
∆6, ∆7, ..., ∆11  Ttest and obtain 6 improvement values. Let IV(v) = {IV6(v), IV7(v), ..., 
IV11(v)}, where IVi(v) is the prediction ratio of our algorithm minus that of the SLM al-
gorithm for given blacklists at time interval ∆i. The consistency index (CI) for each vic-
tim is the number of times that our algorithm performs better than the SLM algorithm [4]. 
Fig. 5 shows the sorted CI values for all victims, where the x-axis is cumulative per-
centage of victims and the y-axis is CI. Performance prediction of our algorithm over 
DS1 (blue curve) is highly consistent for 16% of victims. They have CI values of 6, 
meaning that for all time intervals, our algorithm always has more hits than the SLM 
algorithm. Our algorithm obtains a fairly high consistent index for all victims. The CI 
values are at least 4, meaning that our algorithm compiles a high quality blacklist not 
only within one time interval, but also within nearly all time intervals. Performance pre-
diction of our algorithm over DS2 (red curve) is extremely consistent for almost 50% of 
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victims. This illustrates that even when the average prediction performance of the SLM [4] 
algorithm improves on DS2, our method still provides a better blacklist for each victim.  

5.3.5 Blacklist length 

Fig. 6 shows the performance of our predictor for various blacklist lengths. The 
prediction ratio increases significantly when the blacklist length increases from 100 to 
1000. The prediction ratio improves slightly when the blacklist increases from 1000 to 
3000. In fact, a blacklist of length 1000 has average prediction ratio of 62%. While a 
blacklist of 3 times higher has a prediction ratio of 78%. Therefore, we adopt the black-
list length to be 1000. 

 

 
Fig. 5. Cumulative distribution of consistency 
index across 6 consecutive days. 

Fig. 6. Prediction ratio as a function of black-
list length N over DS1. 

 

5.3.6 Training and testing windows 

We examine how training and testing window sizes affect the performance of our 
algorithm. The training window size determines the amount of history data as the input 
to our algorithm. The testing window size shows how often we need to re-compute the 
blacklist.  

Fig. 7 (a) shows the relation between the prediction ratio and the training window 
size (in days), where the testing window size is fixed to 1 day. When the training win-
dow duration is short, the profit of the predictor function h is not much due to only a few 
available interactions among attackers and victims. If the training window duration is too 
long, old activities damage prediction performance. The curve in Fig. 7 (a) shows that 
the best training window duration is 5 days similar to SLM [4].  

Fig. 7 (b) shows the prediction ratios as a function of the testing window size, 
where we fix the training window size to be 5 days. Each point on the blue curve denotes 
the average prediction ratio of 6 consecutive days. In this experiment, we measure the 
effect of different testing window durations from 1 to 9 days. When the testing window 
duration increases, the prediction ratios vary inconsistently. This is due to many unseen 
attackers in Ttest, as in Fig. 2. Another reason is that the discovered similarities among 
victims and attackers are not compatible with a large testing window duration. In Fig. 7 
(b) the dashed-line shows the prediction ratios, when the testing window size is fixed to 
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1 day similar to Fig. 2. It has a higher prediction ratio over other testing window sizes. 
Thus, a shorter testing window size is preferred. 

 

 
(a)                                        (b)        

Fig. 7. Determining training (a) and testing (b) window sizes over DS1. 
 

 
Fig. 8. Determining training and testing window sizes of our algorithm. 

 
In Fig. 8, we use the blacklists compiled on day 6 to predict the rest of testing days. 

The prediction ratio drops quickly when blacklists are more than one day old. For exam-
ple, when blacklists are two days old (day 7), the prediction ratio decreases by nearly 
60%, from 73% in Fig. 2 to 13%. Therefore, blacklists need to be re-computed frequently.  

5.3.7 Parameter selection 

We use the training window data from DS1 to obtain min_support, min_confidence, 
min_lift, 1, and 2. Fig. 9 shows the prediction ratios as a function of min_support and 
min_confidence, where we fix 1 and 2. The best accuracy is obtained when min_sup- 
port = 0.9, min_confidence = 0.2. More precisely, accuracy continuously increases as 
long as min_support increases. It seems a min_support ≥ 0.8 provides a better threshold 
for victim similarity and attacker correlation models. The other choices of min_support 
and min_confidence, do not significantly change the prediction ratios. 
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Fig. 9. Prediction ratio as a function of min_support and min_confidence over DS1 with lift  1. 

 

Similarly, we empirically search the space of 1 and 2 to measure the effect of dif-
ferent values over prediction ratios. We observe that the results did not notably change 
for different choices of 1 and 2. Thus, we let 1 = 0.5 and 2 = 0.5 contribute equally to 
both Victim Similarity and Attacker Correlation models.  

For min_lift, we tried the cases where min_lift < 1, min_lift = 1, and min_lift > 1. We 
observed that min_lift > 1 obtains higher prediction ratios as it only considers highly 
correlation rules.  

5.3.8 Robustness 

The logs in the Dshield.org dataset may contain false positive reports as the reposi-
tory has no control over contributor’s logs. In addition, the reported logs are generated 
by various types of NIDS with different levels of accuracy. Therefore, the origin of false 
alerts may be due to errors in contributor’s NIDS (pollution), or to a malicious contribu-
tor who poisons the dataset by sending fake reports in order to mislead prediction algo-
rithms (poisoning).  
 
Pollution: To study the effect of random false positive reports, we randomly generate 
noisy logs and have the victims to report them. The victims of reporting fake malicious 
activities are chosen uniformly and randomly. We examine the noise percentages of 1%, 
5%, 10% and 15%. Each point on the blue curve denotes the average prediction ratio of 
6 consecutive days. Fig. 10 (a) demonstrates the results with noisy percentages shown on 
the x-axis and prediction ratios shown on the y-axis. Similar to SLM, the prediction ratio 
decreases almost linearly as the percentage of fake reports increases. For example, when 
the noise percentage increases from 0% to 15%, the performance ratio decreases by 
nearly 11%, from 62% to 51%.  

 
This phenomenon can be explained as follows. Randomly generated noisy reports 

are unlikely to affect the victim similarity model. They do not produce similarities 
among victims. According to the victim similarity model in Eq. (6), for a pair of victims 
to appear in the neighborhood of each other, the noisy reports should not only have the 
same source, but also be within the same time interval. 
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       (a)                                       (b)        

Fig. 10. Robustness of our proposed method with respect to (a) noise percentage of training dataset, 
and (b) number of fake contributors over DS1. In both experiments, the prediction ratio decreases 
linearly as the amount of random noise increases.  
 

Poison: Our method uses the collection of reported malicious activities from trusted8 
contributors to compile a customized blacklist for each contributor. Yet, an attacker can 
masquerade itself as a fake contributor and produce fake reports. A set of colluding con-
tributors could cooperate by submitting the same or overlapping reports. These fake re-
ports have the potential to affect the prediction performance of a true contributor that has 
some overlap with the fake reports. This also describes an attempt of a botmaster to exe-
cute an attack by using the same set of attackers (IPs).  

To study the effect of fake reports, we introduce some fake contributors in the 
training dataset Ttrain. We generate a set of attackers ASybil and have the fake contributors 
to report them. In order to differentiate the attackers in ASybil from other prolific attackers 
that are likely to belong to the blacklist in any case, we chose some new attackers from 
legitimate IPs that have never been reported. We set the size of ASybil equal to the average 
number of attacks reported by true contributors.  

We examine a number of 5, 10, 20 and 30 fake contributors. Fig. 10 (b) demon-
strates the results with the number of fake contributors shown on the x-axis and predic-
tion ratios shown on the y-axis. Each point on the blue curve denotes the average predic-
tion ratio of 6 consecutive days. Initially, the average prediction ratio slightly increases 
as the attackers reported by the set of colluding contributors have some overlap with the 
attackers reported by true contributors. This indicates that the fake reported activities 
successfully affect the similarity models and, thus, the set of colluding contributors ap-
pear in the neighborhood of true contributors. The average prediction ratio reduces 
slightly as the number of fake contributors increases. For example, every day on average 
only 3.4% of IPs has been blacklisted falsely after introducing 30 fake contributors. This 
indicates that a larger set of colluding contributors who have some overlap with the at-
tackers reported by true contributors have a higher potential to affect the similarity mod-
els. However, the set of colluding contributors still loosely affect the victim similarity 
model since there are enough similar true contributors available that are more related to 
the target victim than the fake contributors. This demonstrates the robustness of the vic-
tim similarity model in Eq. (6) against fake contributors. Generally, while there are 
enough similar true contributors available, the effect of fake reports diminishes as the 
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victim similarity model will also contain true contributors. Nevertheless, the reports from 
fake contributors have less likelihood to affect the predictor function h, unless they share 
the same attackers. 

5.3.9 Evading the predictor 

It is difficult for persistent attackers to evade our predictor by limiting their activi-
ties. They can attack different networks for a short time and pretend to be inactive later. 
For example, they attack a victim within a few time intervals and become inactive for 
some consecutive intervals. This behavior deludes the temporal predictor function h, 
which is designed to deal with active attackers. However, the victim similarity and at-
tacker correlation models can capture these attackers.  

It remains for future work to apply more sophisticated poisoning attacks such as [28] 
and verify the effectiveness of Sybil attack detection schemes.  

5.3.10 Limitations of our algorithm 

Our algorithm makes use of a central repository, such as Dshield.org, of shared ma-
licious activities reported by victims all over the Internet. It leverages direct relationships 
between attackers and victims, victim similarity, and attacker correlation to compile a 
customized blacklist for each victim. Therefore, victims that regularly share their securi-
ty logs benefit from high quality blacklists.  

Yet, we are unable to deliver a high quality blacklist to a free-rider victim. The free- 
rider problem occurs when a victim chooses not to share its security logs with a central 
repository. Free-riders take advantage of the central security logs, hoping that other vic-
tims would contribute their information. This results in an under-provision of service. 
The compiled blacklist for such a victim is solely based on the attacker correlation model, 
which treats the victim as a newly joined and incorporates the globally prolific attackers.  

5.4 Complexity Analysis 

We analyze the time complexity of our proposed algorithm in training and testing 
processes. Let Ttrain|A|, Ttrain|S|, and Ttrain|V| denote the number of attackers, attacker sub- 
nets and victims in the training window, respectively. In the training process, the com-
plexities of two phases of our ARM algorithm are 

 
1. Finding all frequent itemsets: Since we only require the correlation between two items, 

the complexity of the first phase is O(w×Cob(Ttrain|V|, 2)×Ttrain|V|), where w is train-
ing window size and Cob(Ttrain|V|, 2) is the number of possible combinations of two 2 
victims.  

2. Generating association rules from the frequent itemsets: Assuming all frequent item-
sets satisfy min_support, the complexity of phase 2 is at most O(Cob(Ttrain|V|, 2)). 

 
Therefore, the overall complexity of discovering victim similarity is O(Cob(Ttrain|V|, 

2)×Ttrain|V|). Similarly, the complexity of determining correlated attackers is O(Cob(Ttrain 

|S|, 2)×Ttrain|S|). Since Ttrain|S| is smaller than Ttrain|V| by several orders of magnitude, the 
complexity of our algorithm in the training phase is O(Ttrain|V|3).  

For testing, computing h(T(a,v)) needs O(w) operations for each prediction. The com- 
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plexity of computing victim similarity, assuming the existence of similarity among all 
victims, is at most O(w×Ttrain|V|). The complexity of determining attacker correlations is 
O(Ttrain|S|). Therefore, the overall complexity of our algorithm in the test phase for pre-
dicting an n×m dimension matrix Bb+1 is O(w×Ttrain|A|×Ttrain|V|), where n = Ttrain|A| and 
m = Ttrain|V|. 

In our experiment, we use a commodity server with 2.1 GHz processor and 128 
GBs of RAM. The execution time for the training and test phases are about 7 and 2 hours, 
receptively. We can improve the execution time, in particular, the test time, by employ-
ing advanced computing technology, such as cloud computing and GPU computing. We 
shall explore in this direction in the future.  

6. CONCLUSION  

We proposed a novel method of investigating accurate and robust prediction for fu-
ture attacks. We used predictor function h with an exponentially updated ratio to reflect 
direct and timely relation between an attacker and a victim. In addition, we tackled the 
victim/attacker similarity problem by the method of association rule mining.  

We analyzed the performance of our prediction algorithm against the previous re-
sults. Our prediction boasts a significant improvement in both prediction ratios and pre-
dicting new attacks. Our significant prediction performance is due to discovering strong 
victim similarities and attacker correlations in addition to the fast-responding predictor 
function h. In our victim similarity and attacker correlation models, lift plays an im-
portant role in highlighting stable rules.  
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