
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 36, 597-619 (2020)
DOI: 10.6688/JISE.202005_36(3).0008

597

A Robust Algorithm for Predicting Attacks
Using Collaborative Security Logs

AMIR REZAPOUR AND WEN-GUEY TZENG

Department of Computer Science
National Chiao Tung University

Hsinchu, 30010 Taiwan
E-mail: {rezapour; wgtzeng}@cs.nctu.edu.tw

As networks become ubiquitous in our daily lives, users rely more on networks for

exchanging data and communication. However, numerous new and sophisticated attacks
that endanger security of users have been reported. In practice, blacklisting illicit sources
has been a fundamental defense strategy in recent years. In this paper, we propose a pre-
dictor that is based on the observations from a centralized log-sharing infrastructure. Our
observations include the direct relation between attackers and victims, victim similarities,
and attacker correlations. We compile a customized blacklist for each Dshield.org con-
tributor using a weighted function of direct and indirect relations between victims and
attackers. This list not only offers a significantly higher prediction ratio, but also includes
source addresses with potentially higher threats. We evaluate our predictor using two
months of malicious activities acquired from Dshield.org. The experimental results
demonstrate a significant improvement over previous algorithms.

Keywords: prediction algorithms, IP blacklisting, network security, association rule min-
ing, data mining, machine learning

1. INTRODUCTION

Developing network-based intrusion detection systems (NIDS) has become com-
mon practice to respond to Internet security concerns. Generally, the goals of NIDSs are
to detect attacks and prevent potentially harmful interaction with an entity from taking
place. Several NIDS approaches have been proposed for providing the first level of pro-
tection. As a result, network administrators frequently utilize security logs produced by
NIDSs to prevent malicious activities from traveling in and out their networks. Yet, fur-
ther analysis of the collaborative security logs contributed by various NIDSs worldwide
can provide a secondary level of protection against broader attacks.

Our work makes use of a central repository, such as Dshield.org, of shared security
logs from NIDS or network firewalls of victims all over the Internet. The intention for
sharing security logs is to help produce better prediction of future malicious activities. In
practice, such data have been used to compile a blacklist: a collection of source IP ad-
dresses that are suspected to be involved in illicit and malicious activities. For instance,
Dshield.org [1] regularly processes NIDS logs contributed by thousands of victim net-
works worldwide and publishes the most prolific attack sources seen by its contributors.

Blacklists need to be frequently updated to keep pace with the attempt of attackers
who utilize various IPs in various attack phases. Blacklisting all offenders is not an op-
tion. Firstly, such a long blacklist creates a nuisance for administrators and may cause an

Received April 29, 2018; accepted May 23, 2018.
Communicated by Hung-Min Sun.

AMIR REZAPOUR AND WEN-GUEY TZENG

598

unacceptable delay in the network. Secondly, not necessarily all offenders worldwide
have the same interest in all networks. This is coupled with the fact that each network
has a different payoff for offenders to attack. Therefore, a customized blacklist needs to
be compiled for each individual with respect to its similar victims and attack history.

In recent years, a large number of organizations have adopted blacklists to combat
attackers. These blacklists include the source IPs of spam senders1 and malicious web
pages2. Earlier research about blacklisting can be categorized into two types: Local
Worst Offensive List (LWOL) and Global Worst Offensive List (GWOL) [2]. GWOL
leverages large online repositories (e.g. Dshield.org) and offers a list of highly prolific
and global attackers. Such an approach may not necessarily deliver a valuable service to
victims. The reason is that the highly prolific attackers reported in security logs may be
irrelevant to a victim’s local network. In some cases GWOL may cause a high miss rate
for those attackers who choose their targets more strategically. Such attackers may target
just a few networks and hence are not prolific at all [3]. In LWOL, each individual vic-
tim creates its own history of malicious activities. LWOL that uses a private security logs
may fail to predict the malicious activities that have never attacked a certain network in
advance. Therefore, LWOL is reactive in the sense that it cannot predict attack sources
before these sources reach a network.

From the above discussion, a high quality prediction algorithm should be coupled
with similarity among victims, in addition to correlation among attackers. Furthermore,
predictions should be proactive that is, they should incorporate those IP sources even
when they have not been seen previously in the victim network. Our goal is to deliver a
better prediction algorithm with higher prediction ratios3 by uncovering the correlations
among victims and attackers. We study prediction of malicious activities at the IP level
for each individual victim using the information of attacker IP’s, victim networks and
time stamps of malicious activities in the logs. Our prediction algorithm integrates a
novel time-based logistic regression model to address direct interaction between an at-
tacker and a victim on evolution over time basis. We use similarity analysis to assign
weights to victims and attackers based on their closeness. Finally, we use a weighted
function of direct and indirect relations among victims and attackers to compile a cus-
tomized blacklist for each Dshield.org contributor.

Our work improves upon the results [4] (SLM). We evaluate our algorithm using a
one-month data October 2008 (DS1) and a recent one October 2016 (DS2) from Dshield.
org. DS1 is used to compare with previous results and DS2 shows that our algorithm still
works today. Our experimental results indicate that for all of contributors, our blacklist
has significantly higher prediction ratios on all testing days. Over DS1, our pre- diction
ratios are higher than 70% on most days, while the prediction ratios of the SLM algo-
rithm are all lower than 40%. Overall, our average prediction ratio is 62%, which is al-
most twice that of the SLM algorithm. Over DS2, our average prediction ratio is 64.7%,
which is 1.3 times higher that of the SLM algorithm.

We measure robustness of our algorithm against noises with respect to noise per-
centages and the number of fake contributors. The prediction ratio decreases almost lin-
early as the percentage of noisy reports increases. Moreover, the prediction ratio de-
creases slightly as the number of fake contributors increases.

1 SpamCop
2 PhishTank, SafeBrowsing
3 We define prediction ratio as a ratio of the hit count over the total number of attacks.

A ROBUST ALGORITHM FOR PREDICTING ATTACKS USING COLLABORATIVE SECURITY LOGS 599

The rest of the paper is organized as follows. Section 2 discusses related work. Sec-
tion 3 presents some preliminary notations and formulates the prediction problem. Sec-
tion 4 covers our prediction algorithm. Section 5 presents an experimental evaluation of
our algorithm using a real-world dataset of security logs. Finally, the paper concludes in
Section 6.

2. RELATED WORK

Recently a number of research papers have proposed algorithms to generate black-
lists against specified attacks. For instance, spam constitutes a noticeable portion of at-
tacks that users directly experience. Therefore, some researchers have attempted to solve
the phishing problem at the e-mail level by generating a blacklist of spammers [5-7]. In a
slightly different attempt, some companies (e.g. Google, Microsoft and McAfee) scour
millions of web pages to identify and maintain blacklists of malicious URLs.

Dshield.org is a centralized repository providing a daily malicious activity collected
from a large number of contributors all over the Internet. Dshield.org dataset consists of
a set of contributors each has its own share of information. Each contributor can com-
municate with others and also provide its information to a central authority. Contributors
can choose to submit their logs without a validation technique at the expense of anonym-
ity. Therefore, a Sybil attack may occur when an adversary introduces many counterfeit
identities corresponding to a single contributor. Using Sybil contributors, an adversary
may provide bogus reports for his benefits which reduce the utility of Dshield.org dataset.
The current research to deal with Sybil attacks [8-13] has gone into the study of trust
relationships in social networks to reduce the influence of Sybil attacks. Our method dif-
fers from Sybil attacks detection schemes. It aims to neither detect the faulty contributors
nor locate the correct contributors. Nevertheless, Sybil attack detection schemes can be
applied as a preprocessing module in order to sanitize the Dshield.org dataset.

Some recent research analyzes social network relationships to identify faulty entities,
in particular, the attackers in the Sybil attack. In the Sybil attack, a single entity controls
multiple identities in order to defeat security mechanisms and attack its users [14]. Some
defense mechanisms [8-13] have been developed and evaluated through trust relation-
ships in social networks. They identify faulty entities (attackers) by exploring direct and
indirect social-network relationships among entities. Nevertheless, they all assume ex-
istence of static social networks, the trust relationships remain unchanged after estab-
lishment. We make no such assumption. Our prediction model can deal with temporal
dynamics and relationships among victims and attackers.

Another line of research aims to improve the quality of the blacklisting algorithm
with a broader perspective. Zhang et al. [2] (HPB) argued a multipurpose blacklist of
malicious source IPs that are predicted to be harmful for an organization. They improved
IP level blacklisting by compiling a compact and customized blacklist which is more
likely to be relevant to a victim. The main idea is that victims can share their security
logs and similarity is defined as the number of common attackers. They used a relevance
ranking process to propagate the likelihood of the given attacker to attack other victims,
given a correlation attack graph. To this end, they represented the correlation as a graph
that captures the relationships between victims. Finally, they utilized a severity assess-
ment algorithm to compile the final blacklist.

AMIR REZAPOUR AND WEN-GUEY TZENG

600

Soldo et al. [4] extended the HPB results by reformulating the problem as a recom-
mendation system. They included a temporal consideration in the prediction algorithm
and quantified the direct relations between attackers and victims as a ground truth. Fur-
thermore, they developed a variation of Pearson similarity to measure the victim similar-
ity. That is, when victims share attacks from the same source address within the same
time intervals, they are more related to each other than the victims sharing common at-
tackers but from different time intervals. Therefore, giving higher priority to attacks oc-
curring within the same time interval captures a stronger correlation among victims. Ad-
ditionally, they clustered attackers and victims jointly in order to discover the strength of
correlation among the attackers and victims within the group. Clusters are regarded as
regions in the attacker-victim graph in which the nodes are dense. A highly dense region
resembles a complete attacker-victim graph, which indicating strong correlation. That is,
the denser a region is, the more probable that its attackers will attack its victims.

Zhang et al. [2] and SLM focused on blacklisting at the IP level by finding correla-
tions among victims and attackers from shared security logs. They differ in both model-
ing and underlying techniques. The experimental results of SLM completely dominate
the prediction ratios of previous work, including HPB, LOWL and GOWL. Thus, we
compare our experimental results with the previous result (SLM) [4].

We use a novel temporal predictor function with an exponentially updating param-
eter to reflect direct and timely relation between an attacker and a victim. In addition, we
tackle the victim/attacker similarity problem by the method of association rule mining.
Our technique is very efficient at unscrambling the similarities.

Finally, there are studies loosely related to ours, such as predicting cyber attack
rates [15, 16], Internet background radiation [17, 18] and one-way traffic [19]. Predicting
cyber attacks rates aims to predict the intensity of cyber attacks against a target. This pre-
diction enables the defender to efficiently allocate defense resources on demand to cope
with the extraordinary large cyber attack rates. The other two studies propose to classify
the data as scanning, peer-to-peer applications, misconfigurations, worms etc. and do not
provide a prediction.

3. PROBLEM DEFINITION

3.1 Notation

An uppercase boldface letter represents matrix B of n m dimension. A lowercase
boldface letter denotes a vector x = (x1, x2, …, xm). B⊤ and x⊤ are the transpose matrices
of B and x. Let A denote the set of attackers and V the set of victims. The number of el-
ements in a set is denoted by |A|. t indicates the time that an attack was reported in the
log files. We treat a log dataset, such as the Dshield.org dataset, as a set R = {(a, v, t) | a

 A, v V, t T}, where the tuple (a, v, t) represents that attacker a A attacked v V at
time t T. The attacks occur non-uniformly over time. Hence, we chop the dataset ac-
cording to small time intervals of size ∆t, where ∆t could be an hour or a day. Let τi be
the starting time of the ith time interval and ∆i = [i, i + ∆t] the ith time interval, i 1.
Let ra,v(i) represent the number of attacks from attacker a to victim v within time inter-
val [i, i + ∆t]. The |A| |V|-dimensional binary matrix Bi indicates occurrence of illicit
activities in the ith time interval ∆i. That is, the (a, v)-entry bi(a, v) = 1 if some (a, v, t)

R and t [i, i + ∆t], and bi(a, v) = 0, otherwise.

A ROBUST ALGORITHM FOR PREDICTING ATTACKS USING COLLABORATIVE SECURITY LOGS 601

3.2 Prediction

We are interested in finding the most probable attackers that aim to harm victim v
within the time interval ∆+1 or later, where denote the latest time interval4. Thus, given
w as the window size, training window Ttrain is {B-w+1, …, B-1, B} and the testing win-
dow Ttest is {B+1, …} for verifying the results of the prediction algorithm.

The prediction algorithm generates a blacklist BL(v) = {a1, a2, ..., aN} A that con-
tains top N probable attackers to victim v in time interval ∆+1. Given such a blacklist, we
use the hit count as the number of correctly predicted attackers reported in Ttest to meas-
ure effectiveness of the prediction algorithm.

3.3 Association Rule Mining

Association rules mining (ARM) is developed to analyze the transactional sale data.
The goal of ARM is to locate the items that are frequently bought together in the same
transaction. The sets of items are known as itemsets. The goal of our analysis is to find
the similarity among attackers and victims and capture them as rules. Hence, throughout
this paper, items are victims/attackers.

Let I = {i1, i2, ..., im} be a set of m items. Let D = {tid1, tid2, …, tidn} denote a data-
base of n transactions, where tidi I. A transaction tid D is said to contain an itemset
II if I⊆tid.

1. The support of an itemset II is defined as support(I) = |{tidi|I tidi, tidi D}|/|{tidi

 D}|.
2. A rule I1 I2 is defined as a conditional implication among itemsets, where itemsets

I1, I2I and I1∩I2 = .
3. The support of a rule I1 I2 is the percentage of transactions in D containing I1I2.
4. The confidence of an association rule r: I1 I2 is the conditional probability that a

transaction contains I2, given that it contains I1. Thus, confidence(r) = support(I1∪I2)
/support(I1).

5. The lift of a rule is defined as: lift(I1 I2) = support(I1I2)/support(I1)support(I2).
lift assesses the rule I1 ⇒ I2 in terms of applicability and relevance. A lift(I1 ⇒ I2) > 1
implies that the probability of occurrence of I1 and I2 are positively dependent on one
another. If lift(I1 I2) < 1, then I1 and I2 appear less often together than expected. A
value of 1 implies that I1 and I2 are independent and the occurrence of I1 has almost
no effect on the occurrence of I2.

Given a transactional database D, the objective of ARM is to extract the rules of form

I1 I2[support, confidence, lift]

satisfying user-defined thresholds for the admissible minimum support, confidence and
lift. Eventually, we use the lift metric to discard weak rules. For further details, we refer
interested readers to [20].

We design our ARM based on the Apriori algorithm [21]. It identifies all frequent
itemsets of two items. Hereafter, we use our ARM algorithm for mining association
rules.

4 Intervals before ∆+1 are used for training.

AMIR REZAPOUR AND WEN-GUEY TZENG

602

4. MODEL OVERVIEW

We define the prediction function of estimating the possibility that attacker aAtrain
will attack vVtrain in time interval ∆τ+1 as follows:

, 1 1() : ,..., [0,1]a v wP B B (1)

where Atrain and Vtrain are the sets of attackers and victims in Ttrain, respectively. We in-
clude all attackers and victims into our computation since we observe that any small cor-
relation among attackers and victims is not a negligible phenomenon.

In the rest of this section, we investigate the relations between attackers and victims
including direct relation, victim similarity and attacker correlation. For each case, we
observe the data and design a prediction method.

4.1 Temporal Attack Predictor

We begin by quantifying the likelihood that an attacker aA attacks a victim vV.
Each bi(a, v) shows the interaction between the given attacker a and the victim v within
time interval ∆i. For every pair (a, v), we extract a signal from the training data:

b1(a, v), b2(a, v), …, bn(a, v) (2)

that shows its evolution over time.

Observation. By the Dshield.org dataset, an attacker usually has two attack strategies.
One is to attack only once and the other is to attack multiple times. For the latter strategy,
the attacks are more likely to happen within a small time period. The data shows that the
majority of consecutive attacks happen within a time period between 3 to 10 minutes and
the rest scatter throughout the rest of the day [22].

This observation indicates that the prediction should mostly rely on recent past ac-
tivities. Thus, the recent past activities are more important than the old ones. Further-
more, the attacks vary over time as the number of reports submitted by victims vary on
different days. Hence, the evolution of attacks over time is also an important phenome-
non [4]. Consequently, Eq. (2) accounts for both the time when an attack was reported
and its evolution over time.

Design. We use a parametric predictor to capture the aforementioned observation. The
prediction problem is to estimate from past information the one-step conditional proba-
bility

1 1((,) 1| (,), (,),...).P b a v b a v b a v (3)

We wish to approximate the conditional probability at time +1 by the past w ob-
servations with a predictor function h that yields the lowest error when predicting b+1(a,
v). Let Ta,v(, w) = (bτ-w+1(a, v), bτ-w+2(a, v), …, bτ(a, v)) denote a sequence of w observa-
tions known to the observer at time τ. We define predictor function h as

h(Ta,v(, w)). (4)

A ROBUST ALGORITHM FOR PREDICTING ATTACKS USING COLLABORATIVE SECURITY LOGS 603

Algorithm 1 shows the description of predictor function h, where is the sigmoid
function and is a discount parameter. The idea is to update the model parameter θ in
order to reduce the error for the next prediction. Our formula makes the update rate as an
exponentially decreasing function. Therefore, the last iterations cause large changes in
the parameter, while the first ones do only fine-tuning.

It begins by initializing the prediction parameter θ = [θ1 θ0] with θ0 as the scalar bias
term. In each iteration (lines 5 to 6), it uses xi-1 and current parameter θ to compute (z)
the next prediction xi. The value (((z) xi)·θ (z)·[xi-1 1]) updates θ according to the
gradient of the error w.r.t. the single training instance xi-1. The magnitude of the update is
proportional to the gradient term θ (z)·[xi-1 1]. For instance, if we are encountering a
training example on which our prediction does not match the actual value of xi, i.e. ((z)

 xi) 0, then we update θ proportionally to the gradient term. Furthermore, the expo-
nentially decreasing function γ(1 γ)t-i-1 associates an adaptive update rate to the overall
change of parameter θ. The significant advantage of our predictor is that the prediction is
more dependent on recent past observations than the past ones. For old data, i.e. i = 1,
γ(1 γ)t-i-1 ≃ 0, it assigns a small update rate, and for the recent data, i.e. i = t 1, γ(1

γ)t-i-1 = γ, it assigns a large update rate to the prediction parameter θ. Therefore, the future
activity strongly relies upon the recent past activities. Finally, Algorithm 1 uses the op-
timal prediction parameter and the latest observation xt to approximate the conditional
probability (3). The value h(.) is the probability that the attacker a will attack the victim v
in time interval ∆τ+1.

Algorithm1: Predictor Function h
1 Function h(x1, x2, ..., xt)
2 θ = [θ1 θ0].Initialize();
3 x0 = 1
4 for i = 1 to t1 do
5 z = θ⊤·[xi 1 1]
6 θ←θ γ(1 γ)t-i-1·(((z) xi)·θ = (z)·[xi-1 1])
7 end
8 return (θ⊤·[xt 1]);

Another issue is to initialize γ. We choose γ in the range [0.5 0.8]. If γ is close to 1,
the recent attacks aggressively change θ. The initialization value for θ doesn’t have any
significant impact. If γ is close to 0, it acts as a smoothing factor. We empirically inves-
tigate the range of γ to support our observations.

h(.) is a LWOL approach that captures the attacker in its active time by observing
recent past activities. It complies with the observation that a large number of attackers
are highly active within 1 to 3 days, and during this period they conduct many attacks. In
fact, there is a correlation between the active time and the number of attacks [22].

Moreover, our predictor quickly excludes inactive attackers after observing the re-
cent past activity of the attackers. We remove inactive attackers from the blacklist
quickly and fill the blacklist with active attackers. This guarantees that there is sufficient
space for putting more serious attackers on the list since the length of blacklist is fixed.

AMIR REZAPOUR AND WEN-GUEY TZENG

604

4.2 Victim Similarity

The prediction solely based on Eq. (4) cannot capture the correlation among attack-
ers (or victims). A persistent attacker can frequently switch its targets and evade the level
of prediction by Eq. (4). Hence, we introduce victim similarity (N) and attacker correla-
tion (C).

The neighborhood model is an effective way to predict user behavior in recommen-
dation systems [23]. The idea is to estimate the likelihood of a victim v being attacked
using other victims, called neighbors. Such victims build a group called neighborhood. A
victim gets prediction about those attackers that have not been reported before, but were
already reported by victims in its neighborhood. That is, when a victim v reports an illicit
activity, the neighborhood model propagates the effect of the attack to similar victims of v.

Observation. An analysis on the number of common attackers between a victim and its
neighbors in the Dshield.org dataset illustrates that similar victims do share some com-
mon attackers. Majority of similar victims share 20 to 60 common attackers [22]. This is
because similar victims might have identical benefit for an attacker or share the same
vulnerability. When a victim shares common attackers with another victim, it is more
likely for both victims to receive attacks from the same attacker within a very short peri-
od of time. In other words, when attacker a attacks many victims, it likely attacks them at
about the same time [24].

Definition 1: We define victims v and u to be similar (close) if they both report an attack
within some time intervals ∆i. The degree of their similarity (closeness) is measured by a
conditional probability P(u|v) = p(u, v)/p(v), where the joint probability p(u, v) is the p(v)
probability that both v and u report illicit activities within some intervals over the num-
ber of intervals. p(v) is the marginal probability of v.

Design. We wish to estimate the probability of victim v being attacked, given that its
neighbors were attacked. Let the set Nv = {v1, v2, …, vk} contain similar victims of v. We
compute the corresponding conditional probabilities as:

(|) (), 1,2,..,i iP v v Confidence v v i k (5)

where P(v|vi) as in Definition 1 is the probability of victim v to be threatened given that
its neighbor vi was attacked.

The problem of finding similar victims can be solved by the association rule mining.
A similarity algorithm constructs a function that maps a pair of objects x and y to a
number in [0, 1]. This function measures the degree of similarity between x and y. In
terms of association rules, the objects can be treated as items. We find similar victims as
follows.

We prepare a transactional database TD. A transaction has a unique transaction id
tid and a list of items. Consider Ttrain with a window size of length w. There are w binary
matrices Bτ-w+1, …, Bτ-1, Bτ. A transaction tidi, v1, v2, ..., vl associated with a tidi is a list
of victims that reported at least one attack in Bi. TD is the set of all such transactions.
This captures our intuition that victims that have been attacked within the same time in-
tervals are more similar to each other.

A ROBUST ALGORITHM FOR PREDICTING ATTACKS USING COLLABORATIVE SECURITY LOGS 605

We invoke the ARM algorithm with input TD, min_support, min_confidence, and
min_lift to determine similar victims Nv. In the basket mining problem, the generated
rules

)] Lift(,) (Confidence,) [Support(

...

]) Lift(,) (Confidence,) [Support(1111

vvvvvvvv

vvvvvvvv

kkkk

indicate that item v should be recommended to the customer by observing the set {v1,
v2, ..., vk} in the basket. In our reasoning, Nv = {v1, v2, ..., vk} retrieves the most frequent
victims that were attacked at about the same time as victim v. Therefore, {v1, v2, …, vk}
are treated as similar victims of the given victim v. Moreover, Confidence(vi v) as in
Eq. (5) estimates the conditional probability of v being attacked given that its neighbor vi
was attacked.

We calculate the neighborhood influence of victim v as follows:

,
=1

, 1

=1

() ((,))
()= .

()

i

k

i a v
i

a v k

i
i

Confidence v v h T w
N

Confidence v v

 (6)

Notice that if v and vi are similar victims, Confidence(vi v) outputs a higher value for
stronger neighborhood influence. h(Ta,vi (, w)) estimates the probability that neighbor vi
will be attacked by attacker a in time interval ∆+1. Malicious activities fluctuate over
time. Eq. (6) models the intuition that victims receiving an attack from the same source
within the same period of time are more similar to each other. This implies that victim
similarity not only depends on the number of common attackers, but also on the time
interval in which the malicious activities are reported. In this case, they are more likely
influenced by the same type of attacks. Intuitively, Eq. (6) combines LWOL (h(Ta,vi(,
w))) and GWOL (Confidence(vi v)) approaches. That is, Eq. (6) proactively incorpo-
rates those attackers even when they have not been seen previously in the victim network,
but are determined to be relevant to the victim network through its neighbors.

4.3 Attacker Correlation

Consider a DDoS attack launched by a botmaster to attack a victim, the botmaster
dedicates a subset of bots under its control to scan and find vulnerability of the target.
Later, the botmaster may command some previously-unseen bots (IPs) to execute the real
attack [25, 26]. Therefore, identifying similarity among attackers, even just discovering a
few of them, privileges the victim to preemptively include other similar attackers into his
blacklist.

Another scenario is that a newly joined victim v that reported a few malicious ac-
tivities does not have similar victims in the neighborhood model. The new user problem
(a.k.a cold start) is one of main difficulties faced by recommendation systems. Since
there are not yet enough ratings, the system fails to identify neighbors of the given user.
There are a number of solutions discussed in [23]. One effective solution is to use a hy-
brid technique of combining user-based (i.e., victim similarity) and item-based (i.e., at-

AMIR REZAPOUR AND WEN-GUEY TZENG

606

tacker correlation) predictions. Therefore, leveraging attacker correlation not only in-
cludes similar attackers into the blacklist preemptively, but also solves the cold start
problem.

Observation. In analysis of the Dshield.org dataset, Soldo [22] found that a bulk of at-
tackers only harm one victim. Therefore, it is beneficial to explore correlation among
attackers.

Soldo studied temporal dynamics of malicious source IPs within one month and
observed that only 13% of the IPs are reported as malicious within two consecutive days.
This number decreases rapidly to 8% for 3 consecutive days. Overall, only 4% of source
IPs are continuously reported as malicious for the whole month. Furthermore, bots are
programmed to expand their population by transferring an infected code to other ma-
chines. Shin et al. [27] showed that it is more likely for a bot to infect another machine
within the same subnet.

The distribution of (attacker, victim) pairs over a time period shows the following
issues. Firstly, attackers are not evenly distributed in network classes. For instance, fewer
attackers are from network class A, which mainly belongs to governmental organizations
and large IT companies. Secondly, many new attackers are within previously seen sub-
nets. This is likely due to DHCP configuration that assigns a new IP for the same ma-
chine at different times.

In order to capture a higher level of abstraction for attacker correlation, we inspect ma-
licious activities from the subnet level, instead of individual IPs. We tag risky subnets and
measure the critical level of a given subnet by malicious activities reported in the dataset.

Design. The key idea of attacker correlation is to estimate the likelihood of a possible
attack from similar attackers to those that are reported by victim v. There are two types
of victims as presented below:

If victim v is an active contributor of Dshield.org, then given a set of attackers Av =
{a1, a2, …, al} reported by victim v, we define two tiers of correlated subnets. The first
tier is determined directly from A as S(1) = {s1, s2, ..., sl}, where si is the subnet of ai. The
second tier consists of all relevant subnets that are similar to those in the first tier, i.e.

(1)

(2) { | () min_ } .
i v

v i s S
S s Confidence s s confidence

 (7)

Let Sv = S(1)S(2) be the set of all such direct and indirect subnets.
Otherwise, if victim v is a newly join victim (i.e., Sv =), we investigate the at-

tacker correlation over all attackers in Atrain by setting Sv = {s|s = subnet(a), a Atrain}.
That is, in the absence of security logs, the attacker correlation model is a GWOL tech-
nique that incorporates highly prolific and global attackers. As a result, our algorithm
tackles the cold start problem by predicting potential global attackers using the attacker
correlation model.

Upon receiving a request to estimate the probability that the given attacker a (with s
= subnet(a)) harms victim v, if sSv, the attacker correlation algorithm halts and outputs
zero. Otherwise, we inspect the correlated subnets Sv = {sj|Confidence(sj s) > min-con-
fidence} for a possible threat. The correlation between subnets is formulated as a condi-
tional probability:

A ROBUST ALGORITHM FOR PREDICTING ATTACKS USING COLLABORATIVE SECURITY LOGS 607

(|) (), 1, 2,.., .j jP s s Confidence s s j m (8)

Let Psub(si) and Patt(a) denote the threat levels of subnet si and attacker a, respec-
tively. Psub(si) is defined as the number of malicious activities originated from subnet si
over all malicious activities reported in Ttrain. Similarly, Patt(a) is the number of malicious
activities originated from attacker a over all malicious activities reported in Ttrain. Patt(a)
discards those IPs that are used in less prolific networks such as class A.

We calculate the attacker correlation influence of attacker a as:

, 1

() ()

() , if (())
()= .()

 0, otherwise

i v

i v

i sub i
s S

att v
a v i

s S

Confidence s s P s

P a subnet a S
C Confidence s s

 (9)

Notice that attacker correlation model locates the potential attackers only based on
the attacker activities and the values are not restricted for a specific victim.

4.4 Combining the Predictors

 There are many ways to combine predictors, such as averaging. Our empirical analy-
sis leads us to use weighted predictor, similar to the one in [4]. We embed weights to
estimate the prediction Eq. (1) as

, 1 , , , 1 , , 1() = ((,)) ()+ ()ns ca
a v a v a v a v a v a vP h T w W N W C (10)

where the weight of victim similarity is

, 1
,

, 1 1

()
.

()+
a vns

a v
a v

N
W

N

 (11)

1 is a parameter in range [0, 1]. Na,v(∆τ+1) is larger for a victim v with more similar neigh-
bors. The more similar neighbors the victim v has, the larger Wa,v

ns is. This increases the
effect of the neighborhood model by assigning higher importance for Na,v(∆τ+1) in Eq. (10).

Likewise, we define the weight for attacker correlation as

, 1
,

, 1 2

()

()+
a vca

a v
a v

C
W

C

. (9)

Where 0 ≤ 2 ≤ 1. The stronger attacker relation the attacker a has, the larger Wa,v ca is.

4.5 Compiling Blacklists

For the final blacklist, we include more severe attackers which not only have been
reported to be prolific, but also have been discovered to be more relevant to the given
victim. We use the predictor Eq. (10) to generate an ordered candidate list and pick top N
ranked attackers.

AMIR REZAPOUR AND WEN-GUEY TZENG

608

5. PERFORMANCE EVALUATION

5.1 The Dataset

Dshield.org is a repository of firewalls and NIDS logs collected from a large num-
ber of contributors all over the Internet. Every time an alarm is raised by a contributor’s
network, the contributor submits a log to the Dshield.org repository. The log contains
Contributor ID, target port, source IP, source port, Protocol ID, and time stamp, with
source IP referring to an attacker and Contributor ID referring to a victim.

Two datasets DS1 and DS2 from Dshield.org are involved in evaluation of our algo-
rithm. Dataset DS1 consists of one month data (October 2008) that was used in the ex-
perimental evaluation of SLM [4]. DS1 contains 500M logs from 500K distinct contribu-
tors. The logs consist of more than 16M malicious source IPs. The second dataset DS2,
one month (October 2016), is used for verifying the prediction performance of our
method for latest attack events. We observe that only 0.008% and 0.001% of victims and
attackers within first 5 days of DS1 also appear in DS2, respectively. Moreover, only
0.019% of malicious subnets appear in DS2. Both datasets are different in terms of con-
tributors and attackers.

5.2 Setup

We use sampled datasets DS1 and DS2 of real logs of malicious activities from Oc-
tober 2008 and October 2016, respectively. The blacklist length N is bounded, say by
1000. For each victim, we define the prediction ratio to be the ratio of the hit count over
the total number of attacks on the victim, where hit count represents the number of cor-
rectly predicted attackers. It outlines the portion of the attackers that have been correctly
predicted and the malicious activities of these sources are reported in the Ttest

5.
The training window Ttrain contains data of some consecutive days. The testing

window Ttest contains the data of the day after the training data. The training and testing
window sizes are obtained in Section 5.3.6. We use the training window data to empiri-
cally obtain γ, 1, 2, min_support, min_confidence, and min_lift in Section 5.3.7.

5.3 Performance Evaluation

We arrange the predictors in two groups provided whether they use local or global
information. In the local group, there are our predictor function h, Time Series (TS)
model in [4], and LWOL, as they use the local logs. We use the LWOL prediction ratio
as the ground truth. In the global group, there are our predictor Eq. (10), the SLM meth-
od, Victim Similarity, Attacker Correlation and GWOL as they all use the information
shared by different networks.

5.3.1 Prediction performance over DS1

Fig. 1 compares the prediction ratios of our predictor function h, Time Series (TS)
model in [4], and baseline prediction LWOL over DS1. The x-axis is the test day, from
day 6 to day 11. The first 5 days are for training. The y-axis is the prediction ratio on the
given day. The prediction ratios of our predictor function h range between 26% and 63%

5 A perfect prediction ratio (i.e., equals to 1) indicates all attacks are included.

A ROBUST ALGORITHM FOR PREDICTING ATTACKS USING COLLABORATIVE SECURITY LOGS 609

on the given days depending on the available data on different days. The predictor func-
tion h outperform both T S and LWOL over all days. Overall, average prediction ratio of
h is 48%, which is twice that of the (TS) model in [4] algorithm.

Fig. 1. Prediction ratios of our predictor func-
tion h, Time Series (TS) model in [4], and base-
line prediction LWOL over DS1.

Fig. 2. Prediction ratios of our algorithm, SLM
algorithm, neighborhood models, and the base-
line prediction GWOL over DS1.

Due to exponential characteristics of the sigmoid function, predictor h expresses the
probability of an attack in an exponential manner. Therefore, our predictor function h
converges to 1 faster than the Time Series (TS) model in [4]. Our predictor quickly re-
sponds to the rapid change of attackers and makes faster decisions for blacklisting an
attacker in its initial attacking phase. On the other hand, when an attacker decides to
cease attacking, our predictor function h converges to 0 rapidly and eliminates such an
attacker from the blacklist to make space for another severe attacker. h and TS share
20% of predicted common attackers. However, h solely blacklists additional 42% attack-
ers that are not captured by TS.

Fig. 2 shows the prediction ratios of our proposed algorithm Eq. (10), the SLM
method6, Victim Similarity (N), Attacker Correlation (C), and the baseline prediction
(GWOL) over DS1. Our predictor has the best performance on all 6 days. Our pre- dic-
tion ratios are higher than 70% on days 7, 10 and 11, whereas the prediction ratios of the
SLM algorithm are all lower than 40%. Overall, our average prediction ratio is 62%,
which is almost twice that of the SLM algorithm. In Fig. 2, we plot both Victim Similari-
ty (N) and Attacker Correlation (C). Their prediction ratios consistently over-perform
GWOL over all days. They capture different concepts of similarity (victims vs. attackers).
Hence, they potentially capture different set of attackers, which shows the difference in
prediction ratios. For instance, we observe that Victim Similarity (N) and Attacker Cor-
relation (C) share some attackers range between 3% and 49% on the given day.

Another reason for our better performance is that we discover stronger correlations
among victims and attackers by leveraging lift to measure the stability of discovered
rules and discard the misleading ones. In addition, if a victim is an active contributor of
Dshield.org, the attacker correlation model discards highly prolific and global attackers
that may be irrelevant to the victim by only considering the attackers in direct and indi-

6 We implemented the SLM algorithm in order to conduct a comparison using the same dataset.

AMIR REZAPOUR AND WEN-GUEY TZENG

610

rect subnets. Since we apply the same weight function in combining individual predic-
tors as in SLM, the significant improvement in prediction performance is due to better
correlations among victims and attackers and the fast-responding predictor function h.

Our prediction ratios range between 43% and 74% with large variance. This is due
to variance among the number of attackers which the networks experience in different
testing windows. The prediction ratio starts to decrease as several unseen attackers in the
training window appear in day 8 of the testing window. In our sampled dataset, 70% of
reported malicious activities on day 8 are newly joined attackers. Our predictor function
h fails to capture new attackers since there are no interactions between victims and new
attackers. The attacker correlation model also fails since there are no similar attackers to
new attackers. Our algorithm cannot properly predict a zero-day attack that has no simi-
larity to the attackers reported in Ttrain (see Section 5.3.3 for more details).

5.3.2 Prediction performance over DS2

This analysis attempts to verify correctness of the observations (4.1, 4.2, 4.3 and
4.4). We repeat the previous experiments on new malicious activities available in DS2
using the same parameters as in DS1.

Fig. 3 compares the prediction ratios of our algorithm and the SLM algorithm. Our
prediction ratios are higher than 60% over all days, whereas the prediction ratios of the
SLM algorithm are all lower than 56%. The average prediction performance is higher
than the SLM algorithm. Overall, our average prediction ratio is 64%, which is 1.3 times
higher that of the SLM algorithm.

Fig. 3. Prediction ratios of our algorithm, SLM algorithm, neighborhood models, and the baseline
prediction GWOL over DS2.

In DS2, networks experience fewer unseen attackers in different testing windows
than DS1. For example, on average, only 7% of reported malicious activities are newly
joined attackers. This experiment further shows that the SLM algorithm performs better
over a stable network as its average prediction ratio increases from 33% (Fig. 2) to 49%
(Fig. 3), whereas our average prediction ratio remains stable from 62.7% (Fig. 2) to
64.7% (Fig. 3). This illustrates that our algorithm performs better in both stable and un-
stable networks with significantly higher average prediction ratios.

A ROBUST ALGORITHM FOR PREDICTING ATTACKS USING COLLABORATIVE SECURITY LOGS 611

5.3.3 Predicting new attacks

Proactive prediction is an important defense strategy for a victim to use against at-
tackers that have not been seen previously in its network. We say that a new attack rela-
tive to victim v occurs if v has not reported this attacker in the training window. However,
such an attacker may not be new for other victims since some victims reported this at-
tacker in the training window. Note that a new attack differs from a zero-day attack
which introduces an attacker that has never been reported by all victims. In this experi-
ment, Fig. 4 (a) shows that our average proactive prediction ratio is 14% over DS1,
which is 2.5% higher than that of the SLM algorithm. In Fig. 4 (b), our average proactive
prediction ratio is 32% over DS2, which is slightly higher than that of the SLM algorithm.
For each victim, we only consider the portion of predictions that contain new attackers.
Since the time-based predictions (predictor function h and TS) are not useful in this pre-
diction, the performance gap demonstrates the effectiveness of our Victim Similarity and
Attacker Correlation models.

 (a) DS1 (b) DS2

Fig. 4. Proactive prediction ratio results over 6 consecutive days.

5.3.4 Performance consistency

We investigate the stability of predictions by introducing performance consistency
that measures the strength of a prediction algorithm over some consecutive testing win-
dows. For each victim, we compare our algorithm with the SLM algorithm on intervals
∆6, ∆7, ..., ∆11 Ttest and obtain 6 improvement values. Let IV(v) = {IV6(v), IV7(v), ...,
IV11(v)}, where IVi(v) is the prediction ratio of our algorithm minus that of the SLM al-
gorithm for given blacklists at time interval ∆i. The consistency index (CI) for each vic-
tim is the number of times that our algorithm performs better than the SLM algorithm [4].
Fig. 5 shows the sorted CI values for all victims, where the x-axis is cumulative per-
centage of victims and the y-axis is CI. Performance prediction of our algorithm over
DS1 (blue curve) is highly consistent for 16% of victims. They have CI values of 6,
meaning that for all time intervals, our algorithm always has more hits than the SLM
algorithm. Our algorithm obtains a fairly high consistent index for all victims. The CI
values are at least 4, meaning that our algorithm compiles a high quality blacklist not
only within one time interval, but also within nearly all time intervals. Performance pre-
diction of our algorithm over DS2 (red curve) is extremely consistent for almost 50% of

AMIR REZAPOUR AND WEN-GUEY TZENG

612

victims. This illustrates that even when the average prediction performance of the SLM [4]
algorithm improves on DS2, our method still provides a better blacklist for each victim.

5.3.5 Blacklist length

Fig. 6 shows the performance of our predictor for various blacklist lengths. The
prediction ratio increases significantly when the blacklist length increases from 100 to
1000. The prediction ratio improves slightly when the blacklist increases from 1000 to
3000. In fact, a blacklist of length 1000 has average prediction ratio of 62%. While a
blacklist of 3 times higher has a prediction ratio of 78%. Therefore, we adopt the black-
list length to be 1000.

Fig. 5. Cumulative distribution of consistency
index across 6 consecutive days.

Fig. 6. Prediction ratio as a function of black-
list length N over DS1.

5.3.6 Training and testing windows

We examine how training and testing window sizes affect the performance of our
algorithm. The training window size determines the amount of history data as the input
to our algorithm. The testing window size shows how often we need to re-compute the
blacklist.

Fig. 7 (a) shows the relation between the prediction ratio and the training window
size (in days), where the testing window size is fixed to 1 day. When the training win-
dow duration is short, the profit of the predictor function h is not much due to only a few
available interactions among attackers and victims. If the training window duration is too
long, old activities damage prediction performance. The curve in Fig. 7 (a) shows that
the best training window duration is 5 days similar to SLM [4].

Fig. 7 (b) shows the prediction ratios as a function of the testing window size,
where we fix the training window size to be 5 days. Each point on the blue curve denotes
the average prediction ratio of 6 consecutive days. In this experiment, we measure the
effect of different testing window durations from 1 to 9 days. When the testing window
duration increases, the prediction ratios vary inconsistently. This is due to many unseen
attackers in Ttest, as in Fig. 2. Another reason is that the discovered similarities among
victims and attackers are not compatible with a large testing window duration. In Fig. 7
(b) the dashed-line shows the prediction ratios, when the testing window size is fixed to

A ROBUST ALGORITHM FOR PREDICTING ATTACKS USING COLLABORATIVE SECURITY LOGS 613

1 day similar to Fig. 2. It has a higher prediction ratio over other testing window sizes.
Thus, a shorter testing window size is preferred.

(a) (b)

Fig. 7. Determining training (a) and testing (b) window sizes over DS1.

Fig. 8. Determining training and testing window sizes of our algorithm.

In Fig. 8, we use the blacklists compiled on day 6 to predict the rest of testing days.

The prediction ratio drops quickly when blacklists are more than one day old. For exam-
ple, when blacklists are two days old (day 7), the prediction ratio decreases by nearly
60%, from 73% in Fig. 2 to 13%. Therefore, blacklists need to be re-computed frequently.

5.3.7 Parameter selection

We use the training window data from DS1 to obtain min_support, min_confidence,
min_lift, 1, and 2. Fig. 9 shows the prediction ratios as a function of min_support and
min_confidence, where we fix 1 and 2. The best accuracy is obtained when min_sup-
port = 0.9, min_confidence = 0.2. More precisely, accuracy continuously increases as
long as min_support increases. It seems a min_support ≥ 0.8 provides a better threshold
for victim similarity and attacker correlation models. The other choices of min_support
and min_confidence, do not significantly change the prediction ratios.

AMIR REZAPOUR AND WEN-GUEY TZENG

614

Fig. 9. Prediction ratio as a function of min_support and min_confidence over DS1 with lift 1.

Similarly, we empirically search the space of 1 and 2 to measure the effect of dif-
ferent values over prediction ratios. We observe that the results did not notably change
for different choices of 1 and 2. Thus, we let 1 = 0.5 and 2 = 0.5 contribute equally to
both Victim Similarity and Attacker Correlation models.

For min_lift, we tried the cases where min_lift < 1, min_lift = 1, and min_lift > 1. We
observed that min_lift > 1 obtains higher prediction ratios as it only considers highly
correlation rules.

5.3.8 Robustness

The logs in the Dshield.org dataset may contain false positive reports as the reposi-
tory has no control over contributor’s logs. In addition, the reported logs are generated
by various types of NIDS with different levels of accuracy. Therefore, the origin of false
alerts may be due to errors in contributor’s NIDS (pollution), or to a malicious contribu-
tor who poisons the dataset by sending fake reports in order to mislead prediction algo-
rithms (poisoning).

Pollution: To study the effect of random false positive reports, we randomly generate
noisy logs and have the victims to report them. The victims of reporting fake malicious
activities are chosen uniformly and randomly. We examine the noise percentages of 1%,
5%, 10% and 15%. Each point on the blue curve denotes the average prediction ratio of
6 consecutive days. Fig. 10 (a) demonstrates the results with noisy percentages shown on
the x-axis and prediction ratios shown on the y-axis. Similar to SLM, the prediction ratio
decreases almost linearly as the percentage of fake reports increases. For example, when
the noise percentage increases from 0% to 15%, the performance ratio decreases by
nearly 11%, from 62% to 51%.

This phenomenon can be explained as follows. Randomly generated noisy reports

are unlikely to affect the victim similarity model. They do not produce similarities
among victims. According to the victim similarity model in Eq. (6), for a pair of victims
to appear in the neighborhood of each other, the noisy reports should not only have the
same source, but also be within the same time interval.

A ROBUST ALGORITHM FOR PREDICTING ATTACKS USING COLLABORATIVE SECURITY LOGS 615

 (a) (b)

Fig. 10. Robustness of our proposed method with respect to (a) noise percentage of training dataset,
and (b) number of fake contributors over DS1. In both experiments, the prediction ratio decreases
linearly as the amount of random noise increases.

Poison: Our method uses the collection of reported malicious activities from trusted8
contributors to compile a customized blacklist for each contributor. Yet, an attacker can
masquerade itself as a fake contributor and produce fake reports. A set of colluding con-
tributors could cooperate by submitting the same or overlapping reports. These fake re-
ports have the potential to affect the prediction performance of a true contributor that has
some overlap with the fake reports. This also describes an attempt of a botmaster to exe-
cute an attack by using the same set of attackers (IPs).

To study the effect of fake reports, we introduce some fake contributors in the
training dataset Ttrain. We generate a set of attackers ASybil and have the fake contributors
to report them. In order to differentiate the attackers in ASybil from other prolific attackers
that are likely to belong to the blacklist in any case, we chose some new attackers from
legitimate IPs that have never been reported. We set the size of ASybil equal to the average
number of attacks reported by true contributors.

We examine a number of 5, 10, 20 and 30 fake contributors. Fig. 10 (b) demon-
strates the results with the number of fake contributors shown on the x-axis and predic-
tion ratios shown on the y-axis. Each point on the blue curve denotes the average predic-
tion ratio of 6 consecutive days. Initially, the average prediction ratio slightly increases
as the attackers reported by the set of colluding contributors have some overlap with the
attackers reported by true contributors. This indicates that the fake reported activities
successfully affect the similarity models and, thus, the set of colluding contributors ap-
pear in the neighborhood of true contributors. The average prediction ratio reduces
slightly as the number of fake contributors increases. For example, every day on average
only 3.4% of IPs has been blacklisted falsely after introducing 30 fake contributors. This
indicates that a larger set of colluding contributors who have some overlap with the at-
tackers reported by true contributors have a higher potential to affect the similarity mod-
els. However, the set of colluding contributors still loosely affect the victim similarity
model since there are enough similar true contributors available that are more related to
the target victim than the fake contributors. This demonstrates the robustness of the vic-
tim similarity model in Eq. (6) against fake contributors. Generally, while there are
enough similar true contributors available, the effect of fake reports diminishes as the

AMIR REZAPOUR AND WEN-GUEY TZENG

616

victim similarity model will also contain true contributors. Nevertheless, the reports from
fake contributors have less likelihood to affect the predictor function h, unless they share
the same attackers.

5.3.9 Evading the predictor

It is difficult for persistent attackers to evade our predictor by limiting their activi-
ties. They can attack different networks for a short time and pretend to be inactive later.
For example, they attack a victim within a few time intervals and become inactive for
some consecutive intervals. This behavior deludes the temporal predictor function h,
which is designed to deal with active attackers. However, the victim similarity and at-
tacker correlation models can capture these attackers.

It remains for future work to apply more sophisticated poisoning attacks such as [28]
and verify the effectiveness of Sybil attack detection schemes.

5.3.10 Limitations of our algorithm

Our algorithm makes use of a central repository, such as Dshield.org, of shared ma-
licious activities reported by victims all over the Internet. It leverages direct relationships
between attackers and victims, victim similarity, and attacker correlation to compile a
customized blacklist for each victim. Therefore, victims that regularly share their securi-
ty logs benefit from high quality blacklists.

Yet, we are unable to deliver a high quality blacklist to a free-rider victim. The free-
rider problem occurs when a victim chooses not to share its security logs with a central
repository. Free-riders take advantage of the central security logs, hoping that other vic-
tims would contribute their information. This results in an under-provision of service.
The compiled blacklist for such a victim is solely based on the attacker correlation model,
which treats the victim as a newly joined and incorporates the globally prolific attackers.

5.4 Complexity Analysis

We analyze the time complexity of our proposed algorithm in training and testing
processes. Let Ttrain|A|, Ttrain|S|, and Ttrain|V| denote the number of attackers, attacker sub-
nets and victims in the training window, respectively. In the training process, the com-
plexities of two phases of our ARM algorithm are

1. Finding all frequent itemsets: Since we only require the correlation between two items,

the complexity of the first phase is O(w×Cob(Ttrain|V|, 2)×Ttrain|V|), where w is train-
ing window size and Cob(Ttrain|V|, 2) is the number of possible combinations of two 2
victims.

2. Generating association rules from the frequent itemsets: Assuming all frequent item-
sets satisfy min_support, the complexity of phase 2 is at most O(Cob(Ttrain|V|, 2)).

Therefore, the overall complexity of discovering victim similarity is O(Cob(Ttrain|V|,

2)×Ttrain|V|). Similarly, the complexity of determining correlated attackers is O(Cob(Ttrain

|S|, 2)×Ttrain|S|). Since Ttrain|S| is smaller than Ttrain|V| by several orders of magnitude, the
complexity of our algorithm in the training phase is O(Ttrain|V|3).

For testing, computing h(T(a,v)) needs O(w) operations for each prediction. The com-

A ROBUST ALGORITHM FOR PREDICTING ATTACKS USING COLLABORATIVE SECURITY LOGS 617

plexity of computing victim similarity, assuming the existence of similarity among all
victims, is at most O(w×Ttrain|V|). The complexity of determining attacker correlations is
O(Ttrain|S|). Therefore, the overall complexity of our algorithm in the test phase for pre-
dicting an n×m dimension matrix Bb+1 is O(w×Ttrain|A|×Ttrain|V|), where n = Ttrain|A| and
m = Ttrain|V|.

In our experiment, we use a commodity server with 2.1 GHz processor and 128
GBs of RAM. The execution time for the training and test phases are about 7 and 2 hours,
receptively. We can improve the execution time, in particular, the test time, by employ-
ing advanced computing technology, such as cloud computing and GPU computing. We
shall explore in this direction in the future.

6. CONCLUSION

We proposed a novel method of investigating accurate and robust prediction for fu-
ture attacks. We used predictor function h with an exponentially updated ratio to reflect
direct and timely relation between an attacker and a victim. In addition, we tackled the
victim/attacker similarity problem by the method of association rule mining.

We analyzed the performance of our prediction algorithm against the previous re-
sults. Our prediction boasts a significant improvement in both prediction ratios and pre-
dicting new attacks. Our significant prediction performance is due to discovering strong
victim similarities and attacker correlations in addition to the fast-responding predictor
function h. In our victim similarity and attacker correlation models, lift plays an im-
portant role in highlighting stable rules.

REFERENCES

1. “Dshield dataset,” https://www.dshield.org/.
2. J. Zhang, P. Porras, and J. Ullrich, “Highly predictive blacklisting,” in Proceedings

of the 17th Conference on Security Symposium, 2008, pp. 107-122.
3. Z. Chen and C. Ji, “Optimal worm-scanning method using vulnerable-host distribu-

tions,” International Journal of Network Security, Vol. 2, 2007, pp. 71-80.
4. F. Soldo, A. Le, and A. Markopoulou, “Predictive blacklisting as an implicit rec-

ommendation system,” in Proceedings of the 29th Conference on Information Com-
munications, 2010, pp. 1640-1648.

5. A. Ramachandran, N. Feamster, and S. Vempala, “Filtering spam with behavioral
blacklisting,” in Proceedings of the 14th ACM Conference on Computer and Com-
munications Security, 2007, pp. 342-351.

6. S. Sinha, M. Bailey, and F. Jahanian, “Improving spam blacklisting through dyna-
mic thresholding and speculative aggregation,” in Proceedings of the 17th Conference
on Network and Distributed System Security, 2010.

7. T. Ouyang, S. Ray, M. Allman, and M. Rabinovich, “A large-scale empirical analy-
sis of email spam detection through network characteristics in a stand-alone enter-
prise,” Computer Networks, Vol. 59, 2014, pp. 101-121.

8. N. Chiluka, N. Andrade, J. Pouwelse, and H. Sips, “Social networks meet distri-
buted systems: Towards a robust sybil defense under churn,” in Proceedings of the

AMIR REZAPOUR AND WEN-GUEY TZENG

618

10th ACM Symposium on Information, Computer and Communications Security,
2015, pp. 507-518.

9. N. Z. Gong, M. Frank, and P. Mittal, “Sybilbelief: A semi-supervised learning ap-
proach for structure-based sybil detection,” Transactions on Information Forensics
and Security, Vol. 9, 2014, pp. 976-987.

10. H. Yu, P. B. Gibbons, M. Kaminsky, and F. Xiao, “Sybillimit: A near-optimal social
network defense against sybil attacks,” IEEE/ACM Transactions on Networking, Vol.
18, 2010, pp. 885-898.

11. A. Mislove, A. Post, P. Druschel, and K. P. Gummadi, “Ostra: Leveraging trust to
thwart unwanted communication,” in Proceedings of the 5th USENIX Symposium on
Networked Systems Design and Implementation, 2008, pp. 15-30.

12. H. Yu, M. Kaminsky, P. B. Gibbons, and A. Flaxman, “Sybilguard: Defending ag-
ainst sybil attacks via social networks,” IEEE/ACM Transactions on Networking,
Vol. 16, 2008, pp. 576-589.

13. G. Danezis and P. Mittal, “Sybilinfer: Detecting sybil nodes using social networks,”
in Proceedings of the 16th Conference on Network and Distributed System Security,
2009.

14. J. R. Douceur, “The sybil attack,” in Revised Papers from the First International
Workshop on Peer-to-Peer Systems, 2002, pp. 251-260.

15. C. Peng, M. Xu, S. Xu, and T. Hu, “Modeling and predicting extreme cyber attack
rates via marked point processes,” Journal of Applied Statistics, 2016, pp. 1-30.

16. Z. Zhan, M. Xu, and S. Xu, “Predicting cyber attack rates with extreme values,”
Transactions on Information Forensics and Security, Vol. 10, 2015, pp. 1666-1677.

17. Z. Durumeric, M. Bailey, and J. A. Halderman, “An internet-wide view of internet-
wide scanning,” in Proceedings of the 23rd USENIX Conference on Security Sympo-
sium, 2014, pp. 65-78.

18. E. Wustrow, M. Karir, M. Bailey, F. Jahanian, and G. Huston, “Internet background
radiation revisited,” in Proceedings of the 10th ACM SIGCOMM Conference on In-
ternet Measurement, 2010, pp. 62-74.

19. E. Glatz and X. Dimitropoulos, “Classifying interet one-way traffic,” in Proceedings
of ACM Conference on Internet Measurement Conference, 2012, pp. 37-50.

20. J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques, 3rd ed.,
Morgan Kaufmann Publishers Inc., CA, 2011.

21. R. Agrawal and R. Srikant, “Fast algorithms for mining association rules in large
databases,” in Proceedings of the 20th International Conference on Very Large Data
Bases, 1994, pp. 487-499.

22. F. Soldo, “Predicting future attacks data analysis of dshield data set,” Technical Re-
port, http://www.ece. uci.edu/ athina/PAPERS/dshield-analysis-tr.pdf.

23. J. Bobadilla, F. Ortega, A. Hernando, and A. GutiéRrez, “Recommender systems
survey,” Knowledge-Based Systems, Vol. 46, 2013, pp. 109-132.

24. S. Katti, B. Krishnamurthy, and D. Katabi, “Collaborating against common ene-
mies,” in Proceedings of the 5th ACM SIGCOMM Conference on Internet Measure-
ment, 2005, p. 34.

25. M. A. Rajab, J. Zarfoss, F. Monrose, and A. Terzis, “A multifaceted approach to
understanding the botnet phenomenon, ” in Proceedings of the 6th ACM SIGCOMM
Conference on Internet Measurement, 2006, pp. 41-52.

A ROBUST ALGORITHM FOR PREDICTING ATTACKS USING COLLABORATIVE SECURITY LOGS 619

26. E. Cooke, F. Jahanian, and D. McPherson, “The zombie roundup: Understanding,
detecting, and disrupting botnets,” in Proceedings of the Steps to Reducing Unwant-
ed Traffic on the Internet Workshop, 2005, p. 6.

27. S. Shin and G. Gu, “Conficker and beyond: A large-scale empirical study,” in Pro-
ceedings of the 26th Annual Computer Security Applications Conference, 2010, pp.
151-160.

28. C. Liu, P. Gao, M. Wright, and P. Mittal, “Exploiting temporal dynamics in sybil
defenses, ” in Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, 2015, pp. 805-816.

Amir Rezapour is currently a Ph.D. candidate in Computer
Science Department at National Chiao Tung University, Taiwan.
He received his M.S. degree in Computer Science from National
Tsing Hua University, Taiwan, in 2013. His research interests are
in the area of cryptography and network security.

Wen-Guey Tzeng (曾文貴) received his BS degree in Com-

puter Science and Information Engineering from National Taiwan
University, Taiwan, 1985; and MS and Ph.D. degrees in Computer
Science from the State University of New York at Stony Brook,
USA, in 1987 and 1991, respectively. He joined the Department of
Computer Science, National Chiao Tung University, Taiwan, in
1991. His current research interests include security data analytics,
cryptology, information security and network security.

