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Palm-vein authentication is a secure and highly accurate vein feature authentication 
technology that has recently gained a lot of attention. Convolutional neural networks 
(CNNs) provide relatively high performance in the field of image processing, computer 
vision, and have been adapted for feature learning of palm-vein images. However, they 
often require high computation that not only are infeasible for real-time vein verification 
but also a challenge to apply on mobile devices. To address this limitation, we proposed a 
lightweight MobileNet based deep learning (DL) architecture with depthwise separable 
convolution (DSC) and adopt a knowledge distillation (KD) method to learn the know-
ledge from the more complex CNN, which makes it small but effective. Through the depth 
of separable convolution, the number of model parameters is significantly decreased, while 
still remaining high accuracy and stable performance. Experiments demonstrated that the 
size of the proposed model is 100 times less than the Inception_v3 model, while the per-
formance can go beyond 98% correct identification rate (CIR) for the CASIA database.   

Keywords: palm-vein recognition, knowledge distillation, lightweight, depthwise separa-
ble convolution, biometrics image. 

1. INTRODUCTION

Accurate and reliable identity authentication is of great importance nowadays. The 
thought of measures that cannot be copied or stolen resulted in the development of user 
authentication with the help of biometrics. The differences and uniqueness among living 
things make it suitable to use biometrics such as the face, voice, finger-print, finger-vein, 
palm-print, palm-vein, iris, and DNA to authenticate users, especially in today’s society 
where secure personal recognition becoming more and more crucial [1]. 

Among the various biometric features, palm-vein has received enormous attention as 
a powerful biometric identifier for user authentication because if its high security and 
liveness-detection. Firstly, palm-vein authentication has high security as it is interior bio-
logical information of the body concealed naturally, therefore harder for intruders to copy. 
Second, the vein recognition ensures liveness of the samples since it can be captured by 
the device without the blood flowing underneath the skin. which has dense texture, large 
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data volume, and high anti-counterfeit degree [2-4]. Finally, the collection of palm vein is 
non-intrusive since it acquires palm vein pattern image with contactless devices [4]. Many 
biometric devices require contact-scanning, but the recent COVID-19 pandemic has 
prompted a host of changes in the way we live and work, including people’s acceptability 
of touch-based devices. Biometrics that can be collected through contactless devices, in-
cluding palm-vein have received enormous attention since they can establish a more safe, 
healthy, and hygienic identification system. 

Because the palm-vein images can be obtained through contactless devices, the dif-
ference in the position of the palm can easily cause the palm vein images to be rotated or 
tilted. Therefore, the feature extraction must be powerful in order to solve the real life tasks. 
The method of vein feature extraction requires classification method to establish a com-
plete identification system [4]. The traditional feature extraction algorithms include statis-
tics-based and geometry-based methods. Statistical methods have been used to extract 
global features [6-8] during the whole palm vein imaging, while geometric methods have 
been compared using similarity of local geometric structures in the image [9, 10]. However, 
the identification technology based on single feature may not be accurate or reliable. Li et 
al. [11] is an affine invariant feature extraction method proposed by using the four local 
feature algorithms. This method has excellent robustness for the rotation and inclination 
of palm vein images. In [12-14], multiple algorithms were proposed to use feature extrac-
tion and fuse to improve the identification rate. Classification methods are often imple-
mented by machine learning-based methods, such as principal component analysis (PCA) 
[15] and support vector machine (SVM) [16, 17]. 

A convolutional neural network (CNN) is a neural network (NN) architecture contains 
convolutional layers and is mainly used in the field of image processing, image classifica-
tion and computer vision tasks due to its strong performance. In the field of computer vi-
sion, CNN in various applications including image recognition, has successfully been ap-
plied to biological characteristics of vein recognition [18-20] in recent years. This method 
although need a lot of mark samples for training and establish a model, the related research 
results show that CNN can get very good effect in palm-vein recognition. However, their 
methods are relatively complex and time consuming. 

CNN’s high computation complexity and the limitation of storage space and power, 
makes its application in the embedded platform still a big challenge, especially for large 
dataset. Consequently, it is challenging to deploy these networks under limited computa-
tional resources, such as in mobile devices, and unable to meet the performance require-
ments of mobile payment of hand vein recognition system. Thus, compressing a trained 
model without a significant loss in performance has become an increasingly important task. 
CNN model compression can be carried out by quantization, pruning, or manual design of 
NN architecture (convolution mode). Well-known quantization models include Deepcom-
pression [21], Binary-Net [22], Tenary-Net, dorefa-net, SqueezeNet, MobileNet V1&V2, 
shuffle Net V1&V2 [23]. Quantization turns a lot of mathematical operations into Binary-
Net operations, saving time and space for forward propagation. In order to reduce the 
model parameters, SqueezeNet replaced the convolution kernel of 33 with the convolu-
tion kernel of 11. The main work of MobileNet V1 is to use the depthwise separable 
convolutions (DSC) instead of the standard convolutions to solve the computing efficiency 
and reduce the number of parameters of the convolutional network. However, the training 
procedure of DSC is time consuming and require the full training set. Among these tech- 
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niques, knowledge distillation (KD) and the design of the NN architecture does not change 
the original network structure, while model pruning and model quantization such as binary 
networks focus on reduce the size of the original complex model as much as possible, thus 
resulting in a significant change of the original network structure, such transformation is 
often irreversible. 

Considering the above problems, this study proposed a lightweight CNN for palm-
vein recognition technology. To avoid significant performance drop at the lightweight 
CNN, which has a large capacity and parameter size gap compared to complex models, we 
distil the knowledge from the complex but high performing model. Through the DSC and 
KD method, the number of model parameters is significantly decreased, while still remain 
high accuracy and stable performance, therefore suitable for real life application. The ar-
chitecture of the proposed palm-vein authentication system, as shown in Fig. 1. 

 

Training
data

ResultInput image

Inception model (Teacher model)

MobileNet-Based model 
(Student Model)

KD

Trained Model

 
Fig. 1. Proposed palm-vein authencation system. 

2. RELATED WORKS 

2.1 CNN 
 
Each module of the CNN is composed of the convolutional layer and the pooling layer, 

which is a DL model [24] formed by the continuous superposition of the modules and the 
addition of the full connection layer. The convolutional layer can extract the texture, color 
and other characteristics of the image through convolution operation to obtain the feature 
map, and then conduct dimensionless sampling through pooling layer. Sparse interactions, 
parameter sharing and equivariant representations are the three major concepts of CNN, to 
enhance the effectiveness of network training. Sparse interaction and parameter sharing 
reduce the number of parameters to be stored in the whole model, which can effectively 
reduce the computational burden and improve the computational efficiency. The mechan- 
ism of parameter sharing and appropriate pooling strategy also gives CNN the characteris- 
tics of invariant height to translation and scaling that an architectural diagram of a CNN, 
as shown in Fig. 2. 
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Fig. 2. Architecture of LeNet [24]. 

2.2 Inception_v3 
 
In 2014, Google published a CNN architecture, called GoogleNet (Inception_v1), 

which proposed a parallel module called Inception, as shown in Fig. 3 (a). Inception aim 
to improve network performance by increasing the depth of the network as opposed to 
Alexnet or VGGNet, by increasing the width of parallel modules. To increase the adapta-
bility of the model, Inception uses convolution kernel of different sizes to capture image 
features simultaneously, and adds a convolution kernel of 11 before the convolution ker-
nel of 33 and 55 to reduce the dimension, so as to reduce the complexity of the model. 
Inception_v2 uses two 33 convolution kerns instead of one 55 convolution kernel, which 
enables CNN to learn more about features, and it contains batch normalization method to 
normalize each layer, which significantly reduces the training time required. In Fig. 3 (b), 
the Inception_v3 architecture [25] is shown in Fig. 3 (b), which splits a large two-dimen-
sional convolution into two one-dimensional convolution, saving required parameters and 
reducing operation time. 
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(a) Inception_v1 module.                      (b) Inception_v3 module. 

Fig. 3. Architecture of inception module. 
 

2.3. ResNet 
 
As the number of layers of CNN gets deeper and deeper, gradient loss and degradation 

problem are easy to occur during training. The degradation problem is caused by the fact 
that the gradient cannot be reversed and error accumulates, so that the accuracy of the deep 
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network becomes saturated and even performance degrades. ResNet [26] refers to and 
modifies the practice of VGG19, and establishes residual unit through short-circuit con- 
nection mechanism, as shown in Fig. 4. Residual learning mechanism established by 
ResNet can solve the problem of difficult training in deep CNN model. For a residual unit 
structure composed of several hidden layers, when the input is x, the learned feature is 
marked as H(x), and the learned residual F(x) = H(x)  x. When the residual error is 0, only 
the identity mapping is done for the accumulation layer at this time. Although the depth 
increases, at least the network performance will not decline. In fact, the residual error will 
not be zero, which means that the accumulation layer can learn some new characteristics, 
thus improving the performance of the network. 

 

Weight layer

Weight layer

⊕ 

F(x)

F(x) + x

x
Identity

ReLU

x

ReLU
 

Fig. 4. Residual block. 

2.4 Knowledge Distillation 

The idea of training a shallower or a cheaper model under the supervision of the larger 
ones. Trained NN produces peaky probability distributions, which may be less informative. 
The soft probabilities output by a trained teacher model contains more information of the 
data than just the class label itself. If multiple classes are assigned high probabilities for a 
vein image, then that is likely that the image lie close to a decision boundary between those 
classes. 

In Hinton et al. [27], knowledge is defined as the teacher model’s soft outputs after 
the final layer, which carries more information than the one-hot encoded labels since there 
are extra signals of the intern-class similarities learned by the teacher model. Since the soft 
probabilities output by a trained teacher network contains more information than only one 
class label, forcing a student to mimic these probabilities can thus make the student net-
work learn more knowledge than just the training labels alone. The basic idea of KD is 
described as follows. 

Concretely, for an image data set {xi, yi}, i = 1, 2, ..., n, where xi is the input image 
and yi is the labeled category. If t is set as teacher model, Pt = Softmax(zt/T) is its predicted 
output probability, while zt is the input of Softmax layer. T denotes the temperature param-
eter. Similarly, we can define Ps = Softmax(zs/T) for the Student model s. The function 
definition of Softmax in Eq. (1). 
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where Pi represents the output probability of the ith category, and zi and zj are inputs to the 
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Softmax layer. When T = 1, it is the general Softmax conversion, and the probability dis-
tribution of the predicted results among different categories is the probability with extreme 
value, that is, the probability of the correct category is quite close to 1, while the probability 
of all other categories is very close to 0. When T > 1, the probability distribution generated 
by Softmax function will become flatter and softer, thus provides more implicit infor-
mation such as the degree of similarity between different classes, which can more judgment 
conditions for the training process of the model. As for the student model, it learns accord-
ing to the loss function of Eq. (2). 

L =   Lhard + (1  )  Lsoft  (2) 

where Lhard denotes a typical cross entropy loss function in the classification problem (i.e., 
T = 1), and Lsoft is a soft cross entropy loss function predicted by teacher model. The pa-
rameter  is the weighting factor that balances the two cross entropy loss functions. Fig. 5 
is a schematic of KD. 

Student model

Teacher model

Soft targets

Hard targets

KD
Input data

 
Fig. 5. The schematic overview of KD. 

 
2.5 Depthwise Separable Convolution 

In recent years, DSC has been widely used in many DNN with high performance, 
such as MobileNet and Xception [28], which replaces the traditional convolutional layers 
to reduce CNN computational cost and memory usage. The DSC, which has shown great 
efficiency in network design, consists of depthwise convolution and pointwise convolution, 
which mainly performs channel-wise feature extraction and the task of combining the sep-
arated features to generate new features. The operation is described in the form of data 
flow, as shown in Fig. 6. 
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Fig. 6. The schematic overview of DSC. 
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3. PROPOSED A LIGHTWEIGHT MOBILENET-BASED PALM-VEIN 
AUTHENTICATION SYSTEM 

In this study, we implement the vein recognition technology to build a palm-based 
system. The system is developed and extended based on deep CNN technology. Firstly, 
the image of palm-vein will extract the vein characteristic region to be identified through 
region of interest (ROI) algorithm, the ROI image will then be used as the training data of 
the model. 

 
3.1 Teacher Model Training Based on Inception_v3 

 
Inception_v3, which is widely-used image recognition model, was used for the train-

ing of palm-vein image model. The model, combining many ideas proposed by different 
studies over the years, is based on the idea proposed by Szegedy et al. [25]. In Fig. 7, the 
model is made up of symmetric and asymmetric building blocks, including convolutions, 
average pooling, max pooling, contacts, dropouts, and fully connected layers, with Batch- 
norm layer extensively used throughout the model and applied to activation inputs and loss 
computed via the Softmax layer. Here, the main purpose was to achieve high accuracy rate, 
and factors such as complexity and power consumption were not needed to be considered 
temporarily. 

3x 4x

2x

Convolution Maxpool Avgpool Concat Fully connected Softmax Dropout  
Fig. 7. Architecture of Inception_v3 model. 

 

3.2 Construct a MobileNet-based Student Model 
 
The CNN architecture is composed of 8 modules and 68 convolutional layers. In order 

to achieve a lightweight model contains fewer parameters, the depthwise and pointwise 
convolutional layers are used to extract features by referring to the classical model archi- 
tecture of MobileNet proposed by Google [28]. Such architecture is often found in light- 
weight networks because it has less computing costs than traditional CNN. The architecture 
uses 256,779 parameters, 40 times less than the 11 million parameters used by highly ac- 
curate models such, as ResNet18, and 100 times less than Inception_v3. The following is 
an introduction based on input, intermediate and output, and the detailed architecture dia- 
gram is shown in Fig. 8. 
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A. Input flow: 
The input process is composed of two modules. The input layer of this study is 256× 

256×3. After the operation of this process, the input image will be generated by 256×256×3 
operation to generate 64×8×8 feature images. 
 
B. Middle flow: 

After the feature extraction and sampling of the previous layer, the group was added 
into the convolution layer for depthwise convolution, and the pointwise convolution was 
combined to extract image information. This process extracts information by maximizing 
the features of the module, and the dimension of the feature graph is reduced from 64×8×8 
to 128×4×4. 
 
C. Output flow: 

For the final process, the module composed of DSC is first used for the final feature 
extraction. The dimension of the feature graph is increased from 128×4×4 to 512×2×2. 
Here, since the feature graph has been downsample for many times, max pooling is no 
longer used. Finally, project the outputs to 400 dimensions. 
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Fig. 8. The proposed MobileNet-based CNN structure. 

 

3.3 Student Model Training Using Knowledge Distillation  
 
In order to have the student model obtain similar performance as our teacher model, 

which is Inception_v3, we want to make the student model mimic the teacher model’s 
output from the last layer. We examine the Kullback-Leibler (KL) divergence [32] between 
the teacher’s and the student’s outputs as Eq. (3), in order to determine if the student model 
is learning properly from the teacher model and the cross-entropy loss between the outputs 
of the two models. 

 '   2 | (1 ) (  )Teacher s Logits Student Logits
T TLoss T KL Orignial Loss        (3) 
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By KL Divergence loss (KLDivLos), here it requires inputs to be probability distri-
butions and log-probability distributions, and that is why we are using Softmax and Log-
Softmax on teacher/student outputs, which were raw scores. During the retraining process, 
the student can query the teacher for knowledge, which are input-output pairs in this case. 
During the training process, we horizontally flipped the images for data augmentation to 
increase the robustness of the system. 
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Fig. 9. The proposed method using KD method. 

4. EXPERIMENTAL RESULTS AND DISCUSSION 

This study uses Pytorch to train and test the model. CASIA dataset was used for train-
ing. For the experiments on CASIA, we randomly divide each dataset into a training set, 
validation and test set, each contains 1,600, 100, and 700 images, respectively. We first 
run each model for 150 epochs using Adam optimizer with learning rate = 0.001, then we 
run the models for 50 epochs with SGD with the learning rate = 0.001 and the momentum 
= 0.002. Standard data augmentation was applied to the palm vein dataset. Compared with 
other works, the model can achieve stable convergence with relatively few training times. 
For KD, we use Inception_v3 as our teacher model, a high-performance network, and the 
proposed CNN network as our StudentNet, a lightweight network. 

 
4.1 Public Database 

 
To evaluate the proposed method, the most representative multi-spectral palm-vein 

image database V1.0 (CASIA dataset) was used in this study. The CASIA database used 
contactless devices to obtain a total of 7,200 palm-vein images from 100 different peoples, 
all of which were 8-bit gray-scale JPEG images with a pixel size of 768×576. These palm 
images using six different wavelengths of light to capture at the same time, corresponding 
to six wavelengths 460 nm, 630 nm, 700 nm, respectively, 850 nm and 940 nm and visible 
light, and for each person’s palm captured images are from two times, the time interval of 
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more than a month, each time contains three samples. Between the images has a certain 
degree of gestures change, this material has a considerable diversity of samples, very close 
to the actual use. To verify the adaptability of the system to multi-spectral data, 850 nm 
and 940 nm images with characteristic images of the vein were used as the experimental 
efficacy evaluation in this work. 

 
4.2 Performance of Classic Models 

 
The proposed method results are reported in Table 1. We tested three different net-

work architectures and four methods. The first 11 experiments are with classic models, in-
cluding VGG16, ResNet18, ResNet34, ResNet50, ResNet101, ResNet152, DenseNet121, 
DenseNet201, Inception_v3, and MobileNet, which are widely used in image classifying. 
MobileNet is also known as a classic lightweight model. The last two experiments are with 
the StudentNet designed with DSC layers. In the last experiment, we use Inception_v3 as 
TeacherNet for KD since it has the best performance of all the models. For the inference 
time, we compared the time needed for the model to predict the 700 images in test set. 
Overall, our work achieves the best result, same accuracy as it is TeacherNet, Inception_v3, 
but costs way less memory. 

 

Table 1. The comparison of methods to accuracy and cost. 

Models Validation
Memory 
cost (KB)

Total size 
(MB)

Used  
parameter

Inference 
time (sec) 

VGG16 [28] 68.72% 138,000 902.32 135,079,944 4.5591 
ResNet18 [23] 93.32% 43,000 158.31 11,279,112 1.7421 
ResNet34 [23] 90.12% 82,000 258.31 21,387,272 2.3341 
ResNet50 [23] 91.37% 92,000 615.88 23,917,832 3.4403 

ResNet101 [23] 89.00% 164,000 952.03 42,909,960 4.8761 
ResNet152 [23] 91.50% 224,000 1337.45 58,553,608 6.6181 

DenseNet121 [29] 90.87% 28,000 89.88 7,158,856 3.4053 
DenseNet201 [29] 92.25% 72,000 239.616 18,477,128 4.8762 
Inception_v3 [24] 93.75% 85,000 324.68 27,161,264 2.6270 
MobileNet [26] 93.5% 10,000 289.47 2,480,072 1.7000 

StudentNet train from scratch 74.63% 1,023 83.56 256,779 1.1200 
StudentNet train with KD 93.87% 1,023 83.56 256,779 1.0792 

 

The training process of the classic models is shown in Fig. 10. Although most training 
accuracies and training losses reach the stable state after training for 100 epochs, the accu-
racies and losses of validation set are unstable, and can drop sharply even after the training 
process achieve stable convergence. It takes longer for Inception_v3 model to train, but 
the accuracy of the model is the best among all models, and therefore it is been selected as 
our TeacherNet. 

 
4.3 Hyper Parameters of Knowledge Distilling Training Process 

 
For the KD process, we first examine the different parameters of KD. The comparison 

of different hyper parameters of KD, as shown in Table 2. 
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(a)                              (b) 

 
                   (c)                                 (d) 
Fig. 10. The training process with different models; (a) Training accuracy; (b) Training loss; (c) Va- 
lidation accuracy; (d) The log of validation loss. 

 

Table 2. The comparison of hyper parameter  for KD. 
 Testing accuracy rate 

0.1 90.62%
0.3 92.20%
0.5 93.87%
0.7 92.50%
0.9 89.88%

 

The StudentNet reaches its best performance when  = 0.5. As seen in Table 3, the 
accuracy drops as  became bigger or smaller. We hypothesized that because our Student-
Net has low capacity, that is, it may not have enough capacity to minimize both the training 
loss and the KD loss. It might end up minimizing only one loss, at the end of training, that 
is, the KD loss. We found out that it is best to set  = 0.5 to achieve best performance of 
the model. 
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Table 3. The comparison of hyper parameter T for KD. 
T Testing accuracy rate
10 89.75%
20 93.87%
30 93.12%

 

Where T represents a high temperature here, can theoretically mitigate the peakiness of the 
teacher logits and may result better performance. The result in Table 3 shows that high 
temperature does increase the overall performance for the training process, compared to 
popular choices T  {3, 4, 5} [29]. 

 
4.4 Effectiveness of the Training Framework  

 
From Fig. 12 and Table 1, it can be observed that KD reduces the variance of the 

StudentNet’s loss and accuracy which makes the network a lot more stable with less 
memory cost. With the help of TeacherNet, our proposed model converge significantly 
better, as shown in Fig. 12, comparing to the result in Fig. 11, where the network was 
trained from scratch. 
 

  
Fig. 11. Learning curve of StudentNet trained from scratch. 

 

 
Epoch                                                Epoch  

Fig. 12. Learning curve of StudentNet trained with KD. 
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4.5 Network Performance Evaluation 
 
Fig. 13 shows the parameters used by the different classic models. We can see that 

our proposed lightweight model’s size has been significantly decreased relative to the clas-
sic CNN models. Our proposed architecture, also known as the StudentNet in the KD pro-
cess, only contains 256,779 parameters, which is approximately 100 times less than 
TeacherNet, Inception_v3. To be applied in embedded systems and solve real life tasks, 
inference time is also a crucial factor. For the experiment, we examine the inference time 
for the models to predict 800 images. Fig. 14 shows that it only costs our proposed method 
1 second to get the result, while other models need 2 to 6 seconds to predict the label of 
800 vein images. The inference time reduces to one half of the TeacherNet model, which 
is considerable. We compare the performance of recognition, as shown in Table 1. We can 
see that the lightweight CNN’s performance only drops slightly compared with that of the 
TeacherNet in our dataset. Considering the reduction of resources, the performance of our 
proposed lightweight CNN is satisfactory. 

 

 
Fig. 13. Parameters comparison of different networks. 

 

 
Fig. 14. Inference time comparison of different networks.  

 

4.6 Evaluation of Palm-Vein Identification Efficiency 
 
In this study, two wavelengths of near-infrared (NIR) light from the CASIA dataset 

were used for analysis. However, in order to accurately evaluate the performance of the 
method proposed in this work, palm-vein images were extracted from different periods of 
time in the experimental analysis. The second time period was used for testing. In this 
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study, the left and right hands of 100 people were regarded as different people, and a total 
of 200 categories could be obtained. Thus, the number of amplified samples could be com-
pared to make the experimental analysis more complete.  

Compared with the CNN model applied in the vein field in recent years, the correct 
identification rate (CIR) of the proposed method is higher than other methods, as shown in 
Table IV, which makes this method not limited by hardware devices, but can be applied in 
handheld platforms or embedded systems, which is more in line with the application re- 
quirements in real life. 

 
Table 4. CIR evaluation. 

Methods CIR
Wirayuda et al. [30] 90.87%

Mirmohamdsadeghi et al. [31] 93.20%
Zhou et al. [10] 97.50%

This work 98.12% 

5. CONCLUSION 

A new mobile vein recognition model is presented as a lightweight MobileNet net-
work designed with DSC. This can not only significantly decrease the memory cost of the 
network used in biometric image recognition, but at the same time stabilize the conver-
gence of the network and reduce the inference time of the network significantly, which 
makes it suitable for implementing on mobile devices. The experimental results in the most 
representative public CASIA database in order to analyze the performance have shown 
that the proposed method is capable of achieving great recognition rate and the instantane-
ous, and can be effectively used to mobile application in the future, which brings the power 
of artificial intelligence (AI) driven application directly into the practitioner’s hand. 
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