
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 38, 185-205 (2022)

DOI: 10.6688/JISE.202201_38(1).0010

185

Adaptive Entry Point Discovery

for Web Vulnerability Scanning

HSIU-CHUAN HUANG1,2, ZHI-KAI ZHANG3, CHUNG-KUAN CHEN3,

WEI-DA HONG3, JUI-CHIEN JAO3 AND SHIUHPYNG SHIEH1
1Department of Computer Science

National Yang Ming Chiao Tung University

Hsinchu, 330 Taiwan
2Information and Communication Security Lab

Chunghwa Telecom Laboratories

Taoyuan, 326 Taiwan
3Department of Computer Science

National Chiao Tung University

Hsinchu, 330 Taiwan

E-mail: pattyhuang.cs99g@g2.nctu.edu.tw; skyzhang.cs99g@nctu.edu.tw;

ckchen@cs.nctu.edu.tw; wdhongtw@gmail.com; {jcjao.cs05g; ssp}@cs.nctu.edu.tw

Entry point collection is crucial to web vulnerability scanning since the collected en-

try points may contain serious web vulnerabilities such as SQL injection and Cross-Site

Scripting (XSS). Most Web Vulnerability Scanners (WVSs) are equipped with crawlers to

collect and locate the web pages for testing. The crawlers are intended to discover all links

of the web applications being tested. However, exhaustive crawling may not be feasible

when time and computation resources are limited, especially for large websites with rap-

idly and dynamically generated new content. Research studies regarding generic selection

policies for web crawlers have been attempted. However, these studies are neither suitable

for the search of entry points, nor for WVSs given that their selection policies are intended

for content comparison, not for maximizing the test coverage and diversity of functionali-

ties. In this paper, an adaptive entry point crawler named VulCrawl is proposed for WVSs

to discover web pages distinct in terms of functionality and code-wise structure. VulCrawl

extends the entry point collection and improves WVS code coverage of a target web ap-

plication. The effectiveness and efficiency of VulCrawl are evaluated using two famous

websites. In the experiments, VulCrawl found 2 to 3 times more distinct entry points than

those crawled by the web crawler without adopting the adaptive entry point crawling. The

results indicate that the proposed selection policy enables web crawling to discover more

entry points suitable for WVSs.

Keywords: vulnerability, input validation, crawler, SQL injection, XSS

1. INTRODUCTION

Web applications are widely used in our daily lives. These web applications providing

critical services or dealing with sensitive data become attractive targets for cybercriminals.

According to Akamai’s 2019 state of the Internet report [1], approximately 12 billion web

attacks occurred in a 17-month period. To cope with the problem, web security enhance-

ment is an urgent and ineluctable task [2]. Web vulnerability discovery [3] is a way of

improving web security by discovering vulnerabilities that exist in web applications in

Received January 2, 2020; revised October 12, 2020; accepted December 25, 2020.

Communicated by Hung-Min Sun.

H.-C. HUANG, Z.-K. ZHANG, C.-K. CHEN, W.-D. HONG, J.-C. JAO, S. SHIEH

186

early stage before cybercriminals take advantage of them.

Black-box testing is a web vulnerability discovery approach which does not rely on

the pre-knowledge of the target web applications. During the test, black-box testing at-

tempts to generate malicious inputs automatically and direct the inputs to the target web

applications. Since black-box testing does not rely on specific programming languages

adopted by target web applications, it can be used to test web applications in a wide variety

of instances. Web Vulnerability Scanners (WVSs) are automated tools used to conduct

black-box web vulnerability discovery for potential vulnerabilities. To test a web applica-

tion, a WVS generates malicious web requests and attempts to inject data into the targeted

web application. By observing the responses, corresponding vulnerabilities can be discov-

ered.

Most WVSs are equipped with web crawlers to collect web pages from the web ap-

plications being tested. A WVS cannot discover the vulnerabilities of a web page unless it

can find the web page in the crawling stage. Thus, the coverage of crawling directly affects

the test coverage of the WVS. A web application may be large in terms of web page num-

ber and be complex owing to a wide variety of information and services [4]. Therefore, the

conventional approach, namely exhaustive crawling, is no longer a feasible solution to

discover web pages of interest when time and computation resources are limited [5]. To

cope with the challenge, selective crawling is defined as a type of crawling methodology

that relies on a selection policy to collect web pages in a web application. The selection

policy interferes in the crawling decision so that more web pages of interest can be discov-

ered when time and resource constraints are applied. For WVSs, the interest is to extend

the code coverage.

Although selective crawling is widely used in discovering web pages that contain

content of interest, these crawlers are not suitable for WVSs since the goal of WVSs is to

extend the test coverage. To maximize test coverage, diversity of functionalities instead of

similarity of content is the main concern. This is because different functionalities usually

map to different code segments of the target. As an example, if a link “https://example.com

/order.php?user=alice” is collected, a similar link “https://example.com/order.php?user =

bob” can be also found. Since the functional purposes of these two web pages are identical,

they can share the same code segment. If a WVS allocates resources to analyze this newly

encountered web page, it will be a waste. Hence, to extend the test coverage and avoid the

waste, entry point crawling for WVSs should focus on collecting as many distinct entry

points as possible, rather than tracing all links. Our observation from web development

experience is that, pages with similar functionality and code-wise structure usually have

fewer distinct entry points. To improve the efficiency of gathering distinct entry points, a

crawler should assign lower priorities to web pages having similar functional structure. On

the other hand, most modern websites generate web pages dynamically, and therefore the

crawling strategy should be also dynamically adjusted. Adaptive crawling is desirable with

crawling strategy and priorities adjusted dynamically. Taking advantage of both entry

point crawling and adaptive crawling, we propose in this paper an adaptive entry point

crawler named VulCrawl for WVSs to discover web pages distinct in terms of functional-

ity and code-wise structure.

There are two main factors that set VulCrawl and generic crawlers apart. First, a ge-

neric crawler traces a website and outputs a collection of web pages or links, while Vul-

Crawl outputs a collection of entry points which may receive test payloads. These entry

ADAPTIVE ENTRY POINT DISCOVERY FOR WEB VULNERABILITY SCANNING 187

points can be delivered to WVSs and prevent WVSs from repeatedly testing functionally

identical web pages. Second, generic crawlers attempt to discover web pages with content-

oriented similarities. On the other hand, VulCrawl attempts to discover web pages having

different functionality and code-wise structure, which hints function-oriented dissimilari-

ties. With these two factors in mind, VulCrawl is the first attempt to achieve the goal of

performing adaptive entry point crawling.

Besides designing details, evaluation for the effectiveness and efficiency of VulCrawl

is also done in comparison with the web crawler adopting the Breadth-First Search (BFS)

selection policy. Two famous websites are selected as the targets. The results show that

VulCrawl crawls 2 to 3 times more distinct entry points with acceptable overhead. Contri-

butions of this paper are summarized as follows:

1. A new selection policy is proposed for entry point crawling. This selection policy better

reflects the functional and code-wise diversity.

2. An adaptive crawling methodology is proposed to adjust crawling strategy dynamically

by utilizing both current crawling status and past crawling experience.

3. A Functional Structure Purifier is also proposed to eliminate unnecessary elements in

the Document Object Model (DOM) tree, which reduces the noises and improves the

precision during functionality diversity estimation.

4. An adaptive entry point crawler named VulCrawl is proposed, and its evaluations

against two famous websites are provided.

The rest of this paper is organized as follows. In Section 2, related work is investigated

and problems are introduced. To cope with the problems, a new adaptive entry point craw-

ler is proposed and evaluated in Sections 3 and 4, respectively. The conclusion is given in

Section 5.

2. RELATED WORK

Traditionally, at the birth of World Wide Web (WWW), most web pages only consist

of a limited number of static documents. Since page analysis is relatively easy, the focus

of crawler-related research is to discover desired information according to the contexts and

links on the pages. Although conventional crawlers become the core of primitive search

engines, they are ineffective against the modern WWW ecosystem since modern web

pages are rarely generated by pure HTML.

Later, when server-side scripting techniques, such as ASP, PHP, and other CGI, be-

come popular, web servers have the abilities to handle input queries through HTTP re-

quests, retrieve information from backend databases, and dynamically generate the content

of web pages. Since then, web pages, identified by the URLs, may not necessarily corre-

spond to the existing files in web servers, but are related to the information dynamically

generated in response to queries and server-side computations. If the crawler only extracts

URLs from these dynamically generated pages, most of the web resources linked to the

currently analyzed pages may not be reachable. This kind of web is referred to as “deep

web”. In fact, the deep web dominates the WWW ecosystem nowadays [6, 7]. Thus, many

research attempts tried to retrieve deeper pages from web servers, and the crawlers de-

signed for the deep web are called deep crawlers.

H.-C. HUANG, Z.-K. ZHANG, C.-K. CHEN, W.-D. HONG, J.-C. JAO, S. SHIEH

188

As the client-side scripting on the page, such as JavaScript, can be involved and exe-

cuted on the client-side, web pages are not pure static documents and may contain small

programs with dynamic behavior. With the help of AJAX, the concept of “web page” be-

comes blur. It is pretty analogous to a native application because the web page can have

state transitions with the execution of scripts. From the user’s perspective, it is more like a

“web application” instead of a “web page”. Hence, this new kind of web is called “Rich

Internet Application” (RIA) [8, 9]. To deal with RIAs, the crawlers are referred to as “RIA

crawlers”.

Unlike the aforementioned crawlers which focus on the content or ranks of pages, the

crawler proposed in this paper focuses on the functions and the code structure of web pages

for web vulnerability discovery. Even though many penetration tools equip built-in crawl-

ers, these crawlers still use the BFS scheduler. Lack of awareness of structure differences

makes these crawlers fail to efficiently discover web pages for WVSs, especially against

large-scale and dynamic web systems. The gaps can be roughly divided into two issues:

resource location and resource selection. The two issues will be elaborated in the next two

sections.

2.1 Resource Location

Since client-side web techniques evolve rapidly in recent years, it is mandatory for

crawlers to perform dynamic analysis on web pages in order to retrieve as much web con-

tent as possible. However, it is a challenging task to dynamically analyze a web page.

WAVES [10], proposed by Yao-Wen Huang et al., simulates user events to trigger the

behavior of web pages’ dynamic components and discovers new links for dynamic content.

It adopts a self-learning knowledge base based on a topic model to generate the input data

for automated form submissions. FEEDEX [11] by Amin Milani Fard and Ali Mesbah

discusses how to achieve better crawling coverage by analyzing event behavior. Due to the

flexibility of JavaScript, events can be created, attached to, and detached from web pages

during runtime execution. Thus, jÄ k [12] by Giancarlo Pellegrino et al. focuses on how to

monitor all executable events on web pages and precisely locate executable events during

dynamic page analysis.

Other studies with additional assumptions on target websites aimed to improve crawl-

ing speed. For example, Crawljax [13] by Ali Mesbah et al. assumes that the changes of

states also lead to the changes of the DOM tree. Therefore, expanding duplicated states

can be avoided through detecting duplicated states in the DOM tree. While Crawljax at-

tempts to discover more pages in a web application, VulCrawl makes better resource allo-

cation for discovering diverse, hidden or dynamically generated entry points. On the other

hand, An Huiyao et al. proposed a strategy called Double Duplicate Elimination Strategy

[14]. This strategy identifies the same state based on the assumption that the same

XMLHttpRequset (XHR) sequence will lead to the same state. Both studies improve crawl-

ing speed but may lose crawling coverage because their assumptions on target websites

may not always hold.

These studies have already had great achievements on page analysis. However, most

studies use a FIFO queue to record discovered pages without an adaptive resource alloca-

tion approach. A common situation on web implementation is that pages with similar func-

tionalities could be clustered together. As a result, if this kind of crawlers is directly applied

ADAPTIVE ENTRY POINT DISCOVERY FOR WEB VULNERABILITY SCANNING 189

to web vulnerability discovery, most computation and network resources could be wasted

on analyzing pages with similar or even the same code segments. Basically, the codes,

instead of the content, are of concern for vulnerability discovery. Although the aforemen-

tioned studies may not be suitable for vulnerability discovery, the know-how of locating

hidden resources can complement the selection policy mainly proposed in this paper.

2.2 Resource Selection

Exactly as the observation by a survey work from Olston and Najork [6]: “The crawl

order is extremely significant because for the purpose of crawling the web can be consid-

ered infinite − due to the growth rate of new content, and especially due to dynamically

generated content”, the order or the selection of candidates to be analyzed is extremely

important. Due to dynamically generated pages, fully crawling a large-scale website is

usually infeasible. Thus, several selection policies have been proposed for different pur-

poses. These policies are applied to determine the priorities of web pages. According to

the purposes, important web pages will have higher priorities. In this way, crawlers can

collect as many desirable results as possible from a target website within the limited exe-

cution time or resources.

Recent selection policies can be divided into three categories. The first category is for

performing topic-focusing search for particular topics. Tianjun Fu et al. [15] proposed a

selection policy based on sentimental analysis. Their graph-based sentiment (GBS) crawler

uses a text classifier to assess the relevance of candidate pages and prioritize more relevant

web pages while analyzing web pages. Songhua Xu et al. [16] designed a crawler to fulfill

the requirement of health research. Their crawler is designed to collect relevant web con-

tent with minimal user intervention. Although deep crawlers, such as the aforementioned

SmartCrawler [7], may be equipped with selection policies and perform well for content-

oriented or topic-focusing analysis, they are not suitable for vulnerability discovery due to

the absence of scopes related to the code coverage and lack of security knowledge.

The second category is proposed to efficiently construct a subset of the World Wide

Web. Toufik Bennouas and Fabien de Montgolfier [5] proposed a crawler to construct a

partial subset of the World Wide Web while preserving similar linking structure and sta-

tistical properties of the World Wide Web. This kind of selection policies is helpful to

sample the World Wide Web for academic experiments. Still, this category is not suitable

for vulnerability discovery because it may preserve redundant page structure when the tar-

get website originally has a huge number of redundant pages.

The third category is for PageRank [17] approximation which serves as one of the

fundamental algorithms behind search engines. It requires the backend crawlers to perform

full crawling of the entire web. Therefore, the corresponding selection policies for this

purpose were proposed. Ricardo Baeza-Yates et al. [18] provided a comparison between

selection policies for PageRank approximation and proposed new strategies as well. This

kind of selection policies was designed to collect “important” web content scored by Pag-

eRank as fast as possible. Since vulnerability discovery for particular websites has little to

do with PageRank, this category is not suitable either.

Even though the aforementioned selection policies provide great contribution to col-

lecting and indexing content-oriented information, these methods are not suitable for vul-

nerability discovery. Most of the aforementioned work does not deal with the similarity or

H.-C. HUANG, Z.-K. ZHANG, C.-K. CHEN, W.-D. HONG, J.-C. JAO, S. SHIEH

190

redundancy of web pages at the functionality level. It is obvious that repeatedly trying to

test against the same code segment with the same set of test payloads is a waste of resources.

For large-scale web systems, this could make vulnerability discovery not only inefficient

but also ineffective. To cope with this problem, a novel crawler will be proposed in the

next section.

2.3 Web Vulnerability Scanning

Black-box WVSs simulate attacks against websites under testing and discover vul-

nerabilities by analyzing their responses. S. Kals developed SecuBat as a generic and mod-

ular web vulnerability scanner to analyze websites automatically and discovers exploitable

SQL injection and XSS vulnerabilities [19]. Many WVSs have been developed to perform

black-box testing on websites for various web vulnerabilities as open source projects or

commercial products, such as w3af [20], Arachni [21], Burp Suite [22], Acunetix [23], and

WebInspect [24]. The WVSs are based on predefined test payloads, rules and known de-

fects recorded in vulnerability databases. In [3], the test payloads are generated automati-

cally with combinative evasion techniques for WVSs to expand test coverage. The selec-

tion policy proposed in this paper can be applied to the built-in crawler of WVSs. For

evaluation, the proposed selection policy is tested on Arachni as shown in Section 4.

3. VULCRAWL – AN ADAPTIVE ENTRY POINT CRAWLER

When performing vulnerability discovery, entry point crawling should be first ad-

dressed. The web application can be regarded as the aggregation of small programs with

their own entry points. A WVS should invoke penetration testing on as many different

entry points as possible to improve the test coverage and avoid the waste of resources. The

reason is that a WVS cannot reach the code segments containing vulnerabilities unless a

relevant entry point is crawled first. Therefore, an effective crawler with the ability to ex-

tract different entry points is the first crucial component of a WVS.

3.1 Basic Concepts

Modern web applications become more and more complex. It is common that a large-

scale web system may contain millions, sometimes even billions of web pages. These

pages are connected with the linking elements, such as hyperlinks, embedded objects, and

redirections. Since in most cases these linking elements are in the form of URL, a website

can be illustrated as a directed Web Graph G as follows.

Web Graph

A web graph G = (V, E) is a directed graph, where V is the set of vertices of G and E is

the set of edges between these vertices. Each vertex represents a web page in the website

and is denoted as vi, where i and viV. An edge e = (v1, v2) and eE iff v2 can be

reached from v1 through e by triggering some link elements. If e = (v1, v2) exists in the

graph G, v1 is said to be a source of v2, and v2 is said to be a target of v1.

A hyperlink navigation can be triggered by a click event on a hyperlink element in

ADAPTIVE ENTRY POINT DISCOVERY FOR WEB VULNERABILITY SCANNING 191

the source web page. Thus, if there are multiple URLs on a web page P, all web pages

linked by these URLs are considered as the targets of P.

VulCrawl outputs a collection of entry points which may receive test payloads. Ac-

cording to RFC 1738, a URL takes the form of “http://<host>:<port>/<path>?<searchpart>”

[25], where the <searchpart> stands for the query string in a HTTP request and is recom-

mended to represent in key-value pairs. Each key is a query variable, and values of the key

are the values of the query variable. Since these query variables are where attackers can

inject attack payloads, besides the path, these variables must be included in the correspond-

ing entry point as well. In addition, the POST, GET parameters and predefined HTTP

header fields could be controlled by adversaries. Thus they should be included in entry

points. The values of query variables should not be included because requests with differ-

ent values but the same variables are mostly handled by the same backend script or pro-

gram. Therefore, for vulnerability discovery, this entry point should be tested only once.

Entry Point

An entry point ep = {Path, QueryVars}, where Path is the resource path in URL format

and QueryVars is a set containing all query variables used for this request in URL or message

content format.

For example, “http://hostname/user.php?id=2&name=alice” is a web page. Its entry

point will be identified as {user.php, (id, name)}. In modern web frameworks, query vari-

ables are sometimes embedded in a URL path. Since locating query variables from URLs

remains an open problem, a rule-based approach is currently used in VulCrawl. With pre-

defined rules, special placeholders are involved to replace the query variables. Since the

query variables can be included in the QueryVars in this way, this kind of URLs can still

be processed by VulCrawl for entry point collection.

Even though the concept of an entry point is similar to a web page, there are still

differences between them. First, multiple web pages may map only to the same entry point

in the aspect of code coverage. For instance, “http://hostname/user.php? id=1&name=alice”

and “http://hostname/user.php?id=2&name=bob” are two distinct web pages. However,

when performing vulnerability discovery, only one round of tests should be conducted for

variables “id” and “name” of “user.php”. This is because a WVS generates malicious web

requests for “user.php” with crafted values for the variables “id” and “name” during the

first run of test and the second round of test will be exactly identical against the same

variables. It is a waste if a WVS spends resources testing web pages of the same entry

point. On the hand, entry points sometimes may point to the same web page. For example,

consider a generic error-handling web page. Many entry points caused by different system

failures will be redirected to the same warning web page. Even though the content in the

error-handling web page remains unchanged, these entry points are still worth a test for

each. Therefore, taking an entry point as the basic testing unit for vulnerability scanning is

more precise than taking a web page.

3.2 System Architecture

Before introducing the system architecture of VulCrawl, four states of web pages used

in VulCrawl need to be introduced first. During a crawling procedure, web pages are in

one of the following four states: Unknown, Discovered, Analyzed and Expanded. Unknown

state indicates the web page is not yet found by a crawler, so the URLs linking to this kind

H.-C. HUANG, Z.-K. ZHANG, C.-K. CHEN, W.-D. HONG, J.-C. JAO, S. SHIEH

192

of pages are also unknown. Discovered state means the URL linking to the web page is

already known through analyzing previous pages, but the actual content of this page has

not been fetched yet from the server. Once a web page’s content has been fetched, the state

is transferred from Discovered to Analyzed. If the web page does not link to any child page,

the state turns from Analyzed to Expanded directly. If the web page links to one or more

child pages, the state turns from Analyzed to Expanded after all its child page(s) is (are)

Analyzed.

The system architecture is described in Fig. 1. The component Page Analyzer is re-

sponsible for HTML parsing and entry point extraction. Given a web page p, Page Ana-

lyzer grabs the HTML content of p from the web server. After parsing, the corresponding

DOM tree is generated, the targets of p are discovered and entry points are extracted. Every

distinct entry point extracted will be sent to the WVS, and duplicate entry points will be

discarded. The component Adaptive Crawler is responsible for choosing next web pages

to extract and analyze by utilizing the knowledge constructed during the crawling process.

At first, a root web page r, which is a URL with or without query variables, is given as a

seed page to VulCrawl, where the state of r is Discovered. r is saved into Discovered

Webpages Database as the initial state of running, and a new vertex for r is added to G.

Then, Page Analyzer takes a web page wp from the Discovered Webpages Database in-

cluding r, and fetches wp’s content for analysis. After the analysis, entry points as the

outputs of VulCrawl may be found and fed to the WVS for vulnerability discovery. Mean-

while, for any found target web page cwp, vertex cwp and edge (wp, cwp) are added to G.

cwp turns to Discovered and is saved into Discovered Webpages Database. The state of

wp transfers from Discovered to Analyzed. Then, wp is saved to Analyzed Webpages Da-

tabase. Adaptive Crawler then takes the responsibility to choose the most functionally di-

vergent web page(s) from Analyzed Webpages Database for the next round. For each cho-

sen page nwp, each found target web page cnwp of nwp is fed to Page Analyzer for HTML

parsing and entry point extraction. Each found target web page ccnwp of cnwp is saved

into Discovered Webpages Database if it is not in Analyzed or Expanded state. cnwp trans-

its to Analyzed state, and nwp transits to Expanded state. Again, Adaptive Crawler starts

the next round until all web pages are in Expanded state.

Fig. 1. System architecture.

ADAPTIVE ENTRY POINT DISCOVERY FOR WEB VULNERABILITY SCANNING 193

3.3 Adaptive Crawler

As in Fig. 1, Adaptive Crawler is responsible for choosing the next web pages to

extract and analyze. Adaptive crawling should be functionality-oriented instead of content-

oriented since the goal is to discover vulnerabilities. Unlike conventional content-oriented

crawlers focusing on similarity of page content, a functionality-oriented crawler takes an

alternative strategy to analyze web pages according to the diversity of functionalities. Thus,

more code segments of a backend program can be tested. Inspired by anomaly detection,

this strategy helps WVSs extend the coverage of server-site programs. It is clear that test

coverage is critical for penetration testing to ensure the security of target web systems. On

the other hand, “adaptive” indicates that the knowledge extracted from crawling history

should be maintained to prioritize the candidate pages. An adaptive crawler should use this

knowledge to adapt their crawling strategy for more distinct entry points. Due to the fact

that information of the target website is unknown while performing black-box testing, the

knowledge should be gradually constructed in the crawling process.

Adaptive Crawler contains three modules: Functionality Diversity Estimator, Func-

tional Structure Purifier, and Incremental Clustering. Functionality Diversity Estimator is

used to estimate the diversity of web pages, thereby enabling discovery of new entry points.

Functional Structure Purifier is designed to extract the functional skeleton via pruning non-

functional elements and to further simplify the structure of DOM trees. Incremental Clus-

tering is adopted to reduce the computation cost for Functionality Diversity Estimation.

The construction details of Adaptive Crawler are described below.

(A) Functionality Diversity Estimator

Functionality Diversity Estimator estimates the diversity of web pages and helps

Adaptive Crawler select web pages having different functionalities and code-wise struc-

tures, which hints function-oriented dissimilarities. As described earlier, entry points are

the starting point of data flows in a web server. It is reasonable to assume that web pages

providing different functionalities contain different entry points pointing to different code

segments. Under this assumption, it is intuitive to give higher priority to the page with

higher functional diversity when designing a selection policy for entry point crawling. For

instance, a web page designed for account setting and a web page designed for product

listing usually contain different entry points. Moreover, these entry points can pass differ-

ent variables and values to different database operations. It is clear that both entry points

need input validation testing. As a result, quantifying the diversity of the functionalities

between web pages emerges as a critical problem.

Traditional content-based edit distance is not suitable for the measurement of func-

tional diversity because two web pages with identical functional codes may have very dif-

ferent text content. In comparison with content-based heuristics, structural information

provides more information about a web page’s functionality. Many web pages contain dy-

namically generated content while having the same functionalities. To provide better user

experiences, the layout of these web pages is usually elaborately designed to provide suit-

able functionality, and the contents are automatically generated after querying the database.

For example, two items on the shopping website are represented as two pages with differ-

ent descriptions and pictures, but their format and functional/scripting codes are the same.

H.-C. HUANG, Z.-K. ZHANG, C.-K. CHEN, W.-D. HONG, J.-C. JAO, S. SHIEH

194

Therefore, the structure of web pages are believed to be more useful for vulnerability dis-

covery than the content.

Knowing that the functionality of a web page is highly related to the structure of the

content tree, the measuring method should be based on another kind of edit distance − tree

edit distance. As one of derivatives of string edit distance, tree edit distance is an edit

distance algorithm that is applied to tree-like data structure. When calculating the tree edit

distance from one tree to another, there are three operations: inserting, deleting, and rela-

beling a node. The basic idea is quite similar to the operations in string edit distance algo-

rithm. Using tree edit distance has another advantage: if the description texts are changed

but the functionality remains the same, the distance will be unchanged. As an instance, the

web developer may want to update the term “Name:” to “Your Name:”. The distance value

will keep unchanged because the tree edit distance algorithm only considers the structural

change in the tree.

A special situation may influence the accuracy of using tree edit distance to reflect

the functional diversity, that is, longer pages are likely to have longer tree edit distance

between each other than the shorter pages. This may result in the bias in issuing higher

priority to longer pages. To correct this bias, normalization must be performed. The nor-

malization maps the distance to a value within [0, 1] interval. That means the value of nor-

malized distance will be 0 if two trees are completely identical, and 1 if they are completely

different. VulCrawl estimates the diversity of web pages by calculating the normalized tree

edit distances of the corresponding DOM trees of web pages. The equation of normaliza-

tion is as follows, where |T1| represents the number of nodes in the tree T1, and similarly

for |T2|:

(1, 2)
.

| 1| | 2 |

TreeEditDistance T T
Distance

T T
=

+
 (1)

(B) Functional Structure Purifier

Functional Structure Purifier discovers non-functional elements and remove them as

noise. Even though the function structure provides valuable information to estimate the

differences of functionality, there exist non-functional elements which make DOM trees

different but can be negligible from functionality viewpoint. Therefore, these non-func-

tional elements are considered as noise and can be removed before passing the data to

Functionality Diversity Estimator. For instance, text visualization elements such as (a

HTML tag for bold text),
 (a HTML tag for line break), and <u> (a HTML tag for

underline) are negligible for web pages functionalities, while elements like <a> (a HTML

tag for a link), <script> (a HTML tag for a client-side script), and <object> (a HTML tag

for an embedded object) are very important for page functionalities.

Therefore, Functional Structure Purifier is designed to extract the functional skeleton

via pruning non-functional elements and to further simplify the structure of DOM tree.

Before designing the algorithm of Functional Structure Purifier, non-negligible elements

need to be manually classified first since there are a large number of non-functional/negli-

gible elements in all HTML formats. Non-negligible attributes are listed in Table 1 where

an attribute may appear in more than one tag. Therefore, focusing on the non-negligible

attributes is a more feasible approach. And the algorithm of Functional Structure Purifier

is shown in Algorithm 1.

ADAPTIVE ENTRY POINT DISCOVERY FOR WEB VULNERABILITY SCANNING 195

Table 1. Non-negligible attributes of HTML.

Attribute Related Tag Usage

action form specify where to send the form-data when a form is submitted

cite blockquote, del, ins, q specify the URL for a quote document

data object specify the URL of the resource to be used by the object

data-* ALL store customized data

formaction button, input specify where to send the form-data; override “action” attribute

href a, area, base, link specify the URL for a page, relative links, external resource, etc.

on-* Almost all tags specify the event-driven scripts

src
audio, embed, iframe,

img, input, script…
specify the URL of a media file or a script file

srcdoc iframe specify the in-line HTML content

srcset img, source specify the URL of an image

style ALL specify the in-line style of an element

value
button, li, option,

progress, param
specify the value of an element

H.-C. HUANG, Z.-K. ZHANG, C.-K. CHEN, W.-D. HONG, J.-C. JAO, S. SHIEH

196

(C) Incremental Clustering

In order to identify diverse web pages, the distance of each pair of web pages will be

calculated at first. However, as scale of the website becomes larger, the number of dis-

tances to be calculated increases in the complexity of O(n2). Moreover, this procedure will

be invoked for many times during the entire crawling. To cope with the problem, the algo-

rithm should be scalable and avoid calculating every distance every time.

VulCrawl utilizes Incremental Clustering as in Algorithm 2 to solve the scalability

problem. After separating web pages into a limited number of clusters, representative web

pages in each cluster can be selected. Currently, every cluster contains at most x repre-

sentative pages where x is a configurable parameter in VulCrawl. The x most diverse web

pages among the representative pages in this round and newly selected pages are selected

as the new representative pages of the cluster for the next round. By calculating only the

distance to the representative pages, the number of pairwise comparison can be signifi-

cantly decreased. In addition, an incremental approach is taken so that only newly incom-

ing web pages are clustered, and recalculating for all web pages can be avoided.

(D) Adaptive Crawling

After describing the system architecture and three modules in previous subsections,

the concept “Adaptive” involved can be explained. “Adaptive” means the aforementioned

selection algorithms and policies can be automatically adjusted during the crawling pro-

cess. This is due to the fact that the components/content of a large-scale and dynamic web-

site often keep changing rapidly. Thus, the priority of each cluster should be adjusted ac-

cording to both current crawling results and crawling history. In this way, priority of the

pages having loops or traps should be lowered, and the resources can be moved to other

page clusters.

Since web developers may have their own programing convention, the distribution of

ADAPTIVE ENTRY POINT DISCOVERY FOR WEB VULNERABILITY SCANNING 197

distinct entry points may not be uniform. Potential Rate is used to denote whether the

priority of each cluster should be raised or lowered. In VulCrawl, Potential Rate is as fol-

lows:

Potential Rate of a Cluster

The “Potential Rate” of cluster i is:

,

1

cur
m

i i cur m

m

Potential r −

=

= (2)

where is a configurable decay rate between 0 and 1; ri,j is the number of distinct entry

points found in cluster i in round j divided by the total number of distinct entry points found

in round j.

The Potential Rates of clusters of each round reflect the found distinct Entry Point

distribution for that round. Adaptive Crawler utilizes the Potential Rates of the past crawl-

ing process to determine the priority of each cluster in the current round. The priority of

resource allocation is implemented by adjusting the number of pages chosen from each

cluster. In each round, more pages in a particular cluster will be fetched and analyzed if

the cluster has a higher potential rate. Then it uses the aforementioned Functionality Di-

versity Estimator to determine the most diversity pages. Algorithm 3 shows the algorithm

of Adaptive Crawling. The Potential Rate for each cluster is calculated (line 4), then the

number of web pages to be fetched in each page cluster can be decided according to these

potential rates (lines 5–6). The function AdaptiveCrawling provides automatic adaption,

which calls the function FindMostDiversePages to perform anomaly detection and select

the web pages for next crawling round as shown in Algorithm 4.

As for “Anomaly Detection”, the min-max distance algorithm is conducted for every

web page in state Analyzed. The distances from every page to every cluster’s representative

page are calculated by Functionality Diversity Estimator (line 6). Among the distances, the

smallest one is taken as the diversity score of current page (lines 10-11). Afterward, the

H.-C. HUANG, Z.-K. ZHANG, C.-K. CHEN, W.-D. HONG, J.-C. JAO, S. SHIEH

198

page with the highest diversity score will be picked out for the next expanding iteration

(line 16). That means, the web page farthest from their closest clusters will be chosen. The

above algorithm is indeed a special case of kth Nearest Neighbor anomaly detection algo-

rithm with k = 1. Thus, this algorithm can be extended to kth Nearest Neighbor as well as

other anomaly detection algorithms if it is needed in the future.

4. EVALUATION OF VULCRAWL

The evaluation of VulCrawl contains three parts: effectiveness evaluation, efficiency

evaluation and case study. The details of above three evaluation parts are in the following

three subsections.

4.1 Effectiveness Evaluation

The main goal of VulCrawl is adaptively finding more distinct entry points to expand

the test coverage against large-scale websites. This effectiveness evaluation is to prove that

VulCrawl indeed achieves the goal. In this evaluation, two crawlers were used. The first

crawler was the original crawler built in Arachni, and the other was VulCrawl with differ-

ent configurations.

For convincingness, two different real famous dynamic and large-scale websites,

Website-1 and Website-2, are selected as the target websites for evaluation. Website-1 is

a website that provide online news, music, video, etc. Website-2 is an online auction and

shopping website. Both websites consist of a massive number of web pages. Because the

pages could be generated dynamically all the time, it is infeasible to perform exhaustive

ADAPTIVE ENTRY POINT DISCOVERY FOR WEB VULNERABILITY SCANNING 199

crawling. Thus, the value of VulCrawl can be shown in this kind of situation. To avoid any

possible impacts on the network or the performance of target websites, only normal HTTP/

HTTPS requests were sent out and a proper time interval was involved.

(A) The Number of Distinct Entry Points Found in a Period of Time

As shown in Fig. 2, this evaluation contains six different configurations. The first one

is the original crawler in Arachni which is labeled as “FIFO” since Arachni uses a FIFO

queue. The others are VulCrawl with five different decay rates (approximated to 0, 0.25,

0.5, 0.75 and 1), which indicate the importance of past experience. From Fig. 2, VulCrawl

behaves better both in the Website-1 and Website-2 cases. The results show that VulCrawl

crawls 2 to 3 times more distinct entry points than those crawled by the original crawler in

Arachni. Note that our approach is not dedicated to Arachni. It can be also applied to other

crawlers to discover more entry points.

Fig. 2. Found distinct entry points.

(B) Entry Points Crawling Per Iteration

The second evaluation has the same six configurations as the first one and is shown

in Fig. 3. This evaluation shows that, the web pages selected by VulCrawl contain multiple

times of distinct entry points on average. This result indicates that focusing on the func-

tional diversity of web pages does help to find more distinct entry points. By assumption,

this leads to extending the test coverage.

Fig. 3. Aggregation of entry points versus web page number.

Another interesting result is shown in Fig. 4. More entry points were found in first

few iterations of 100 web pages than the later iterations. The trend of decrease is reasonable

H.-C. HUANG, Z.-K. ZHANG, C.-K. CHEN, W.-D. HONG, J.-C. JAO, S. SHIEH

200

Fig. 5. Number of Analyzed Web Pages

because the ratio of duplicated entry points increased with the growth of analyzed web

pages. Suddenly increasing jumps may exist. The jumps indicate that web pages with many

diverse child pages are found. The suddenly jumps happened more frequently when the

decay rate is approximated to “0”. This is because considering only current crawl status

could result in instability. Hence, the other decay rates are believed to be more stable and

suitable for web vulnerability scanning.

Fig. 4. Entry points per 100 pages.

(C) Decay Rate Tuning

In this experiment, the goal is to find which decay rate is better for Adaptive Crawler.

The priority of each cluster is calculated by two factors: the current number and the historic

numbers of entry point found. The argument is used to assign the decay rate between

current and previous iterations. That is, if the is larger, the performance of historic itera-

tions is more considerable, and vice versa.

This experiment contains five different values of . The result is shown in Fig. 3, and

“ = 0.5” performs well against Website-1 and Website-2. When the decay rate is approx-

imated to 0, VulCrawl works well in Website-1, but not so significant in Website-2.

4.2 Efficiency Evaluation

Besides the effectiveness evaluation, efficiency evaluation is also performed. The

overhead is evaluated by comparing the number of analyzed pages within the same time

period. The target websites are still Website-1 and Website-2, and the result is shown in

Fig. 5. For Website-1, FIFO analyzed 3,573 pages in 3,600 seconds while VulCrawl with

0.5 decay rate analyzed 3,476 pages. For Website-2, FIFO analyzed 5,933 pages in 3,600

seconds while VulCrawl with 0.5 decay rate analyzed 5,536 pages. The statistics above

showed that the overhead is around 3%-7%. Since the number of distinct entry points found

by VulCrawl is more than twice as FIFO, this overhead is acceptable.

Fig. 5. Number of analyzed web pages.

ADAPTIVE ENTRY POINT DISCOVERY FOR WEB VULNERABILITY SCANNING 201

4.3 Case Study

In order to prove that VulCrawl can be applied to real world applications, two popular

frameworks including WordPress and SchoolMate are employed as case studies. To

demonstrate that VulCrawl can discover entry points of web applications that contain vul-

nerabilities automatically, known-vulnerable versions of WordPress and SchoolMate are

used in the experiments. We use VulCrawl to discover entry points of the target web ap-

plications and use an existing open-source WVS module to perform vulnerability testing.

For WordPress being test, three SQL injections (SQLI), two XSSs and one directory

traversal (DirTrav) vulnerabilities were found. For SchoolMate being test, one SQL injec-

tion and one XSS vulnerabilities were found. The discovered vulnerabilities are listed in

Table 2. The last two columns of Table 2 show the vulnerability type found and the test

result, respectively. The test result “Fully Reproduced” means both the entry point and

attack payload were successfully found. The test result “Discovered” means the entry point

was found by VulCrawl, but the WVS module failed to generate the right payload. This

situation indicates the immaturity of the WVS. Even in this case, the goal of VulCrawl was

achieved to discover entry points. The experiment results show that VulCrawl indeed helps

a WVS discover the entry points linking to vulnerabilities automatically.

Table 2. Discovered vulnerabilities.
CVE Framework Entry Point Type Result

CVE-2007-4894 WordPress 2.0.6 xmlrpc.php, {post_body} SQLI Discovered

CVE-2007-6318 WordPress 2.0.6 wp-includes/query.php, {s} SQLI Discovered

CVE-2015-4064 WordPress 2.0.6 wp-admin.php/post.php, {post} SQLI Fully Reproduced

CVE-2010-5295 WordPress 2.0.6 wp-admin/plugins.php, {plugin} XSS Fully Reproduced

CVE-2016-1564 WordPress 2.0.6 wp-admin/themes.php, {template} XSS Fully Reproduced

CVE-2008-4769 WordPress 2.0.6 wp-admin/themes.php, {?} DirTrav Discovered

N/A SchoolMate schoolmate/index.php, {sitetext} SQLI Fully Reproduced

N/A SchoolMate schoolmate/index.php, {semester} XSS Fully Reproduced

5. SUMMARY

An effective crawler with the ability to collect the web pages and extract the entry

points for testing is a crucial component of a WVS. A WVS cannot discover the vulnera-

bilities of a web page unless it can find the web page in the crawling stage. However,

exhaustive crawling may not be feasible when time and computation resources are limited,

especially for large websites with rapidly and dynamically generated new content. To ex-

tend the test coverage and avoid the waste, entry point crawling for WVSs should focus

on collecting as many distinct entry points as possible, rather than tracing all links. Fur-

thermore, Adaptive crawling is desirable with crawling strategy and priorities adjusted dy-

namically. Although some selection policies have been proposed for web crawlers, they

are not suitable for WVSs given that their selection policies are intended for content com-

parison. To maximize test coverage, a web crawler of a WVS should discover web pages

having different functionalities. In this paper, an adaptive entry point crawler named Vul-

Crawl is proposed for WVSs to discover web pages distinct in terms of functionality and

code-wise structure. VulCrawl utilizes the structure discrepancy and past experience to

H.-C. HUANG, Z.-K. ZHANG, C.-K. CHEN, W.-D. HONG, J.-C. JAO, S. SHIEH

202

discover more distinct web pages and entry points for vulnerability scanning. It proposes

a new selection policy. It estimates the diversity of web pages by calculating the normal-

ized tree edit distances of the corresponding DOM trees of web pages, and selects the most

diverse pages for discovery of new entry points. This selection policy better reflects the

functional and code-wise diversity. To reduce the noises and improve the precision during

functionality diversity estimation for web pages, a module Functional Structure Purifier is

designed to extract the functional skeleton via pruning non-functional elements and to fur-

ther simplify the structure of DOM trees. VulCrawl adopts an adaptive crawling method-

ology to adjust crawling strategy dynamically by utilizing both current crawling status and

past crawling experience so that more web pages of different functionalities are discovered.

Evaluation for the effectiveness and efficiency of VulCrawl is done in comparison

with the original crawler, which does not adopt the adaptive entry point crawling, built in

Arachni. Two different famous dynamic and large-scale websites, Website-1 and Website-

2, are selected as the target websites for evaluation. VulCrawl are experimented with five

different decay rates (approximated to 0, 0.25, 0.5, 0.75 and 1), which indicate the im-

portance of past experience. In the experiments, the results show that VulCrawl crawls 2

to 3 times more distinct entry points than those crawled with the original crawler. The

results also show that the web pages selected by VulCrawl contain more distinct entry

points, which indicates that focusing on the functional diversity of web pages does help to

find more distinct entry points. Five different decay rates are experimented. When the de-

cay rate is set to approximated to 0, VulCrawl works well in Website-1, but not so signif-

icant in Website-2. This is because VulCrawl with a decay rate approximated to 0 considers

only the current crawling status. It does not consider the past crawling experience. Vul-

Crawl with a decay rate not approximated to 0 behaves well both in Website-1 and Web-

site-2. A decay rate not approximated to 0 is more stable and suitable for web vulnerability

scanning. The overhead is evaluated by comparing the number of analyzed pages within

the same time period. The statistics show that the overhead is around 3%-7%. Since the

number of distinct entry points found by VulCrawl is more than twice as that by the orig-

inal crawler, this overhead is acceptable. Case studies on WordPress and SchoolMate are

also conducted to demonstrate that VulCrawl can assist Web Vulnerability Scanners in

discovering more vulnerabilities. The results indicate that VulCrawl enables web crawling

to discover more entry points suitable for WVSs.

REFERENCES

1. Akamai, “Akamai’s [state of the internet]/security: Web attacks and gaming abuse,”

2019, Vol. 5, https://www.akamai.com/us/en/multimedia/documents/state-of-the-int

ernet/soti-security-web-attacks-and-gaming-abuse-report-2019.pdf.

2. C. K. Chen, Z. K. Zhang, S. H. Lee, and S. Shieh, “Penetration test in the IoT age,”

IEEE Computer, Vol. 51, 2018, pp. 82-85.

3. H. C. Huang, Z. K. Zhang, H. W. Cheng, and S. W. Shieh, “Web application security:

attacks, countermeasure, and pitfalls,” IEEE Computer, Vol. 50, 2017, pp. 81-85.

4. Dan, “How big is a large website ?” 2011, http://contentini.com/how-big-is-a-large-

website-planning-the-content-audit-app/.

ADAPTIVE ENTRY POINT DISCOVERY FOR WEB VULNERABILITY SCANNING 203

5. T. Bennouas and F. de Montgolfier, “Random web crawls,” in Proceedings of the 16th

International Conference on World Wide Web, 2007, pp. 451-460.

6. C. Olston and M. Najork, “Web crawling,” Foundations and Trends in Information

Retrieval, Vol. 4, 2010, pp. 175-246.

7. F. Zhao, J. Zhou, C. Nie, H. Huang, and H. Jin, “Smartcrawler: a two-stage crawler

for efficiently harvesting deep-web interfaces,” IEEE Transactions on Services Com-

puting, vol. 9, 2016, pp. 608-620.

8. S. M. Mirtaheri, M. E. Dinc ţürk, S. Hooshmand, G. V. Bochmann, G. V. Jourdan,

and I. V. Onut, “A brief history of web crawlers,” in Proceedings of Conference of the

Center for Advanced Studies on Collaborative Research, 2013, pp. 40-54.

9. S. Gupta and K. K. Bhatia, “A comparative study of hidden web crawlers,” arXiv

Preprint, 2014, arXiv:1407.5732.

10. Y. W. Huang, S. K. Huang, T. P. Lin, and C. H. Tsai, “Web application security as-

sessment by fault injection and behavior monitoring,” in Proceedings of the 12th In-

ternational Conference on World Wide Web, 2003, pp. 148-159.

11. A. M. Fard and A. Mesbah, “Feedback-directed exploration of web applications to

derive test models.” in Proceedings of the 24th IEEE International Symposium on

Software Reliability Engineering, Vol. 13, 2013, pp. 278-287.

12. G. Pellegrino, C. Tschürtz, E. Bodden, and C. Rossow, “jÄk: using dynamic analysis

to crawl and test modern web applications,” in Proceedings of International Sympo-

sium on Recent Advances in Intrusion Detection, 2015, pp. 295-316.

13. A. Mesbah, A. Van Deursen, and S. Lenselink, “Crawling ajax-based web applica-

tions through dynamic analysis of user interface state changes,” ACM Transactions on

the Web, Vol. 6, 2012, pp. 1-30.

14. A. Huiyao, S. Yang, Y. Tao, L. Hui, Z. Peng, and Z. Jun, “A new architecture of ajax

web application security crawler with finite-state machine,” in Proceedings of Inter-

national Conference on Cyber-Enabled Distributed Computing and Knowledge Dis-

covery, 2014, pp. 112-117.

15. T. Fu, A. Abbasi, D. Zeng, and H. Chen, “Sentimental spidering: leveraging opinion

information in focused crawlers,” ACM Transactions on Information Systems, Vol. 30,

2012, pp. 1-30.

16. S. Xu, H. J. Yoon, and G. Tourassi, “A user-oriented web crawler for selectively ac-

quiring online content in e-health research,” Bioinformatics, Vol. 30, 2013, pp. 104-

114.

17. L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank citation ranking:

Bringing order to the web,” Technical Report No. SIDL-WP-1999-0120, Stanford

InfoLab, 1999.

18. R. Baeza-Yates, C. Castillo, M. Marin, and A. Rodriguez, “Crawling a country: bet-

ter strategies than breadth-first for web page ordering,” in Special interest tracks and

posters of the 14th International Conference on World Wide Web, 2005, pp. 864-872.

19. S. Kals, E. Kirda, C. Kruegel, and N. Jovanovic, “Secubat: a web vulnerability scan-

ner,” in Proceedings of the 15th International Conference on World Wide Web, 2006,

pp. 247-256.

20. A. Riancho, “w3af – Web application attack and audit framework,” https://github.com/

andresriancho/w3af, 2015.

H.-C. HUANG, Z.-K. ZHANG, C.-K. CHEN, W.-D. HONG, J.-C. JAO, S. SHIEH

204

21. Arachni, “Arachni − web application security scanner framework,” http://www.arach-

ni-scanner.com/, 2018.

22. PortSwigger, “Burp Suite – application security testing software,” https://portswigg-

er.net/burp, 2020.

23. Acunetix, “Acunetix web vulnerbility scanner,” https://www.acunetix.com/, 2020.

24. Micro Focus, “WebInspect,” https://www.microfocus.com/zh-tw/products/webinspe

ct-dynamic-analysis-dast/overview, 2020.

25. T. Berners-Lee, L. Masinter, and M. McCahill, “Uniform resource locators (URL),”

https://tools.ietf.org/html/rfc1738, 1994.

Hsiu-Chuan Huang (黃秀娟) received her M.S. degree in Com-

puter Science and Information Engineering from National Taiwan

University, Taiwan. She is currently a Ph.D. student in the Depart-

ment of Computer Science at National Yang Ming Chiao Tung Uni-

versity, Taiwan, and a Security Researcher of Chunghwa Telecom

Laboratories. Her current research interests include web security,

network security and machine learning.

Zhi-Kai Zhang (張智凱) received his Ph.D. degree in Com-

puter Science from National Chiao Tung University in 2018. He had

led Teaching and Learning Development Division of Hacker Col-

lege of NCTU. He is currently leading an R&D team for a startup,

and is also a course lecturer of Hacker College. His research interest

includes cryptography, cloud security, IoT security, penetration test-

ing, and information security education.

Chung-Kuan Chen (陳仲寬) is currently a Senior Researcher

in CyCraft, and is responsible for organizing their research team. He

earned his Ph.D. degree of Computer Science and Engineering from

National Chiao Tung University. His research focuses on network

attack and defense, machine learning, software vulnerability, mal-

ware and program analysis. He also dedicates to security education.

Founding of NCTU hacker research club, he trains students to par-

ticipate world-class security contests, and has experience of partici-

pating DEFCON Final CTF. He organized the research clubs to join

some bug bounty projects and discovered some CVEs in COTS software and several vul-

nerabilities in campus websites.

ADAPTIVE ENTRY POINT DISCOVERY FOR WEB VULNERABILITY SCANNING 205

Wei-Da Hong (洪偉達) is an Engineer from Taiwan. He loves

Python and tries to bring the Zen of Python into other programming

languages. With the advice from his mentors, he received his M.S.

degree in Computer Science from National Chiao Tung University

in 2017.

Jui-Chien Jao (饒瑞謙) received his M.S. degree in Computer

Science from National Chiao Tung University, Taiwan. His research

interests include web security, and penetration testing. He is cur-

rently a member of SIRT in Synology Inc.

Shiuhpyng Shieh (謝續平) received his Ph.D. degree in Elec-

trical and Computer Engineering from the University of Maryland,

College Park, and is currently a Chair Professor of Computer Sci-

ence Department of National Yang Ming Chiao Tung University. He

is an IEEE Fellow and ACM Distinguished Scientist. His research

interests include enterprise security, intrusion detection, threat hunt-

ing, and user behavior analytics using AI.

