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Due to recent progresses made by state-of-the-art deep learning approaches, the facial
age progression and regression has become an attractive research topic in the fields of com-
puter vision. Many existing approaches require paired data which refer to the face images of
the same person at different ages. As the cost of collecting such paired datasets is expensive,
some emerging approaches have been proposed to learn the facial age manifold from un-
paired data. However, the images generated by these approaches suffer from the weakness in
generating some age traits, for example wrinkles and creases. To generate better age traits,
we propose the Successive Multitask GAN (SM-GAN) for age progression and regression.
The SM-GAN consists of n triple networks, [T0,T1, ...,Tn−1], and a face feature extractor
C. Each triple network Ti consists of a generator Gi, a discriminator Di and a multitask
classifier Mi, i.e., Ti = [Gi,Di,Mi]. Gi is trained for transforming between neighboring age
groups. Di is trained to distinguish the generated faces from the real faces in each age group
in the training set. Mi is trained for age and gender classification. The face feature extractor
C warrants the identity consistency between the input and the generated output of Gi. The
pixel-wise loss is also exploited to maintain the image attributes between the input and the
generated output.To better define the age groups appropriate for successive age generation,
we propose a facial age clustering approach to better determine the boundary ages needed
for age segmentation. Experiments show that the proposed SM-GAN can generates better
facial age images with better age traits compared with other contemporary approaches.

Keywords: generative adversarial network, face generation, facial age transformation, age
progression and regression, face recognition

1. INTRODUCTION

Given a face as input, the facial age progression/regression refers to the generation
of facial images at older/younger ages for the same input face in the sense that the identity
of the input face can be well preserved in the output. This is a challenging task due to
the intrinsic complexity of the facial appearance variation caused by the physical aging
process, which can be related to physical condition, gender, race, makeup and other fac-
tors. It has received increasing attention in recent years because of the effectiveness of
deep learning approaches, the availability of large facial aging datasets and commercial
potentials. Some approaches are developed based on GAN. For example, the S2GAN
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[1] encodes the personalized aging basis and applies specific age transforms to create
an age representation to decode aged faces. The IPCGAN [2] generates face images for
different age groups using a conditional GAN, and preserves the input identity with an
identity-preserving module.

The proposed architecture fuses an Adversarial Autoencoder (AAE) and a Gener-
ative Adversarial Network (GAN) for facial age progression and regression. The most
relevant works include the Conditional Adversarial Autoencoder (CAAE) proposed by
Zhang et al. [3] and the Disentangled Representation-learning GAN (DR-GAN) proposed
by Luan et al. [4].

The CAAE is designed to transform an input image to a low-dimensional latent vec-
tor by an encoder, which can disentangle personality and age features, and to learn the
facial age manifold by mapping the latent vector into a high-dimensional space for image
generation. The low-dimensional latent vector is manipulated to control the facial age
manifold to achieve smooth age progression and regression. The CAAE framework con-
tains an adversarial network to make the generated image more realistic. However, the
CAAE cannot handle non-frontal faces or faces with large illumination variation, and in
many cases the generated images lose some age clues, for example, wrinkles.

The DR-GAN is built on the common two-player GAN setup, its generator explores
a special encoder-decoder structure, leading to the desired disentanglement. The input
to the encoder is a face image of any pose, the output of the decoder is a synthetic face
at a target pose, and the learned facial representation connects the encoder and decoder.
The discriminator follows the same discriminator design in the Categorical Generative
Adversarial (CGA) network [5] which is trained to not only distinguish synthetic from
real images, but also predict the identity and pose.

For facial age progression and regression, many approaches consider the age groups
that are separated by age boundaries. The most common choice is the 10-year interval,
e.g., 21-30, 31-40, 41-50 and beyond 50 with age boundaries at 30, 40 and 50. We call
these Regular Boundary (RB), which are postulated in an ad-hoc way without interpreta-
tion, and can be different one another in different works [1, 2, 6, 7] . To better determine
the age boundaries, we propose the Clustering-based Boundary (CB) that clusters similar
age features in each age group.

The novelties of the proposed network include the following:

1. The generator Gi is trained to disentangle the identity-preserving latent vector uk
from the age-dependent code ua and gender-dependent code ug. The disentangled
representations allows to alter the age of the input image x to produce the desired
age at the output x̂. Different from the CAAE that computes the L2 loss between the
input and generated images for keeping the facial appearances similar, we extract
the identity latent vector from the disentangled representation learning by comput-
ing the losses from the discriminators Di.

2. Unlike the discriminator in the CAAE that only distinguishes the generated (fake)
image from the real image, the multitask discriminator Mi in the proposed frame-
work does not just learn to distinguish fake from real images, but also classifies the
identity and age of the real and generated images. This makes the proposed net-
work different from the DR-GAN, where the discriminator is trained to distinguish
fake/real and classify the pose and identity.
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Fig. 1. Our proposed framework for facial age progression/regression consists of a generator Gi, a
discriminator Di and a multitask classifier Mi. Gi consists of the encoder Ge

i and decoder Gd
i . Ge

i
encodes an input image to a latent vector uk, which will be concatenated with an age code ua and a
gender code ug, and [uk,ua,ug] enters Gd

i as input and generate x̂k. Di aims to make x̂k look realistic,
and Miconstrain x̂k’s age and gender in the desired age and gender, and pixel wise loss make x̂k’s
close to xk to preserve image content.

3. To improve the training stability, we implement the Wasserstein loss in the dis-
criminator Di following the settings in the Wasserstein GAN with gradient penalty
(WGAN-GP) instead of the cross-entropy loss considered in the common GANs.

The rest of the paper is organized as follows: we will present the proposed framework
in details in Section 2. Section 3 presents the experimental protocols and results, followed
by a conclusion given in Section 4.

2. PROPOSED APPROACH

The proposed framework consists of n triple networks denoted as [T0,T1, ...,Tn−1]
and a face feature extractor C. Each triple network Ti consists of a generator Gi, a dis-
criminator Di and a multitask classifier Mi, i.e., Ti = [Gi,Di,Mi]. The face feature extractor
C warrants the identity consistency between the input and the generated output of Gi. The
pixel-wise loss is made to maintain the similarity between the input and the generated
output. The system configuration is shown in Fig. 1.

Given a face image x as input and a target age at , the piecewise generator G =
[G0,G1, ...,Gn−1] generates an output image x̂ = G(x) that preserves the identity of x and
shows the age traits of the target age at . The n triple networks [Ti]

n−1
i=0 are meant to char-

acterize the facial appearance transformation across the n+ 1 age groups [A0,A1, ...,An],
where Ai is a set of faces within a specific age span, and the ages contained in Ai increase
with i. Given the age groups [A0,A1, ...,An], the learning of the framework involves the
following states and settings:

1. The piecewise generator G is structured as a series of n successive generators, i.e.,
G = [G0,G1, ...,Gn−1]. Gi is trained for transforming between the age groups Ai



782 RUI-CANG XIE, ZHI-TING CHEN, GEE-SERN (JISON) HSU

and Ai+1. Each Gi consists of an encoder Ge
i and a decoder Gd

i . Given an image
xk, the encoder Ge

i is trained to encode xk into a latent vector uk = Ge
i (xk), which is

made disentangled of the age and gender through training. uk will be concatenated
with an age code ua and a gender code ug to form vk = [uk,ua,ug]. The decoder Gd

i
is trained to decode vk to an image x̂k = Gd

i (vk) with the same identity as of xk and
at the target age defined by the age code ua. ua ∈R2 is meant to transform the age of
x̂k = Gi(xk) between Ai and Ai+1. The gender code ug keeps the gender consistency
between input and output. The identity is preserved by considering the identity loss
evaluated by the face classifier C when training Gi. In addition to the identity loss,
the adversarial loss of Di, the classification loss of Mi and the pixel-wise loss are
all considered when training Gi.

2. The discriminator Di is trained to distinguish the real face images xk from the gen-
erated x̂k.

3. The multitask classifier Mi is trained for age and gender classification. When up-
dating the parameters in Mi during training, we only consider the real data. When
updating Gi during training, we consider the classification loss computed from both
the real and generated data.

4. The face feature extractor C is formed by the feature embedding layers of a pre-
trained model which delivers a state-of-the-art performance for face verification.
The feature loss between xk and x̂k evaluated by C is considered when training Gi.

5. The pixel-wise loss computes the pixel-to-pixel loss of the input xk and the output
x̂k images, the purpose is to preserve similarity between the input and output some
variables, e.g., the pose and illumination condition can be partially kept.

In summary, our framework can be split into two parts, the loss function network C and the
pixel-wise loss, and the successive generation networks [Ti]i. The loss function network
is made by the feature embedding layers of the networks trained for face recognition and
age estimation. The loss function network is not updated during training, and used purely
as a loss function that computes the difference between the input image x and the gener-
ated image x̂. The successive generation networks are designed to capture the successive
transformation of the facial appearance across different age periods. The objective con-
sidered when training the successive generation networks includes the losses evaluated by
the loss function networks. The details are presented in the next two sections.

2.1 Loss Function Networks

The facial feature extractor C is formed by the feature embedding layers of the Ar-
cFace network [8]. The ArcFace considers the additive angular margin loss for making
the highly discriminative feature for face recognition. The feature can be interpreted ge-
ometrically as the correspondence to geodesic distance on a hypersphere. The ResNet-50
and ResNet-100 are employed as the feature embedding network, followed by batch nor-
malization (BN) [9], dropout, a fully connected layer and another BN, generating a 512D
embedding feature. In our framework, we choose the ResNet-50 for a faster runtime speed
(8.9 ms/face v.s. 15.4 ms/face on ResNet-100 [10]). The embedding feature vectors for
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the input image x and the generated x̂ = Gi(x) can be written as C(x) and the generated
C(x̂), respectively. The facial feature loss is defined as the cosine distance between C(x)
and C(x̂),

Lc =
C(x) ·C(x̂)
||C(x)||||C(x̂)||

. (1)

We compared the similarity between the input x and the generated x̂ by computing
the following pixel-wise loss,

Lp =
1

W ∗H ∗C
||x− x̂||22. (2)

2.2 Successive Generation Network

The three component networks Gi, Di and Mi are built on the same base net, which is
modified from the CASIA network as the CASIA network is relatively simple in structure
but delivers a satisfying performance for face verification [11]. To improve the learning
properties, we have implemented the group normalization [12] and replaced the MaxPool
and ReLU by the strided convolution and exponential linear unit (ELU) [13], respectively.

When an input image xk is presented to Gi, Ge
i encodes it into a latent vector uk,

which is made disentangled of the age and gender through training. uk will be con-
catenated with an age code ua and a gender code ug to form the disentangled feature
vk = [uk,ua,ug]. The decoder Gd

i is trained to decode uk to an image x̂k = Gd
i (uk) with

the same identity as of xk and at the target age defined by the age code ua. The age code
ua ∈ R2 can control the generation of x̂k = Gi(xk) with age in either Ai or Ai+1. The
gender code ug aims to keep the gender consistency between input and output. The dis-
entanglement can be achieved if the generated image x̂ meets the following requirements:
1) a realistic quality, 2) the generated age trait strong enough to be claimed as for the
target age, 3) the gender consistency with x. Additionally, our framework also requires
the identity preservation and perceptual similarity with x. For requirement 1), we need to
consider the adversarial loss for Di. For requirements 2) and 3), we need to define the age
and gender classification loss for Mi. For the additional requirements, we consider the
face feature loss in Eq. (4) and pixel-wise loss when training Gi.

Because of the training instability of the common discriminator caused by the min-
imization of Jensen-Shannon divergence, we explore the Wasserstein Generative Adver-
sarial Network (WGAN) [14]. The discriminator in the WGAN considers a cost function
based on the Wasserstein-1 distance between the data distribution pd and the model dis-
tribution pg, denoted as W (pd , pg), converting the problem to the cost of transporting the
mass of pg to that of pd . We employ the WGAN with a gradient penalty (WGAN-GP)
[14], where a constraint is imposed on the gradient norm of the discriminator’s output and
the following adversarial loss LDi

adv is considered:

LDi
adv = Ex∼pd

[
Di(x)

]
−Ex̂∼pg

[
Di(x̂)

]
+λEx̂∼px̂

[
(||∇x̂Di(x̂)−1||2)2

]
(3)

where λ is the parameter to adjust the gradient penalty.
The multitask classifier Mi aims for enhancing the age classification and enforcing

the gender consistency between the input and output. Instead of using the conventional
softmax function to compute the classification loss, we employed the additive angular
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margin loss (known as ArcFace loss [8]), which is written as follows:

Lm =− 1
N

N

∑
i=1

log
e‖xi‖ψ(θyi ,i+m)

e‖xi‖ψ(θyi ,i+m) +∑
n
j 6=yi

e‖xi‖cos(θ j ,i)
(4)

where N is the batch size, n is the class number, θ j,i is the angle between the weight
w j and the deep feature of xi that belongs to the yi-th class, m is the additive angu-
lar margin penalty between xi and w j. ψ(θyi,i) is a monotonic function, ψ(θyi,i) =

(−1)k cos(maθyi,i)− 2k, where θyi,i ∈ [ kπ

ma
, (k+1)π

ma
] and k ∈ [0,ma− 1]. ma ≥ 1 is an in-

teger that controls the angular margin. See [8] for details.
The ArcFace loss in (4) is employed to compute the age classification loss La for the

age groups [Ai]i, and the gender classification loss Lg for the gender groups, which are set
as 2 groups by default. When training Mi, we optimize LMi

a and LMi
g by considering the

real images [xi]i only. When training Gi, we optimize LGi
a and LGi

g by considering both the
real images [xi]i and the generated [x̂i]i, as Gi is trained to generate better x̂i to be correctly
classified in age and gender.

The above discussion can be summarized to describe the three losses: 1) The loss
considered when training the generator Gi includes the adversarial loss LDi

adv, the age clas-
sification loss LGi

a , the gender classification loss LGi
g , the face classification loss Lc and the

pixel-wise loss Lp; 2) The loss considered when training Di is the adversarial loss LDi
adv

only; 3) The loss considered when training Mi includes the age classification loss LMi
a and

the gender classification loss LMi
g . Therefore, the loss functions for Gi, Di and Mi can be

written as follows:

LGi = LDi
adv +λ aLGi

a +λ gLGi
g +λ cLc +λ pLp (5)

LDi = LDi
adv (6)

LMi = LMi
a +LMi

g (7)

2.3 Clustering for Age Segmentation

Instead of using the common ad-hoc ways for defining the age groups (as those re-
viewed in Section 1), a clustering approach is proposed for the desired age segmentation.
The approach is developed based on the fact that the difference in facial appearance be-
tween two faces of different ages increases with the age gap, and the same also applies
to two groups of faces of different ages. We first extract the facial age feature by using a
fine-tuned Deep EXpectation (DEX) age estimator [15], and apply the Gaussian Mixture
Model (GMM) [16] to cluster the extracted age features. Given a training set Dt and a
validation set Dv, the proposed approach consists of the following steps:

1. We retrain the pretrained DEX age estimator on the training set Dt so that the re-
trained DEX model can better encode the faces in the MORPH and CACD datasets.
We extract the 4096D features from the last fully-connected (fc) layer as the facial
age feature.

2. As the 4096D feature vector is too high in dimension to be properly clustered,
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Fig. 2. MORPH and CACD mislabel distribution under age 16-22.

Fig. 3. MORPH and CACD reduce the dimension to a two-dimensional distribution.

we run an exhaustive search for the appropriate feature dimension by using the
TruncatedSVD [17] together with the GMM (Gaussian Mixture Model) clustering.
It is found that the 8D reduced feature vector is sufficient for characterizing the ages
in both the MORPH and CACD.

3. It is known that the CACD [18] has a lot of labeling noises. Some samples of the
noises can be seen using the 8D age feature vectors. To better observe these noise
samples, we further reduce the dimension of the 8D age feature vector to 2D by
using the aforementioned TruncatedSVD [17]. Fig. 2 shows some portion of such
samples in the 2D feature space with two corresponding images displayed.

4. To remove the data with labeling noise, we only select the data with 8D age feature
within a threshold for each age group in the feature space as the valid set. The
threshold is formed by r · σi, where r is a weight factor and σi is the standard
deviation of the data within age group i. We ran experiments on r from 1 to 2, and
selected 1.6 as the best. Fig. 3 shows the noise-removed data, reduced to 2D for
better visualization.

Based on the above approach, the clustering of the first two dimensional components for
the MORPH and CACD is shown in Fig. 4. We select the age groups: 16-22 23-30 31-37
38-45 46+ for the MORPH and 16-27 28-35 36-42 43-50 51+ for the CACD.
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Fig. 4. MORPH and CACD result of clustering-based boundary.

3. EXPERIMENTS

3.1 Database and Setup

The MORPH [19] and the CACD [18] databases are used in our experiments. The
MORPH is one of the largest publicly available longitudinal face database with mugshot
images, and it includes the meta data for race, gender, date of birth, and date of acqui-
sition. Our experiments were performed on MORPH Album-2 which contains 55,134
images of 13,000 individuals with age between 16 to 77 years. The CACD [18] contains
163,446 face images of 2,000 celebrities captured in much less controlled conditions. Be-
sides large variations in pose, illumination, and expression, images in CACD are collected
via Google Image Search, making it a very challenging dataset due to the mismatching
between actual face presented in each image and associated labels provided (name and
age). The FG-NET[20] dataset consists of 1,002 images of 82 individuals with age be-
tween 1 to 69. As only very limited images are available, we use the FG-NET for the
validation experiment in which the generated images are compared against the real face
images.

According to Clustering-based Boundary results, we divided each database into five
age groups. The thresholds adopted in our face verification experiments were the same as
those used in [21], i.e., threshold = 76.5 for FAR = 1e – 5. We randomly select 80% of
the images as the training set and the rest 20% as the testing set and ran five-fold cross
validation for the experiments. For each run, four folds were used for training, and the
remaining fold was used for performance evaluation. The average of the five outcomes
was taken as the performance to report. The metric measurements for the performance
are all conducted via the public APIs of Face++ [22]. To set up the experiments, we first
aligned the faces by using the landmark detection algorithm and code offered in [23], and
cropped each image to 100×100 pixels. When each image was entered to the framework,
it was cropped randomly using a 96×96 window for data augmentation. We used the
Adam optimizer to solve for the networks Gi and Di with learning rate 2e−4 and batch
size 64. The networks were trained from scratch. We updated the discriminator Di for
every 4 iterations on the generator Gi.
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Fig. 5. The samples generated for age progression and regression from the Morph. The leftmost
column shows the input images with corresponding age labels, and the rest columns are images
generated for different age groups.

3.2 Performance Evaluation

3.2.1 Age transfer accuracy

Given an input face and target age label, the proposed network is trained to generate
an output face with the same identity as input and in the age as specified by the age label.
Some samples of the generated images and the given input faces are shown in Fig. 5. On
the MORPH and CACD, the face images of the whole testing set are transferred to each
age group. We estimated the ages of both the generated images and the originals in the
dataset using the Face++ APIs for fair comparison. The performance in Table 1 shows the
comparison of the proposed SM-GAN with three contemporary approaches, the CAAE
[3], IPCGAN [2] and S2GAN [1]. There are two settings for our SM-GAN in Table 1, one
with the ad-hoc regular boundaries (RB) for the following age intervals: 16-20, 21-30, 31-
40, 41-50 and 51+ and the Clustering-based Boundary (CB). Following the CB scheme
presented in Section 2.3, we select the following age intervals for MORPH: 16-22, 23-30,
31-37, 38-45 and 46+; and 16-27, 28-35, 36-42, 43-50 and 51+ for the CACD. The upper
part of Table 1 shows the estimated ages and the lower part shows the mean absolute
errors (MAE). It demonstrates that the proposed SM-GAN with RB can be comparable in
performance to the IPCGAN and S2GAN, and it can outperform both with CB.

3.2.2 Identity preservation

In identity evaluation we only consider translations from the youngest group to the
other age groups, same as [21]. To evaluate the performance of the proposed method ob-
jectively, all metric measurements are conducted via stable public APIs of Face++ [22].
Thresholds adopted in our face verification experiments (threshold = 76.5, FAR = 1e –
5) are the same as those used in [21]. Therefore, quantitative results of our experiments
are comparable to those reported in [21]. Face verification experiments are conducted to
check whether the identity information has been preserved during the face aging process.
Similar to previous literature, comparisons between synthetic elderly face images from
different age groups of the same subject are also conducted to inspect if the identity in-
formation is consistent among different separately trained age mappings. The results are
shown in Table 2. It shows that our SM-GAN with RB can effectively retain the iden-
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Table 1. Age evaluation on MORPH and CACD (Age).
MORPH CACD

Age groups -20 21-30 31-40 41-50 51+ -20 21-30 31-40 41-50 51+
CAAE [3] 22.03 25.1 30.14 34.69 40.6 25.42 29.64 32.61 37.92 41.9
IPCGAN [2] 21.42 28.74 35.91 44.8 51.11 19.73 27.43 36.22 44.7 52.53
S2GAN [1] 18.26 25.83 35.44 45.22 53.64 17.61 24.05 36.07 45.73 55.31
Ours (RB) 20.97 28.25 35.42 45.2 52.97 16.64 28.08 36.9 45.31 52.43
Age groups -22 23-30 31-37 38-45 46+ -27 28-35 36-42 43-50 51+
Ours (CB) 21.88 27.84 35.43 42.04 51.45 24.26 31.94 38.41 47.31 52.66

Absolute Difference between Mean Ages (MAE)
CAAE [3] 2.72 1.62 7.7 12.74 14.65 6.8 3.33 1.91 9.48 11.81
IPCGAN [2] 2.11 2.02 1.93 2.63 4.14 1.11 1.12 1.7 2.7 1.18
S2GAN [1] 1.05 0.89 2.4 2.21 1.61 1.01 2.26 1.55 1.67 1.6
Ours (RB) 1.66 1.53 2.42 2.23 2.28 1.98 1.77 2.38 2.09 1.28
Ours (CB) 1.39 0.84 0.98 1.46 1.89 1.01 1.68 1.35 1.37 1.05

Table 2. Face verification rates on MORPH and CACD (%).
MORPH CACD

Age groups -20 21-30 31-40 41-50 51+ -20 21-30 31-40 41-50 51+
CAAE [3] 57.5 53.9 58.7 6.0 5.6 57.6 61.8 43.8 37.9 11.0
IPCGAN [2] 62.3 47.8 76.3 79.7 54.2 73.8 80.3 72.4 73.1 77.2
S2GAN [1] 95.1 93.3 92.3 95.0 89.3 96.4 97.2 94.9 97.2 95.2
Ours (RB) 99.89 98.49 97.78 97.11 96.45 99.84 97.43 98.66 97.18 96.51
Age groups -22 23-30 31-37 38-45 46+ -27 28-35 36-42 43-50 51+
Ours (CB) 99.76 99.52 98.83 96.33 94.33 99.88 97.9 98.37 97.02 96.72

tity compared to other methods, and it is much higher than the IPCGAN [2] and S2GAN
[1]. It can also be seen that our SM-GAN with CB performs similarly, reflecting that
the age boundaries can have a stronger influence on the facial age generation than on the
identity preservation. However, to better transform facial age and preserve identity, the
appropriately designed age boundaries are still needed.

3.2.3 Qualitative comparison with prior work

For qualitative comparison, we select several state-of-the-art approaches, including
the face transformer (FT) [24], the coupled dictionary learning (CDL) [25], the hidden
factor analysis (RFA) [26], the CAAE [3], the improved CAAE (CAAE++) [27], the
contextual GANs (C-GAN) [28], the global and local consistent age GANs (GLCA-GAN)
[7], and the Pyramid Architecture of GANs (PAGAN) [6]. Fig. 6 shows the comparison,
with the input images on the top row, the images generated by other approaches in the
middle row and the image generated by our approach at the bottom. The images generated
by other approaches are directly cropped from their papers and pasted. It shows that
our approach can generate clearer wrinkles, gray beards and more senior characteristics
for progressing the age; it can also generate baby-like faces for regressing the age and
generate good results in diverse backgrounds.

4. CONCLUSION

We propose the Successive Multitask GAN (SM-GAN) for age progression and re-
gression. The SM-GAN is composed of n triple networks, [T0,T1, ...,Tn−1], and a face
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Fig. 6. Comparison with state-of-the-art approaches. Top row are input images, the images gener-
ated by SOTA in the middle row and those generated by the proposed approach are in the bottom.

feature extractor C. Each triple network Ti consists of a generator Gi, a discriminator Di
and a multitask classifier Mi, i.e., Ti = [Gi,Di,Mi]. Gi is trained together with Di and
Mi for transforming between neighboring age groups, distinguishing the generated faces
from the real faces in each age group, and classifying the age and gender of the generated
faces. To better determine the boundary ages required by the SM-GAN, we propose a
Clustering-based Boundary which is verified effective in our experiments. The proposed
network also explores the state-of-the-art facial feature extractor and the pixel-wise loss
to preserve identity and image attributes of the input. Experiments have demonstrated the
performance for facial age progression/regression with identity preservation and robust-
ness against cluttered backgrounds.
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