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Through this article we portray the anti anticipate synchronization (AAS) for pair sim-
ilar non-linear chaotic complex structures. A plan is intended to realize AAS of chaotic
conduct from these structures based on the Lyapunov function. To confirm the viability
of the constructed scheme, the AAS of pair similar complex Lü structures is drawn as an
example. Numerical calculations are determined to show the usefulness of the controller’s
theoretical explanations. A basic implementation of secure communication is accomplished
depending on the results of AAS.
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1. INTRODUCTION

Following Lorenz figured out the first chaotic structure portrayed with real factors
[1], so numerous chaotic structures including real factors were described [2-5]. Fowler
et al. implemented the Lorenz complex form in 1982 as a generalisation of the Lorenz
structure with real factors [6]. Mahmoud et al. developed and researched several unsta-
ble, complex structures during the last few years [7-13]. It is fully understood that there
is a much broader application of unstable, complex non-linear structures. Concerning il-
lustration during they include electromagnetic field amplitudes [14]. Also there is extra
instance, during the chaotic complex structure is being utilized for correspondence, wher-
ever the quantity of factors can be multiplied to maximize the complexity and reliability
of the data sent [15].
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Recently a number of different synchronization regimes have been suggested for
chaotic structures with complex factors [16-20]. If we describe the state vectors of pair
chaotic complex structures as x(t) and y(t), the pair structures are attaining complete syn-
chronization (CS) with error function lim

t−→∞
‖y(t)−x(t)‖ = 0 [16]. Anti synchronization

(AS) is characterized when an error occurs lim
t−→∞

‖y(t)+x(t)‖ = 0. This designates that
the state factors of pair chaotic complex interactive structures have the same amplitude
but are different in the indication [17]. Lag synchronization (LS) infers that only the state
factors of the pair chaotic complex structures are synchronised with positive lag time τ0,
i.e., lim

t−→∞
‖y(t)−x(t − τ0)‖ = 0 [18, 19]. The anticipate synchronization is achieve if

we define the error function as lim
t−→∞

‖y(t)−x(t + τ)‖= 0, where τ is the anticipate time
[20].

Anticipated synchronization is a fascinating phenomenon that has recently been re-
leased that enables one to anticipate or predict the dynamics non-linear structures using
a specific structure acronical master-slave synchronization [20, 21]. In theory, there may
be an arbitrary broad forecast horizon acquired through a conveyor belt of anticipated
synchronized exact slave reproductions of the actual structure [22]. The anticipating syn-
chronization has a lot of applications in semiconductor lasers, chaotic laser diodes and
cryptographic purposes. In this work we ask what will happen if the structure of slave
anticipated actions of an opposite-shaped master structure. We will deal with a new kind
of synchronizations that has never been studied in the literature. We may call this kind of
synchronizations “AAS”.

Throughout this article, we wish to debate the probability of achieving AAS among
pair similar chaotic complex structures that were not actually introduced in the litera-
ture. In AAS the aggregate of master structure with anticipate time x(t + τ) and the slave
structure y(t) is vanishing when t −→∞. The principle of AAS is not yet observed in real
(or complex) chaotic (or hyperchaotic) structures, either. So it is necessary to adopt the
concept of AAS when the master and slave structures are similar. The use of AAS con-
tributes to the assumption that the receiving device requires the message to be sent before
it is delivered, and in the analysis of secure communications that did not appear before.

The paper’s structure is as follows. Section 2 includes a definition of the non-linear
structure of n-dimensional chaotic complexes structures. Section 3 sets out the nature of
the conceptual scheme for achieving AAS in chaotic dynamic non-linear structures. In
Section 4, as a contrast to Section 3, we are addressing AAS of pair similar chaotic Lü
structures. Based the results of section 4 the a simple application of secure communication
is displayed. Ultimately, Section 6 outlines the principal findings of our inquiries.

2. A CHAOTIC COMPLEX NON-LINEAR STRUCTURES

If it is deterministic, a complex dynamic structure is called chaotic, has an intermit-
tent behavior and displays sensible dependence on the primary requirements. To ensure
that the device is dissipative, the total of Lyapunov exponents requirement signifies neg-
ative. It has wide possible in non-linear orbits, safe information, lasers, neural nepairrks,
biological structures and so on. This is because of the chaotic systems is unstable complex
structures with high capacity characteristics, high protection and high efficiency. Work



ANTI ANTICIPATE SYNCHRONIZATION 43

on chaotic dynamic, non-linear structures is therefore now extremely important [23, 24].
Find the chaotic complex non-linear structure as obeys:

ẋ = Φx+h(x), (1)

where the state of complex vector is x = (x1, x2, ..., xn)
T , x = xr + jxi = (u1 + ju2,

u3 + ju4, ..., u2n−1 + ju2n)
T , j2 = −1, T transposing denotes. The real (or complex)

matrix of structure parameters is Φ ∈ Rn×n and h = (h1, h2, ..., hn)
T is the form of the

non-linear complex functions and the r and i superscripts stand for the real and imaginary
parts of the state complex vector x.

Throughout this paper, by designing a control scheme, we investigate the AAS
phenomenon of pair similar form Eq. (1) structures with known parameters. We have
numerically tested its validity.

Remark 1: Many complex chaotic structures can be represented by Eq. (1), like
complex Lorenz, Chen and Lü structures [14]. To show the results of our scheme of pair
similar type structures (1), we pick, as an example, the chaotic complex Lü structure that
was implemented and studied in our research [14]. The equations of chaotic Lü structure
with complex factors are fromed as:

ẋ = ρ(y− x),

ẏ = νy− xz, (2)
ż = 1/2(x̄y+ xȳ)−µz,

where x = (x1,x2,x3)
T = (x,y,z)T ,ρ,µ and ν are positive parameters, x = u1 + ju2, y =

u3 + ju4 are complex functions, and ul (l = 1, ...,4), z = u5 are real functions. Dots are
time-related derivatives and an overbar signifies complex conjugate factors.

The chaotic Lü complex structure is a specific autonomous 5-dimensional, flowing
structure. In the case of ρ = 40, µ = 5, ν = 22 structure (2) has chaotic attractor, observe
Fig. 1. For more complex attributes on this structure please see [14].

3. A SCHEME FOR CREATING A COMPLEX
AAS CONTROLLER

Suppose pair similar chaotic non-linear structures with complex factor of the ar-
rangement (1). We express the master structure by the index m as:

ẋm = ẋr
m + jẋi

m = Φxm +h(xm). (3)

The controlled slave structure with the index s is formed as:

ẋs = ẋr
s + jẋi

s = Φxs +h(xs)+V, (4)

where V =(V1, V2, ..., Vn)
T= Vr + jVi, Vr=(v1, v3, ..., v2n−1)

T , Vi=(v2, v4, ..., v2n)
T .

Definition: Pair similar complex dynamical structures in a master-slave configuration can
display AAS If a complex error vector δ exists, set such as:

δ=δ
r + jδ i = lim

t−→∞
‖xs(t)+xm(t + τ)‖= 0, (5)
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Fig. 1. Some attractors of the complx Lü system in some planes.

where δ = (δ1, δ2, ...,δn)
T , xm(t) and ys(t) are the region complex vectors of the master

and slave structures, even if they are similar, δ
r = lim

t−→∞
‖xr

s(t)+xr
m(t + τ)‖ = 0 and

δ
i = lim

t−→∞

∥∥xi
s(t)+xi

m(t + τ)
∥∥= 0, δ

r = (δu1 , δu3 , ..., δu2n−1)
T , δ

i = (δu2 , δu4 , ..., δu2n)
T ,

and τ is the positive anitcipate time.

Remark 2: If we set τ = 0 in Eq. (5) we describe AS among structures (3) and (4) [17].

Remark 3: When δ= lim
t−→∞

‖ys(t)−xm(t + τ)‖ and τ = 0, we get CS of structures (3)
and (4) [16], while if τ < 0 we concern LS of the same structures [18].

Theorem 1: If non-linear controller is outlined as:

V =Vr + jVi =−Φxs(t)−h(xs(t))−Φxm(t + τ)−h(xm(t + τ))−kδ

=−Φxr
s(t)−hr(xs(t))−Φxr

m(t + τ)−hr(xm(t + τ))−kδ
r (6)

+ j[−Φxi
s(t)−hi(xs(t))−Φxi

m(t + τ)−hi(xm(t + τ))−kδ
i],

then the slave structure (4) anti-anticipate synchronize the master structure (3), where
k > 0.
Proof: By using the meaning of AAS:

δ=δ
r+ jδ i = xs(t)+xm(t + τ). (7)
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So,

δ̇=δ̇
r
+ jδ̇

i
= ẋs(t)+ ẋm(t + τ) (8)

= ẋr
s(t)+ẋr

m(t + τ)+ j[ẋi
s(t)+ẋi

m(t + τ)],

and by utilizing complex structures (3) and (4), we gain the error dynamical structure as:

δ̇=δ̇
r
+ jδ̇

i
= Φxr

s(t)+hr(xs(t))+Φxr
m(t + τ)+hr(xm(t + τ))+Lr (9)

+ j[Φxi
s(t)+hi(xs(t))+Φxi

m(t + τ)+hi(xm(t + τ))]+Li.

By dividing the real and the imaginary components in Eq. (9), the structure of the error is
composed as:{

δ̇
r
= Φxr

s(t)+hr(xs(t))+Φxr
m(t + τ)+hr(xm(t + τ))+Lr,

δ̇
i
= Φxi

s(t)+hi(xs(t))+Φxi
m(t + τ)+hi(xm(t + τ))]+Li.

(10)

For this structure, we can now describe the function of Lyapunov by the subsequent posi-
tive clear amount:

L(t) = 1
2 [(δ

r)T
δ

r +(δ i)T
δ

i],

= 1
2

(
n

∑
l=1

δ
2
u2l−1

+
n

∑
l=1

δ
2
u2l

)
. (11)

Keep in mind that the complete time speculative of L(t) across the path of the error struc-
ture (10) is as obeys:

L̇(t) =(δ̇
r
)T

δ
r +(δ̇

i
)T

δ
i,

=(Φxr
s(t)+hr(xs(t))+Φxr

m(t + τ)+hr(xm(t + τ))+Vr)T
δ

r (12)

+(Φxi
s(t)+hi(xs(t))+Φxi

m(t + τ)+hi(xm(t + τ))+Vi)T
δ

i.

Through replacing of (6) about Vr, Vi in Eq. (12) we get:

L̇(t) =− k[(δ r)T
δ

r +(δ i)T
δ

i] (13)

=− k

(
n

∑
l=1

δ
2
u2l−1

+
n

∑
l=1

δ
2
u2l

)
.

Considering that L(t) is a sure defined function and its derivative is negatively defined,
the error structure (9) is stable according to the famous Lyapunov hypothesis, which in-
dicates that δu2l and δu2l−1 perform to zero as t→ ∞, l = 1,2, ...,n. As a result, the Slave
Structure and Master Structure states will be globally anti-anticipated synchronized with
anticipatory time. This is completing the proof.

Certainly, our scheme is highlighted by employing it in Section 4 for a pair of similar
chaotic Lü structures with complex factors.
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4. AN EXAMPLE OF AN AAS WITH PAIR SIMILAR
COMPLEX CHAOTIC STRUCTURES

Now let’s view at the AAS pair of similar chaotic complex Lü structures as an in-
stance for Section 3. The master and the slave structures are thus described as reads,
individually:

ẋm =ρ (ym− xm) ,

ẏm =νym− xmzm, (14)
żm =1/2(x̄mym + xmȳm)−µzm,

and
.

xs =ρ (ys− xs)+V1,
.

ys =νys− xszs +V2, (15)
.

zs =1/2(x̄sys + xsȳs)−µzs +V3,

where xm = u1m + ju2m, ym = u3m + ju4m, zm = u5m, xs = u1s + ju2s, ys = u3s + ju4s and
zs = u5s, ”uber bar” refers to complex conjugation, V1 = v1 + jv2, V2 = v3 + jv4 and
V3 = v5 are the controller, which to decide.

The complicated structures (14) and (15) could be composed as: ẋm
ẏm
żm

=

−ρ ρ 0
0 ν 0
0 0 −µ

 xm
ym
zm

+

 0
−xmzm

1/2(x̄mym + xmȳm)

 , (16)

and  ẋs
ẏs
żs

=

−ρ ρ 0
0 ν 0
0 0 −µ

 xs
ys
zs

+

 0
−xszs

1/2(x̄sys + xsȳs)

+

 L1
L2
L3

 . (17)

Therefore, when you compare system structures (16) and (17) amidst the sort of
structures (3) and (4) sequentially, we observe:

Φ=

−ρ ρ 0
0 ν 0
0 0 −µ

 ,

h(xm)=

 0
−xmzm

1/2(x̄mym + xmȳm)

 , h(ys) =

 0
−xszs

1/2(x̄sys + xsȳs)

 .

The controller is built as: (According to Theorem 1)

V =−Φxs(t)−h(xs(t))−Φxm(t + τ)−h(xm(t + τ))−kδ ,

 V1
V2
V3

=

−ρ (ys(t)− xs(t))−ws(t)−ρ (ym(t + τ)− xm(t + τ))− kδ1
−νys(t)+φ1−ws(t)−νym(t + τ)+φ2− kδ2
−φ3 +µzs(t)−φ4 +µzm(t + τ)− kδ3
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Fig. 2. The states of the master and slave systems when the AAS is achieving.

=

−ρ(u3s(t)−u1s(t)+u3m(t + τ)−u1m(t + τ))−kδ u1
−ν(u3s(t)+u3m(t + τ))+φ5−kδ u3
−φ7 +µ(u5s(t)+u5m(t + τ))−kδ u5


+ j

−ρ(u4s(t)−u2s(t)+u4m(t + τ)−u2m(t + τ))−kδ u2
−ν(u4s(t)+u4m(t))+φ6−kδ u4

0

 (18)

where φ1 = xs(t)zs(t), φ2 = xm(t +τ)zm(t +τ), φ3 = 1
2 (x̄s(t)ys(t)+ xs(t)ȳs(t)) , φ4 =

1
2 (x̄m(t + τ)ym(t + τ)+ xm(t + τ)ȳm(t + τ)) , φ5 = u1s(t)u5s(t) + u1m(t +τ)u5m(t +τ),
φ6 = u2s(t)u5s(t) + u2m(t +τ)u5m(t +τ), φ7 = u1s(t)u3s(t) + u1m(t +τ)u3m(t +τ) +
u2s(t)u4s(t)+u2m(t +τ)u4m(t +τ) and δul = ulm(t +τ)−uls(t), l = 1,2,3,4,5.

To check and clarify the usefulness of the suggested scheme, we present the events of
the AAS simulation connecting pairs of similar chaotic complex structures in Lü models
(14) and (15). We solve structures (14) and (15) with the controller (18) numerically.
Parameters are specified as follows ρ = 42, µ = 6, ν = 25. The first position of the state
vector of the master structure, the first condition of the state vector of the slave structure,
the positive anticipate time and k are apprehended as (xm(0), ym(0), zm(0))T = (1+ 2 j,
3+4 j, 5)T , (xs(0), ys(0), zs(0))T = (6+8 j, 3+4 j, 8)T , τ = 0.2 and k = 30. Issues are
presented in Figs. 2-4.
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Fig. 3. AAS errors: (a) δu1 alter t; (b) δu2 alter t; (c) δu3 alter t; (d) δu4 alter t; (e)δu5 alter t.
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Fig. 4. The attractors of master and slave systems after achieving AAS.
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The implementations of Eqs. (14) and (15) are depicted under various original situ-
ations in Fig. 2 and demonstrate that AAS is actually done in time t after a very limited
interval. Fig. 3 demonstrates that, as predicted from the above theoretical criteria, the
AAS errors reduce to zero. From Fig. 4, it is obvious the attractors in (u2, u4, u5) location
in Fig. 4 (a) and (u1, u3, u5) location in Fig. 4 (b) of master structure (14) and slave struc-
ture (15) have the equivalent scale but configuration reverse with time anticipate τ = 0.2.

5. SECURE COMMUNICATION

The chaotic signs produced by chaotic structures have certain characteristics, like
randomness, complexity and sensitive dependence on initial forms, which makes them
especially fitting concerning secure communications. Chaotic synchronized and its em-
ployees have become a difficult part of non-linear fields, specifical applications for se-
cure communication [25-30]. Within chaotic structures, stable communication transmits
a message from the sender to the receiver. As such, the message is immunized or inserted
into chaotic structures, distributed, and then detected and recouped by the receiver. Vari-
ous types of secure communication strategies have been proposed, such as chaotic veiling
[26, 27]. The message we have to give it in chaotic veiling is attached to one of chaotic
motion to mask it, then the signal is transmitted to the beneficiary.

AAS of complex chaotic structures, where a slave structure state factor anticipating
master structure state factor behavior, is an encouraging form of synchronization as it
provides outstanding protection in secure communication. We view the structure as the
sender structure (14), and the structure as the beneficiary structure (15). For something,
we choose the data movement as self-assured as r(t) = 2sin4t sin2t. Take r̂(t) = r(t)+
w3m(t +τ) and suppose that r̂(t) is summed to the factor w2m =⇒ r̄(t) = r̂(t) +w2m(t
+τ) = r(t)+w3m(t +τ)+w2m(t +τ). Fig. 5 shows the numerical effects of uses for sec-
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ure communication with similar parameters and starting states of Fig. 2. The data signal
r(t) and the transmitted signal r̄(t) are pointed respectively in Figs. 5 (a) and (b). The
recovered signal for information, whatever is shared by r∗(t) = r̄(t)+w3s(t)+w2s(t), is
presented in Figs. 5 (c) and (d) show the mistaken movement between the first and the
recouped information signal. From Fig. 5, it is hard to find that after a short transient the
data signal r(t) is retrieved precisely.

6. CONCLUSION

A description of the AAS for pair similar chaotic complex structures is given in this
paper. A scheme is built to attain AAS of pair similar chaotic non-linear complex struc-
tures via Lyapunov functions. Within this scheme, we analytically defined the complex
control functions that accomplished AAS. As an example, we employed this scheme for
studying AAS of pair similar chaotic Lü structures. The numerical simulations of our
examples check all the analytical tests. An excellent deal can be obtained as shown in
Figs. 2-4. Drawing on the AAS findings, a secure communications application has been
developed. The receiving structure can anticipate the transmitting structure’s message via
AAS for the first time. The use of this type of synchronization (AAS) leads to the fact
that the receiving system expects the message to be sent before it is sent, and this has not
appeared before in the study of secure communications.

The suggested control scheme is straightforward to implement and can be imple-
mented in various other non-linear complexes (or real) chaotic or hyperchaotic structures.
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