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Automatic defect detection in fabrics is one of the most essential systems used in the 

textile industry to check the quality of the fabric. In most of the existing systems, a learn-
ing-based approach is implemented for defect detection in simple patterned fabrics. In this 
paper, swarm intelligence-based Backpropagation Neural Network (BPNN) classifiers are 
implemented for defect detection in complex patterned fabrics. But the problem with ex-
isting Binary Particle Swarm Optimization (BPSO) based BPNN classifier is premature 
convergence. To offset this problem an evolutionary state-based greedy reset is proposed 
to promote an effective and efficient search of the particles in the search space of the BPSO 
algorithm. The proposed system comprises of feature extraction phase followed by a per-
formance evaluation phase. The combinations of features namely (i) Gray Level Co-oc-
currence Matrix (GLCM); (ii) Discrete Wavelet Transform (DWT) and GLCM (W-
GLCM); (iii) DWT, Local Binary Pattern (LBP), and GLCM (WL-GLCM) are extracted 
from the complex patterned fabrics and their performances are evaluated by employing 
swarm intelligence-based Backpropagation Neural Network (BPNN) classifier. The pro-
posed system is validated with fabric datasets taken from the TILDA fabric database. From 
the results, it is observed that proposed system classification accuracy is 99.75% and it is 
better than the existing work with 77% reduced features. 

 
Keywords: gabor filter, discrete wavelet transform, local binary pattern, binary particle 
swarm optimization, backpropagation neural networks 

 
 

1. INTRODUCTION 

Defect detection in the fabric is essential for quality control in textile products. In 
defective fabric, the weave pattern of the fabric may differ from the original design due to 
the wrong mechanical movement or breakage of thread on a loom. Due to this, defective 
fabric selling price may drop by 45%-65%. Human experts are utilized for traditional in-
spection of fabrics. However, the performance and reliability of the traditional inspection 
techniques are low. Hence automation is necessary to inspect the fabric quality in the tex-
tile industry.  

Fabric characteristics are based on the texture and each fabric has a different texture 
namely uniform, random [1-6] and patterned texture [7, 8]. Due to the varying character-
istics of the fabric, developing a fabric defect detection system with good accuracy is still 
a challenging task. The fabrics can be grouped into 17 categories namely p1, p2, p3, p3m1, 
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p31m, p4, p4m, p4g, pm, pg, pmg, pgg, p6, p6m, cm, cmm, and pmm based on the unit 
shape and its symmetry [9]. In the p1 group of fabric, the basic unit is repeated over the 
entire fabrics like plain weave fabric and in this type of fabric, pattern translation is allowed 
to get the texture. The non-p1 groups of fabrics involve rotation, reflection and glide re-
flections to get the texture.  

Many systems have been developed in the past years [41, 42] for defect detection in 
fabrics. Most of these methods are particularly applied for simple patterned fabrics. There 
are only a few systems which detect faults in complex patterned fabrics.  

A Gabor filter with two scales and six orientations was introduced for fabric inspec-
tion with a satisfying performance by the authors L. H. Ding et al., and Junfeng Jing et al. 
[10, 11]. Multiple adaptive wavelets have been used to enhance the performance of the 
fabric defect inspection system proposed by X. Yang, G. Pang and N. Yung [12] and the 
clustering approach was used by Gang Yu, Sagar V. Kamarthi to extract features from the 
discrete wavelet transform coefficients [13]. 

Defects in fabrics are detected by LBP based texture features [14] and a two-dimen-
sional wavelet transform is used in the early step to speed up the system running time. 
GLCM based co-occurrence features are extracted from the textured fabrics and finally, 
classification is done using a learning vector quantization based neural network to achieve 
better performance [15]. Kernel-based fuzzy c-means clustering (KFCM) technique has 
been used for weave pattern classification using the texture features such as mean and 
variance [16]. Spectral, model-based, and statistical feature extraction techniques were 
used for defect detection in fabric [17] and comparisons were done for defect detection of 
fabrics using GLCM and Gabor Filter [18]. Fabric defect detection systems were imple-
mented based on GLCM features and BPNN classifier [44-46]. Optimum weight and 
threshold values of BPNN are identified using particle swarm optimization (PSO) for de-
fect classification in fabrics [47]. The optimal parameters of the Elliptical Gabor filter are 
identified by employing random drift PSO for defect detection in fabrics [48]. Fabric in-
spection system is carried out using a defect segmentation algorithm followed by an arti-
ficial neural network [49]. Textile defect detection and classification algorithms are devel-
oped by employing statistical feature extraction followed by a neural network classifier 
[50]. Textile defect detection system is implemented with multi-layer neural networks to 
classify the textile defects and detect the defects with a microcontroller-based mechanical 
system [51]. Most of the above-mentioned literature deals with simple patterned fabrics.  

In this paper, a novel defect detection technique is proposed to cater to the complex 
patterned fabrics. It is based on analyzing texture patterns by extracting effective statistical 
features from the combination of DWT, LBP, and GLCM for defect detection in fabrics. 
Among various combinations, features extracted from the combination of DWT, LBP and 
GLCM are more appropriate for describing the local texture information of the complex 
patterned fabric. The effectiveness of the extracted features is assessed by the evolutionary 
state greedy reset BPSO based BPNN classifier. It overcomes the problem of premature 
convergence in the standard BPSO based classifier by introducing unique self-adaptive 
control parameters for each particle that is controlled by the evolutionary state. Therefore, 
proposed classifier can discriminate the features of defective fabric and defect-free fabric 
with improved performance than the existing methods. 

The rest of this paper is organized as follows: Section 2 presents the proposed meth-
odology for co-occurrence feature extraction and feature evaluation using swarm intelli- 
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gence-based classifiers. Section 3 presents the experimental results on the TILDA image 
database to validate the proposed method. 

2. PROPOSED WORK 

In this paper, a hybrid version of the feature extraction technique is introduced to cater 
to the complex patterned fabric with improved accuracy. The proposed method flow dia-
gram is shown in Fig. 1. The detailed description of the various modules present in the flow 
diagram is discussed below. 

 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Proposed method flow diagram. 
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2.1 Gabor Filter 

Gabor filters resemble the performance of the human visual system for extracting 
features at different orientations and scales. This multi-resolution capability of Gabor fil-
ters may be useful for extracting significant information from the input texture image. The 
mathematical form of Gabor filter [24] with the center frequency fi, orientation k modu-
lated by a Gaussian envelope with standard deviations x and y is given in Eq. (1) 

2 2

2 2

1 1
( , ) exp cos(2 )

2 2 i
x y x y

x y
h x y f x 

   

        
    

   (1) 

where x = xcos + ysin , y = xsin + ycos ,  is a phase component and  is the orient- 

ation which is calculated as 

n
k  , k = {1, 2, …, n}. 

In this work pre-processing is done with Gabor filter to achieve optimal localization 
of the texture in spatial and frequency domain [23]. This results in a good description of 
the texture without high-frequency noise by which it improves the quality of the features 
in the proposed system. 

2.2 Discrete Wavelet Transform (DWT) 

In the second stage of the feature extraction process, DWT [19] is applied to analyze 
the input fabric images at a multi-resolution level. DWT produces a hierarchy based sub-
band structure that decomposes the signal into four sub-bands namely LL1, LH1, HL1, 
HH1 bands in level 1 [25]. In this, the LL1 sub-band contains the approximation image 
with low-frequency components and the remaining three sub-bands contain detailed im-
ages with a high-frequency component. In level 2, the LL1 (low frequency) band is again 
decomposed into four more sub-bands by retaining other sub-bands and this process will 
be continued until to reach the desired low-frequency region. In the wavelet decomposition 
method, most of the energy is concentrated in the LL band (low frequency). Due to this 
property of DWT, the LL band alone is considered for the feature extraction process. The 
decomposition process of DWT is depicted in Fig. 2. 

 

 
Fig. 2. Decomposition of discrete wavelet transform.  
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Low frequency and high-frequency selective filters are represented by the symbol h 
and g respectively, downsampling operation is represented by a down arrow inside a circle 
with a downsampling rate of 2. The localized texture features extracted from these sub-
bands have unique characteristics that are more suitable for texture classification. In this 
work, Haar wavelet with level1 decomposition is used for the analysis of the textile images 
[26]. 

2.3 Local Binary Pattern (LBP) 

In the next stage of the feature extraction process, local textural information is de-
scribed by LBP. The LBP is a non-parametric method [20] to describe local texture by 
calculating the intensity difference between the center pixel and its neighbors. If its differ-
ence is positive, then binary one is assigned to the corresponding neighboring pixel inten-
sity and if it is negative binary zero is assigned to the corresponding neighboring pixels. 
Therefore, a binary sequence is generated for all the pixel intensities in an image and fi-
nally, the center pixel intensity is replaced by a resultant decimal value obtained from the 
binary sequence. The entire process of LBP generation is illustrated in Fig. 3. 

 

 
Fig. 3. LBP computation process. 

 

Then the LBP histogram is calculated based on the obtained binary patterns from an 
image. The number of histogram bins required to represent an image will be decided by 
the number of neighboring pixels involved in LBP calculation. If it uses 8 neighboring 
pixels then the number of histogram bins required is 256 (i.e., 28). LBP of an image is 
calculated using Eq. (2). 

1
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

   (2) 

where P is the number of local neighboring pixels, ic is the gray intensity value of the 
center pixel of the local neighborhood, ip is the gray intensity value of the neighboring 
pixels, and (xc, yc) are the coordinates of the center pixel of the local neighborhood. The 
function s(x) is obtained from Eq. (3) 

0,        if  0
( ) .

1,        if  0
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s t

t
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 (3) 

The calculated LBP image histogram describes the pattern distribution of the whole image. 
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2.4 Gray Level Co-occurrence Matrix (GLCM) 
 
In the final stage of the feature extraction process, GLCM based co-occurrence fea-

tures [21] are calculated to obtain the local texture information of the fabric. GLCM is one 
of the most common and extensively used techniques for texture measures. Image texture 
is one of the characters which help to identify an object. Gray level spatial dependency-
based textural features are more significant in texture image classification. GLCM is a two-
dimensional histogram of gray intensity levels in which it describes how often particular 
pair of pixels co-occur in an image with particular distance D and orientation angle . But 
the choice of distance and angle depends on the input database. In a texture image, any 
pixel is most likely to be correlated with the closely located neighbors than the neighbors 
which are located far away. Thus, the better performance of the classifier is achieved using 
GLCM with D = 1 and 2. However, the co-occurring pixel pair is selected based on the 
angle . Possible  values are 0°, 45°, 90°, and 135°. Different offset values are obtained 
by combining both the distance and angle which affects the performance of the matrix. In 
most of the early studies, horizontal offset [18] values have been used for the analysis. In 
this work, GLCM is generated with the offset value of the distance D = 1 and angle  = 0° 
[0 1]. The direct analysis of the GLCM is illustrated in Fig. 4 and the sample GLCM cal-
culation is shown in Fig. 5 for the offset value of [0 1]. From the generated GLCM Hara-
lick’s defined second-order statistical (co-occurrence) features which are listed in Table 1 
are calculated to measure the characteristics of the texture image. 

   

 

 

 

 

 
 

Fig. 4. GLCM direction analysis. 
 

Generation of Gray Level Co-occurrence matrix with angle  = 0° (Horizontal direc-
tion) and distance D = 1 is illustrated in Fig. 5. In GLCM output, element (1,2) contains 
the value 1 because horizontally located adjacent pixel pairs 1 and 2 co-occurs only once 
in an image. Element (2,3) contains the value 2 because horizontally located adjacent pixel 
pairs 2 and 3 co-occurs twice in an image. Element (1,1) in GLCM has the value 0 because 
there are no horizontally located adjacent pixel pairs 1 and 1 in an image. In the same way 
remaining entries are calculated to obtain complete GLCM output. 

The normalized co-occurrence matrices can be given as: 
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where G(x, y) is the number of occurrences of the gray levels gx and gy. Table 1 shows the 
Co-occurrence features that are extracted from the GLCM and its description. 

 

 
Fig. 5. Generation of GLCM for θ = 0° and D = 1. 

Table 1. Co-occurrence features. 
Co-occurrence Features Description

Contrast:
1 1

2

0 0

( ) ( , )
M M

x y

x y P x y
 

 

  Measures local intensity variation present in an 
image 

Correlation (M): 
1 1

0 0

( ) ( , ) { }M M
i j

x y i j

x y P x y  
 

 

 

  
  

Measures the gray level linear dependency be-
tween the pair of pixels.

  

Correlation: 
1 1

0 0

(1 )(1 )
( , )

M M
x y

x y x y

P x y
 
 

 

 

 
  

Measures the gray level linear dependency be-
tween the pair of pixels.

Cluster prominence: 
1 1

4

0 0

( ) ( , )
M M

i j
x y

x y P x y 
 

 

    Measures asymmetry of the GLCM 

Cluster shade: 
1 1

3

0 0

( ) ( , )
M M

i j
x y

x y P x y 
 

 

    Measures uniformity of the GLCM

Dissimilarity: 
1 1

0 0

( ) ( , )
M M

x y

x y P x y
 

 

  Measures the distance between pairs of pixels

Angular Second Moment (Energy):
1 1

2

0 0

{ ( , )}
M M

x y

P x y
 

 
  

Measures texture uniformity in an image to detect 
texture disorder. 

Entropy: 
1 1

2
0 0

( , ) log ( ( , ))
M M

x y

P x y P x y
 

 
  Measures degree of randomness in an image 

Homogeneity (M):  
1 1

0 0

( , )

1 | |

M M

x y

P x y

x y

 

     
Measures the proximity between the distributed 
elements and the diagonal value of the GLCM. 
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Homogeneity: 
1 1

2
0 0

( , )

1 | |

M M

x y

P x y

x y

 

     
Measures the proximity between the distributed 
elements and the diagonal value of the GLCM. 

Maximum Probability: 
1 1

0 0

max(max( ( , )))
M M

x y

P x y
 

 
  

Measures the occurrences of the most predomi-
nant pair of neighboring pixels.

Variance:
1 1

2

0 0

(1 ) ( , )
M M

x y

P x y
 

 

   Measures the heterogeneity of the image 

Sum Average:
2 1

0

( )
M

i j
x

xP x




  

Measures the relationship between the pairs of 
pixels with lower intensity and the pairs of pixels 

with higher intensity.

Sum Variance:

)(2}
1

0
))((2log

12

0
)({ xjiP

M

x
xjiP

M

x
xjiPx 









 Measures average of heterogeneity in an image

Sum Entropy: 
2 1

2
0

( ) log ( ( ))
M

i j i j
x

P x P x


 


   
Measures degree of randomness in an image 
based on the probability distribution Pi+j(x)

Difference variance: 
1 1

2

0 0

( ) ( )
M M

i j
x y

x P x
 


 
  

Measures the heterogeneity of the image based on 
the probability distribution Pi-j(x)

Difference Entropy:
1

2
0

( ) log ( ( ))
M

i j i j
x

P x P x


 


  
Measures degree of randomness in neighborhoods 

intensity differences

Information Correlation 1: 
( ) ( 1)

( )

H XY H XY

H X

  
Measures the dependency between the probability 
distributions of x and y using mutual information.

Information Correlation 2: 

1 exp( 2( ( 2) ( )))H XY H XY  
Measures the dependency between the probability 

distributions of x and y.

Inverse Difference normalized: 
1 1

0 0

( , )

1 | | /

M M

x y

P x y

x y M

 

     Measures local homogeneity of an image 

Normalized Inverse Difference  

Moment:
1 1

2 2
0 0

( , )

1 | | /

M M

x y

P x y

x y M

 

     Measures local homogeneity of an image 

Autocorrelation:
1 1

0 0

( ) ( , )
M M

x y

x y P x y
 

 

   
Measures the magnitude of the fineness and 

coarseness of texture
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2.5 Swarm Intelligence Based Classifier 

The performance of the extracted features is evaluated with the help of a swarm in-
telligence-based classifier by selecting the optimal features subset among all the features. 
The detailed description of the swarm intelligence-based classifiers present in the flow 
diagram is discussed below. 

2.5.1 Binary Particle Swarm Optimization based classifier 

Eberhart and Kennedy [27] introduced a population-based stochastic search algorithm, 
which derives evolutionary inspiration from lively movements and interactions of a group 
of birds and groups of fishes in the direction of searching for the food. In BPSO, the posi-
tion of the particle represents a feasible solution in search space. A possible solution may 
be either global (best solution so far) or local (best solution among neighborhood particles), 
depending on the particle’s position in the swarm. Particles in PSO moves with a particular 
velocity in a search space to get the optimal solution. The Memory element in every parti-
cle helps to remember its previous best solution. The position and velocity of the mth par-
ticle in the nth iteration are represented by xm(n) and vm(n) respectively. Personal best, xP

m(n) 
and global best, xG(n) are the two distinguished positions of each particle in PSO. In search-
ing for food, the particle’s position is updated based on its personal and global best posi-
tions. The velocity of the particle is tuned based on the corresponding particles and its 
neighbor’s past behavior. In the standard PSO, particle’s positions are initialized randomly 
with uniform distribution; whereas the particle’s velocities are set to zero and all the par-
ticles are searching for its best solution in several iterations. In every nth

 iteration, the ve-
locity and positions of each particle are updated using Eqs. (5) and (6). 

1 1 2 2( 1) ( ) ( )( ( ) ( )) ( )( ( ) ( ));

1 to 

m m m m m
P Gv n w v n c rand n x n x n c rand n x n x n

m N

        


   (5) 

( 1) ( ) ( );  1 to m m mx n x n v n m N       (6) 

The parameters which influence for updating the velocity of each particle are the 
inertia weight (w), acceleration parameter namely cognitive parameter (c1), social param-
eter (c2), uniformly generated random values (0 < rand1 < 1 and 0 < rand2 < 1) at each 
iteration, and population size (N). In this work, the constriction factor  is used as an iner-
tia weight w. This is shown in Eq. (7) 




422

2


 ,   (7) 

where  = c1+ c2 > 4. When Clerc’s constriction factor is used,  value is set to 4.1. For 
better convergence, cognitive parameter c1 

is set to 2.05 and the social parameter c2 
is set 

to 2.05. 
In BPSO, particle positions are updated using Eq. (8). Based on Eq. (8), binary 1 is 

assigned if the particles get selected for the next iteration and binary 0 is assigned if they 
are not selected for the next iteration.  
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1 if ( )
( 1)

0 if otherwise

m
m rand s n

x n
 

  


, (8) 

where 
( )

1
( )

1
m

m

v n
s n

e



 and the rand is the uniformly generated random values between  

0 and 1. 
The fitness function to be optimized in BPSO is evaluated as a linear combination of 

accuracy (A), and the ratio of the number of selected features (Nselected) to the total features 
in the dataset (NTotal). Hence, the BPNN classifier with k-fold cross-validation is employed 
to measure the accuracy of the selected features. Improved accuracy and reduced features 
are considered as an objective function to optimize the evaluated fitness value using Eq. 
(9) 

( )
( ( )) ( ) (1 ) 1m selected

total

N n
Fitness f x n A n

N
 

 
     

 
, (9) 

where  is the weighing factor that decides the trade-off between the accuracy and the 
selected features. In this work, α value is set to be 0.8. Therefore, it is clear that the ratio 
of accuracy and the selected features involvement in the fitness function evaluation is 8:2. 
After evaluating the fitness function, the particle’s personal and global best positions are 
updated using Eqs. (10) and (11). 

( )    if    ( ( )) ( ( ))
( )

( )    if    ( ( )) ( ( ))

m m m
Pm

P m m m
P P

x n f x n f x n
x n

x n f x n f x n

  


 (10) 

( )    if    ( ( )) ( ( ))
( )

( )    if    ( ( )) ( ( ))

m m
P G

G m
G P G

x n f x n f x n
x n

x n f x n f x n

  


 (11) 

Predefined boundary limits are applied in both the particle’s position and velocity. 

2.5.2 Time-varying acceleration coefficients BPSO (TVAC-BPSO) based classifier 

Acceleration coefficients namely cognitive parameter (c1) and social parameter (c2) 
are responsible for the particles flying towards the desirable regions. Improper selection of 
acceleration coefficients leads to the particles flying towards the undesirable regions. To 
avoid this, c1 and

 
c2 values are set to be 2 in the standard PSO. Sometimes these values 

may be unsuccessful in the overall searching of the optimal solution [28]. The searching 
capability of the particles gets improved by introducing time-varying acceleration coeffi-
cients [29] in BPSO (TVAC-BPSO) to reach the optimal solution in search space. In the 
initial stage of an algorithm, the coefficient values (c1 > c2) have been used for the global 
search and then in the last stage, the coefficient values (c1 < c2) are set for the localized 
search. The time-varying form of acceleration coefficients c1(n) and c2(n) are represented 
in Eqs. (12) and (13) 

1max 1min
1 1min

( ) ( )
( ) n

n

c c Max n
c n c

Max

   
  
 

, (12) 

2max 2min
2

( ) ( )
( ) n

n

c c Max n
c n

Max

   
  
 

, (13) 
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where c1min and c1max are the minimum and maximum values of the cognitive parameters, 
c2min and c2max are the minimum and maximum values of the social parameters, Maxn and n 
are the maximum and the current iteration number.  

2.5.3 Time-Varying Inertia Weight BPSO (TVIW-BPSO) based classifier 
 
The performance of the BPSO is improved by selecting inertia weight with linearly 

decreasing values from 0.9 to 0.4 [30] using Eq. (14). 

max min
min

( ) ( )
( ) n

n

w w Max n
w n w

Max

   
  
 

 (14) 

where wmin 
and wmax are the lowest and highest inertia weights, Maxn and n are the maxi-

mum and the current iteration number.   
The non-linear inertia weight is obtained by using Eq. (15) 

max min
min

( ) ( )
( )

( )

c
n

n
n

w w Max n
w n w

Max

   
  
 

 (15) 

where c is an exponential factor that influences the nonlinearity [31] in the linearly dec- 
reasing inertia weight. 
 
2.5.4 Evolutionary state greedy reset BPSO (EBPSO) based classifier 

 
In BPSO, the optimal feature subsets are described by the particle’s position in the 

search space. The resultant feature subset may not be optimal if particles get trapped in a 
suboptimal solution due to the premature convergence problem. Hybridization of PSO, 
adaptive inertia weight and acceleration coefficient update mechanisms [32-35] are intro-
duced to avoid early convergence problems. But it fails to discriminate the features of 
defective and defect-free fabrics. To offset this, an Evolutionary state greedy reset BPSO 
(EBPSO) is introduced to obtain the optimal feature subset by evaluating the fitness func-
tion using back propagation neural network (BPNN).  

In this work, an evolutionary state parameter Em(n) is introduced in BPSO to obtain 
unique control parameters. The control parameters such as inertia weight and the acceler-
ation coefficients have a significant role in the effective performance of BPSO. In most of 
the research, a high range of inertia weight is used in the beginning and it gradually de-
creases in further iterations. However, this time-varying inertia weight may not be effective 
for global search and thus novel self-adaptive control parameters are proposed in the BPSO 
based classifier for an effective search of the algorithm. In this, each particle has unique 
control parameters. The uniqueness of the control parameters is achieved using a feedback 
parameter that is controlled by the evolutionary state. In an evolutionary state calculation, 
only the feasible solution of the particle is considered and this promotes better learning 
within the swarm. This is shown in Eq. (16)  

( ( )) ( ( ))
( )

( ( ))

m
m G P

m
f

f x n f x n
E n

f x n


 , (16) 
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where f(xP
m(n)) and f(xG(n)) are the particle’s personal and global best fitness values, 

f(xf
m(n)) is the most recent feasible solution of the particle. In this approach evolutionary 

state is used to accelerate the cognitive and social parameters to identify the optimal solu-
tions based on their hyperspace location as given by Eqs. (17) and (18).  

max min
min

1

max min
max

( ) ( )
    if    0 ( ) 0.5

( )
( ) ( )

   if    0.5 ( ) 1.0

mn

nm

mn

n

c c Max n
c E n

Max
c n

c c Max n
c E n

Max

   
   

  
         

 (17) 

max min
max

2

max min
min

( ) ( )
    if    0 ( ) 0.5

( )
( ) ( )

     if    0.5 ( ) 1.0

mn

nm

mn

n

c c Max n
c E n

Max
c n

c c Max n
c E n

Max

    
    

   
        

 (18) 

In this adaptive approach, global search is promoted by the low-level evolutionary 
state (between 0 and 0.5) in the initial iterations. In the later iterations, local search is pro-
moted by exploring the regions around its best historical solutions. A high-level evolution-
ary state (between 0.5 and 1) promotes more exploitation in the search space during initial 
iterations and finally, it converges to the swarm best solution. As a result, particles adapt 
solely according to the feasible solution and thus it promotes the effective learning of the 
particles in the search space. 

In the proposed approach, an evolutionary state is used instead of inertia weight for 
updating the velocity of the particles to reach the best solutions without any deviation. 
Particle’s velocity is updated based on Eq. (19) 

1 1

2 2

( 1) ( ) ( ) ( ) ( )( ( ) ( ))

             ( ) ( )( ( ) ( )) (1 ( ))( ( ) ( )).

m m m m m
P

m m m
G G P

v n E n v n c n rand n x n x n

c n rand n x n x n E n x n x n

   

    
   (19) 

Repulsion of the particle is based on the evolutionary state as well as the difference 
between swarm best and particle’s personal best solutions. Higher repulsion is achieved 
with lower evolutionary states and lower repulsion is achieved with the higher evolutionary 
state. 

Also, swarm best re-initialization is introduced to obtain the optimal feature subset if 
the fitness value is constant for a fixed number of runs. The swarm best positions are re-
initialized by employing mutation and crossover operation to improve the swarm best so-
lution. Therefore, quality of the whole population will be improved by attracting the parti-
cle’s personal best solutions towards the swarm best solution.  
The mutation operation is performed to obtain trivial position from the swarm best position 
using Eq. (20). 

ym(n) = xG(n) + (b(xr1(n)  xr2(n))) (20) 

where xr1(n) and xr2(n) are the positions of the randomly chosen neighboring particles and 
b is the scaling factor and it is set be 0.2. 

The crossover operation is performed between the trivial position ym(n) and the 
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current best position of the particle xm(n) to obtain re-initialized position using Eq. (21). 

( )    if    
( 1)

( )    if    

m
m

m

y n rand pCR
x n

x n rand pCR

   


 (21) 

where PCR is a crossover constant and it is set to be 0.2. 
 
Pseudocode of the proposed evolutionary state greedy reset BPSO based classifier 

begin 
algorithm parameters 
for each particle in the swarm do 

find the evolutionary state using Eq. (16) 
update acceleration coefficients using Eqs. (17) and (18) 
update particle’s velocity using Eq. (19)  
evaluate fitness function using BPNN 

            revise personal and global best positions based on the evaluated fitness 
if fitness value is constant for a fixed number of runs 

                 perform mutation on global best position using Eq. (20) 
                 re-initialize the position by performing crossover between ym(n) and 

xm(n) using Eq. (21) 
           end 
      end  

 write global best solution of the selected features; 

3. IMPLEMENTATION AND EXPERIMENTAL RESULTS 

The performance of the proposed method is analyzed with TILDA textile image da-
tabase. TILDA database has eight different textured fabrics and everything categorized 
into four directories namely C1, C2, C3, and C4. Each directory is divided into two sub-
class directories namely R1 and R3. These subdirectories (R1 and R3) are further divided 
into eight more subdirectories namely E1, E2, E3, E4, E5, E6, and E7, and each of which 
contains 50 fabric images. In this defect-free fabric images are in the subdirectory E0, 
whereas defective fabric images are in the other subdirectories (E1-E7). Therefore, a total 
of 400 fabric images are considered from each class directories for the experimental anal-
ysis. In this work, an experiment was conducted for the fabric with a complex pattern (non-
p1 group) which was taken from the class directories C3R1, C3R3, C4R1, and C4R3. Data 
set details are listed in Table 2. All the datasets listed in Table 2 represent a binary-class 
problem with 22 features.  

For the analysis of this work, different combinations of feature extraction techniques 
explained in section 2 have been used to check their variability among the defective and 
defect-free fabrics. The co-occurrence features were extracted from (i) GLCM (ii) combi-
nation of the Wavelet transform and GLCM (W-GLCM) (iii) combination of the Wavelet 
transform, local binary pattern, and GLCM (WL-GLCM). These extracted features are 
normalized using the Min-Max technique to scale the data between 0 and 1. Table 3 shows 
the sample co-occurrence features of defective (D) and defect-free (ND) fabrics (Average 
(M) and standard deviation (SD) values of the corresponding features in the group) ex-
tracted from the C3R1 group of data set. 
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Table 2. Database description. 

D# Data Set Fabric Sample #Features # Instances 

D1 C3R1 22 400 

D2 C3R3 22 400 

D3 C4R1 22 400 

D4 C4R3 22 400 

Table 3. Sample co-occurrence features for C3R1 group of fabrics. 

Co-occurrence fea-
tures 

WL-GLCM W-GLCM GLCM 

D ND D ND D ND 

MSD MSD MSD MSD MSD MSD 

Contrast 0.440.25 0.940.03 0.400.22 0.320.24 0.590.16 0.620.13 

Correlation(M) 0.820.16 0.220.12 0.400.20 0.320.24 0.490.16 0.530.13 

Correlation 0.820.16 0.220.12 0.400.20 0.320.24 0.490.16 0.530.13 

Cluster prominence 0.790.18 0.800.01 0.410.15 0.340.15 0.440.12 0.480.06 

Cluster Shade 0.570.30 0.750.02 0.550.17 0.460.20 0.450.14 0.450.09 

Dissimilarity 0.440.25 0.940.03 0.410.21 0.320.23 0.680.16 0.720.12 

Energy 0.270.29 0.130.04 0.450.21 0.570.23 0.190.11 0.150.06 

Entropy 0.740.27 0.930.02 0.550.19 0.420.19 0.760.11 0.800.05 

Homogeneity(M) 0.550.25 0.050.03 0.560.20 0.660.22 0.260.16 0.220.12 

Homogeneity 0.550.25 0.050.03 0.560.20 0.660.22 0.280.16 0.250.12 

Max Probability 0.410.29 0.380.04 0.560.20 0.660.21 0.320.14 0.260.10 

Sum of Squares: 

Variance 
0.430.25 0.930.03 0.590.20 0.680.22 0.500.17 0.650.07 

Sum average 0.430.25 0.930.03 0.600.20 0.690.22 0.570.16 0.710.06 

Sum variance 0.430.25 0.930.03 0.600.20 0.690.22 0.570.16 0.710.06 

Sum Entropy 0.750.27 0.900.03 0.570.19 0.440.18 0.730.11 0.760.04 

Difference Variance 0.440.25 0.940.03 0.400.22 0.320.24 0.590.16 0.620.13 

Difference Entropy 0.530.25 0.960.02 0.570.19 0.450.19 0.700.14 0.730.09 

Information Corre-
lation 1 

0.820.13 0.460.05 0.390.21 0.350.28 0.300.18 0.320.12 

Information Corre-
lation 2 

0.890.14 0.760.05 0.490.21 0.400.25 0.470.16 0.530.10 

Inverse Difference 
normalized 

0.550.25 0.050.03 0.570.21 0.660.23 0.300.16 0.260.12 

Inverse Difference 
Moment normalized 

0.550.25 0.050.03 0.590.21 0.670.24 0.400.16 0.360.13 

Autocorrelation 0.430.25 0.930.03 0.590.21 0.680.23 0.500.17 0.650.07 
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For the analysis of the proposed work, 400 fabric images from each group (350 de-
fective fabric, and 50 non-defective fabric images) were used. In this work, BPNN with 10 
hidden layer neurons is used. Gradient descent momentum and adaptive learning rate is 
used as an activation function to update weight and bias in the network. In swarm intelli-
gence-based classifiers, the fitness function is evaluated by BPNN on the selected feature 
subset using 10-fold cross-validation with 90% of the images for training and 10% of the 
images for testing. This process will be repeated to test all the input images. In this work, 
the maximum number of runs to implement an algorithm is set to be 10, acceleration co-
efficients cmax and cmin values are set to be 4 and 0 respectively. To evaluate the selected 
features, the target value has to be set for both defective and non-defective fabrics. 

For defective fabric, lower magnitude scale of 0-1 is selected as a target TD based on 
Eq. (22) 

1

1 L

i D
i

m T
N 

  (22) 

where mi represent the averaged features (normalized) of L defective fabric images used 
for classification. 

For non-defective fabric, higher magnitude scale of 0-1 is selected as a target TND 
based on Eq. (23) 

1

1
.

M

j ND
i

m T
N 

  (23) 

Where
 
mj represent the averaged features (normalized) of M defect-free fabric images used 

for classification. The target values (TD and TND) are set such that the magnitude difference 
between them should be greater than or equal to 0.5 (|TND  TD|  0.5). 

By considering the above constraints, the target values selected for the defective (TD) 
and defect-free fabrics (TND) are 0.05 and 0.95 respectively.  

There are many popular techniques are available to evaluate the performance of dif-
ferent classifiers. A Confusion matrix is one of the commonly used methodologies. This is 
shown in Table 4. True positive (TP) indicates that the defective fabric is detected as de-
fective one, whereas true negative (TN) denotes the number of defect-free fabric is detected 
as defect-free fabric, therefore correct classification results are stored in the true positive 
and true negative. False-positive (FP) is a result in which the number of defect-free fabric 
is detected as defective fabric, whereas false negative (FN) is a result in which defective 
fabric is detected as defect-free fabric, thus in FP and FN incorrect classification results 
are stored. 

Table 4. Confusion Matrix of defect detection. 
 Actual
 D ND

Predicted
D TP FP

ND FN TN
 

Table 5 shows the resultant confusion matrix obtained by the BPSO, TVAC-BPSO, 
TVIW-BPSO, and EBPSO based classifiers for the GLCM features, W-GLCM features, 
and WL-GLCM features for the different group of texture in the TILDA database.  
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Table 5. Confusion matrix obtained by the swarm intelligence based classifier. 

M
et

ho
d 

D#

Confusion Matrix
GLCM based co-occur-

rence features
W-GLCM based co-
occurrence features

WL-GLCM based co-
occurrence features 

TP TN FP FN TP TN FP FN TP TN FP FN 

B
P

S
O

 
ba

se
d 

C
la

ss
if

ie
r D1 338 25 25 12 347 3 48 2 347 50 1 2 

D2 350 1 49 0 350 1 49 0 347 50 1 2 
D3 350 2 48 0 349 1 50 0 348 50 0 2 
D4 339 17 34 10 347 1 50 2 347 50 1 2 

T
V

A
C

- 
B

P
S

O
 

ba
se

d 
cl

as
si

fi
e r

 D1 333 24 27 16 343 5 46 4 349 49 1 1 
D2 346 0 50 4 349 0 50 1 349 49 1 1 
D3 341 3 47 9 350 0 50 0 347 50 0 3 
D4 337 4 47 12 344 5 46 5 348 50 1 1 

T
V

IW
- 

 
B

P
S

O
 

ba
se

d 
cl

as
si

fi
e r

 D1 331 27 24 18 346 4 47 3 349 49 1 1 
D2 346 0 50 4 348 0 50 2 349 49 1 1 
D3 350 1 49 0 350 0 49 1 349 49 1 1 
D4 331 27 24 18 347 1 50 2 349 50 1 0 

E
B

PS
O

 
ba

se
d 

cl
as

si
fi

er
 D1 339 21 30 10 348 5 46 1 349 50 0 1 

D2 348 0 50 2 349 0 50 1 349 50 0 1 
D3 347 4 46 3 349 1 49 1 349 50 0 1 
D4 336 9 42 13 347 1 50 2 349 50 1 0 

 

From Table 5, it shows that the classifier results are mapped towards the positive class 
in the resultant confusion matrix for the GLCM and W-GLCM based co-occurrence fea-
tures. This is because, the more positive class images are present in the dataset than in the 
negative class images, and thus results are more biased towards the positive class. Above 
said co-occurrence features fails to discriminate positive as well as the negative class data 
sets. To discriminate both the classes, LBP is obtained before extracting co-occurrence 
features by exploring local textural information of the dataset in each class. From Table 5, 
it is clear that after including LBP in the feature extraction process (WL-GLCM) true neg-
ative rate is increased by reducing the false positive rate.  

From the confusion matrix, the following performance evaluation metrics are calcu-
lated and analyzed for their effectiveness in the classifier performance. 
Accuracy (Acc) is a measure of the defect detection rate of the classifier. This is shown in 
Eq. (24) 

100 .
TP TN

Acc %
TP TN FP FN


 

  
 (24) 

Misclassified result of the classifier is measured in terms of error rate (ER); it is described 
in Eq. (25) 

100 .
FN FP

ER %
TP TN FP FN


 

  
 (25) 

Sensitivity (Se) of the classifier measures how well the classifier will classify the defective 
fabric when it is defective. The best and worst-case sensitivity measures are 100% and 0% 
respectively. 
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%
FNTP

TPSe 100


  (26) 

Specificity (Sp) of the classifier measures how well the classifier will classify the defect-
free fabric when it is defect-free fabric. The best and worst case specificity measures are 
100% and 0% respectively.  

%
FPTN

TNSp 100


  (27) 

The receiver operating characteristic curve (ROC) illustrates how good the model will be 
able to separate two classes, and thus often used for binary classification problems. The 
area under ROC (AUC) is a performance metric that describes how well the positive class 
probabilities are separated from the negative class probabilities [36]. Hence AUC in Eq. 
(28) is the average measure of correctly predicted results (TPR and TNR). 















FPTN

TN
FNTP

TPAUC
2
1  (28) 

Precision (Pr) or positive predictive value (PPV) is a measure of how well the system is at 
correctly predicting defective fabric among all the predicted results as a defective fabric. 
That is, how accurate the defect detection in the fabric is  

100Pr 



TPFP

TP . (29) 

Negative predictive value (NPV) is a measure of how well the system is at correctly pre-
dicting defect-free fabric among the predicted result as defect-free fabric.  

100



TNFN

TNNPV  (30) 

False-positive rate (FPR) is a measure of how the model is at predicting positive events 
when it is negative events. The best and worst cases FPR are 0 and 1 respectively. 

ySpecificit
TNFP

FPFPR 


 1100  (31) 

True negative rate (TNR) is a measure of how well the model is at predicting negative 
results correctly (defect-free fabric) among all the negative events.  

FPR
TNFP

TNTNR 


 1  (32) 

F-score is the weighted average score of precision and recall. This is used to get the best 
precision and recall at the same time and it ranges from 0 to 1. It tells about the classifier 
that how precisely it classifies the instances correctly.  

2

2

(1 )( )

( )

Precision Recall
F

Precision Recall


 




 (33) 

Commonly used  values are 0.5, 1 and 2. In this work, the F1 score ( = 1) is measured 
to analyze the performance of the classifier. 
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Table 6 shows the performance evaluation metrics obtained from the BPSO based 
BPNN classifier. 

BPSO based BPNN classifier is evaluated for the three different co-occurrence fea-
ture combinations. Among these three feature combinations; WL-GLCM based co-occur-
rence features yield better classification results than other features. Even though the accu-
racy percentage of the classifier for GLCM and W-GLCM based co-occurrence feature is 
more than 80%, but their false positive rate is more than 50%. This is because the dataset 
used to analyse this method is unbalanced (350 defective fabric and 50 non-defective fabric) 
and also the features extracted from these two methods will not contain local texture infor-
mation of the input images. Hence most of the fabric samples are predicted as a defective 
fabric (positive class). From the above-mentioned feature extraction techniques, LBP con-
tains well described local texture information. So that features extracted from the WL-
GLCM tries to reduce false-positive rates. This is shown in Table 6.   

Tables 7 and 8 show the performance evaluation metrics obtained from the TVAC-
BPSO and TVIW-BPSO based BPNN classifier. 
 

Table 6. Performance evaluation metrics of BPSO based BPNN. 
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D
1 

GLCM 90.75 9.25 96.6 50 73.3 93.1 67.6 50 50 94.8 
W-GLCM 87.5 12.5 99.4 5.82 52.7 87.9 60 94.1 5.9 93.3 

WL-GLCM 99.25 0.75 99.4 98.0 98.7 99.7 96.2 2 98.0 99.6 

D
2 

GLCM 87.75 12.25 100 2 51 87.7 100 98 2 93.5 
W-GLCM 87.75 12.25 100 2 51 87.7 100 98 2 93.5 

WL-GLCM 99.25 0.75 99.4 98.0 98.7 99.7 96.2 1.96 98.0 99.6 

D
3 

GLCM 88.0 12 100 4 52 87.9 100 96 4 93.6 
W-GLCM 87.5 12.5 100 1.96 51.0 87.5 100 98.0 1.96 93.3 

WL-GLCM 99.5 0.5 99.4 100 99.7 100 96.2 0 100 99.7 

D
4 

GLCM 89.0 11 97.1 33.3 65.2 90.9 63.0 66.7 33.3 93.9 
W-GLCM 87.0 13 99.4 1.96 50.7 87.4 33.3 98.0 1.96 93.0 

WL-GLCM 99.25 0.75 99.4 98.0 98.7 99.7 96.1 1.96 98.0 99.6 

Table 7. Performance evaluation metrics of TVAC-BPSO based BPNN. 
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D
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GLCM 89.25 10.75 95.4 47.1 71.2 92.5 60 52.9 47.1 93.9 
W-GLCM 87.5 12.5 98.9 9.8 54.3 88.2 55.6 90.2 9.8 93.2 

WL-GLCM 99.5 0.5 99.7 98 98.9 99.7 98 2 98 99.7 

D
2 

GLCM 86.5 13.5 98.9 0 49.4 87.4 0 100 0 92.6 
W-GLCM 87.25 12.75 99.7 0 49.9 87.5 0 100 0 93.2 

WL-GLCM 99.5 0.5 99.7 98 98.9 99.7 98 2 98 99.7 

D
3 

GLCM 86 14 97.4 6 51.7 87.9 25 94 6 92.4 
W-GLCM 87.5 12.5 100 2.0 51.0 87.5 100 98.0 2.0 93.3 

WL-GLCM 99.25 0.75 99.1 100 99.6 100 94.3 0 100 99.6 

D
4 

GLCM 85.25 14.75 96.6 7.84 52.2 87.8 25 92.2 7.8 92.0 
W-GLCM 87.25 12.75 98.6 9.80 54.2 88.2 50 90.2 9.8 93.1 

WL-GLCM 99.5 0.5 99.7 98.0 98.9 99.7 98.0 2.0 98.0 99.7 
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Table 8. Performance evaluation metrics of TVIW-BPSO based BPNN. 
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D
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GLCM 89.5 10.5 94.8 52.9 73.9 93.2 60 47.1 52.9 94.0 
W-GLCM 87.5 12.5 99.1 7.8 53.5 88.0 57.1 92.2 7.8 93.3 

WL-GLCM 99.5 0.5 99.7 98 98.9 99.7 98 2 98 99.7 

D
2 

GLCM 86.5 13.5 98.9 0 49.4 87.4 0 100 0 92.8 
W-GLCM 87 13 99.4 0 49.7 87.4 0 100 0 93.0 

WL-GLCM 99.5 0.5 99.7 98 98.9 99.7 98 2 98 99.7 

D
3 

GLCM 87.75 12.25 100 2 51 87.7 100 98 2 93.5 
W-GLCM 87.5 12.5 99.7 0 49.9 87.7 0 100 0 93.3 

WL-GLCM 99.5 0.5 99.7 98 98.9 99.7 98 2 98 99.7 

D
4 

GLCM 85.5 14.5 96.9 7.84 52.4 87.8 26.6 92.1 7.84 92.1 
W-GLCM 87 13 99.4 1.96 50.7 87.4 33.3 98.0 1.96 93.0 

WL-GLCM 99.75 0.25 100 98.0 99.0 99.7 100 1.96 98.0 99.9 

The results obtained from TVAC-BPSO based BPNN and TVIW-BPSO based BPNN 
are compared with the standard BPSO. From the results, it can be concluded that there is 
no significant improvement in classifier performance. Hence EBPSO based classifier is 
proposed to get better performance results with reduced feature subset. In this method, so-
cial and cognitive parameters are updated based on the evolutionary state. These time-var-
ying coefficients stimulate the particles in the swarm to escape from the local convergence 
problem and thus an improvement in the performance of the proposed method is observed. 
This is shown in Table 9.  

 

Table 9. Performance evaluation metrics of EBPSO based BPNN. 
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D
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GLCM 90 10 97.1 41.9 69.2 91.9 67.7 58.8 41.2 94.4 
W-GLCM 88.25 11.75 99.7 9.80 54.8 88.3 83.3 90.2 9.80 93.7 

WL-GLCM 99.75 0.25 99.7 100 99.9 100 98.0 0 100 99.9 

D
2 

GLCM 87 13 99.4 0 49.7 87.4 0 100 0 93.1 
W-GLCM 87.25 12.75 99.7 0 49.9 87.5 0 100 0 93.2 

WL-GLCM 99.75 0.25 99.7 100 99.9 100 98.0 0 100 99.9 

D
3 

GLCM 87.75 12.25 99.1 8 53.6 88.3 57.1 92 8 93.4 
W-GLCM 87.5 12.5 99.7 2 50.9 87.7 50 98 2 93.3 

WL-GLCM 99.75 0.25 99.7 100 99.9 100 98.0 0 100 99.9 

D
4 

GLCM 86.25 13.75 96.3 17.7 57.0 88.9 40.9 82.3 17.7 92.4 
W-GLCM 87 13 99.4 2.0 50.7 87.4 33.3 98.0 1.96 93.0 

WL-GLCM 99.75 0.25 100 98.0 99.0 99.7 100 2.0 98.0 99.9 

 
By comparing all the performance metrics in Tables 6-9, WL-GLCM based co-oc-

currence features yield better results when compared to GLCM and W-GLCM features. 
Hence WL-GLCM based co-occurrence features alone considered for the comparison of 
proposed and existing swarm intelligence-based classifiers. This is shown in Table 10. 
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Table 10. Performance evaluation of the Swarm Intelligence based BPNN (SINN) for WL-
GLCM co-occurrence features. 
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D
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BPSO 99.25 0.75 99.4 98.0 98.7 99.7 96.2 2.0 98.0 99.6 
TVAC-BPSO 99.5 0.5 99.7 98 98.9 99.7 98 2 98 99.7 
TVIW-BPSO 99.5 0.5 99.7 98 98.9 99.7 98 2 98 99.7 

EBPSO 99.75 0.25 99.7 100 99.9 100 98.0 0 100 99.9 

D
2 

BPSO 99.25 0.75 99.4 98.0 98.7 99.7 96.2 2.0 98.0 99.6 
TVAC-BPSO 99.5 0.5 99.7 98 98.9 99.7 98 2 98 99.7 
TVIW-BPSO 99.5 0.5 99.7 98 98.9 99.7 98 2 98 99.7 

EBPSO 99.75 0.25 99.7 100 99.9 100 98.0 0 100 99.9 

D
3 

BPSO 99.5 0.5 99.4 100 99.7 100 96.2 0 100 99.7 
TVAC-BPSO 99.25 0.75 99.1 100 99.6 100 94.3 0 100 99.6 
TVIW-BPSO 99.5 0.5 99.7 98 98.9 99.7 98 2 98 99.7 

EBPSO 99.75 0.25 99.7 100 99.9 100 98.0 0 100 99.9 

D
4 

BPSO 99.25 0.75 99.4 98.0 98.7 99.7 96.2 2.0 98.0 99.6 
TVAC-BPSO 99.5 0.5 99.7 98.0 98.9 99.7 98.0 2.0 98.0 99.7 
TVIW-BPSO 99.5 0.5 99.7 98 98.9 99.7 98 2 98 99.7 

EBPSO 99.75 0.25 100 98.0 99.0 99.7 100 2.0 98.0 99.9 

 
By comparing the performance of the swarm intelligence-based classifier, the pro-

posed EBPSO based classifier yields better results than the existing methods without com-
promising any other performance metric.  

Accuracy and error rates are good measures for balanced data classes. But for an 
unbalanced data set, accuracy alone is not a good measure. Therefore, the Matthews Cor-
relation Coefficient [37, 38] and kappa values are calculated and analysed for an unbal-
anced dataset. MCC is calculated based on the confusion matrix entries using Eq. (34). 

( ) ( )

( )( )( )( )

TP TN FP FN
MCC

TP FP TP FN TN FP TN FN

  


   
 (34) 

In MCC, a high score is generated if the binary classifier predicts both positive and 
negative data instances correctly. The coefficient range will be in the interval [-1, +1], and 
it will reach +1 for the best case, whereas it will reach -1 for the worst-case problem. 
Kappa coefficient: The Cohen’s kappa coefficient (k) is another metric used to measure 
the agreement between two classes and it is useful for all instances of data; the two classes 
in this study are defective fabric class and defect-free fabric class. Besides kappa is less 
uncertain than that of using the accuracy metric, because it uses random chance and it is 
measured on a scale of 0-1. When k is closer to 0 indicates the poor agreement among the 
classifiers whereas closer to 1 indicates good agreement among the classifier [39]. 
The kappa coefficient (k) is calculated from the observed agreement (po) and the hypothet-
ical probability of chance agreement (pe) using Eqs. (35) and (36) 

,o

TP TN
p

T


  (35) 
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where T = TP + TN + FP + FN. Thus, binary classifier is validated with kappa coefficient 
using Eq. (37) 

ep
epopk




1
. (37) 

Table 11. Performance analysis of proposed vs. literature on BPSO based classifiers for 
WL-GLCM features. 

Dataset 
D# 

SINN 
Algorithm 

Classifier Performance Metrics  

MCC 
 

Kappa, k
Average 
Features 

Ref 

D1 

BPSO 0.96663 0.96657 15 [27] 
TVAC-BPSO 0.977 0.977 22 [29] 
TVIW-BPSO 0.977 0.977 13 [40] 

EBPSO 0.989  0.989 5 - 

D2 

BPSO 0.96663 0.96657 22 [27] 
TVAC-BPSO 0.977143 0.977143 11 [29] 
TVIW-BPSO 0.977143 0.977143 22 [40] 

EBPSO 0.988732  0.988669 6 - 

D3 

BPSO 0.978 0.978 12 [27] 
TVAC-BPSO 0.967 0.967 12 [29] 
TVIW-BPSO 0.977 0.977 8 [40] 

EBPSO 0.989  0.989 6 - 

D4 

BPSO 0.967 0.967 22 [27] 
TVAC-BPSO 0.977527 0.977527 22 [29] 
TVIW-BPSO 0.977143 0.988669 22 [40] 

EBPSO 0.989  0.989 5 - 

Table 11 shows the performance analysis of MCC and Kappa values of swarm intel-
ligence-based classifiers for WL-GLCM based co-occurrence features. 

The performance metrics MCC and Kappa coefficient values of the swarm intelli-
gence-based classifiers are compared in Table 11. Among all the performance metrics, the 
most important performance metrics for the unbalanced dataset are MCC and kappa. By 
analysing the results, MCC and kappa values of existing methods are lower than that of 
the proposed method. Hence the proposed EBPSO based classifier gives better MCC and 
kappa values with the reduced number of features for all groups of fabrics in the given 
dataset. The results show that EBPSO based classifier overcomes the premature conver-
gence problem of BPSO with improved results. 

 
Statistical Analysis: Analysis of variance (ANOVA) [43] is one of the statistical analysis 
methods that find the significant differences among the mean values of more than two 
experimental results; whereas the t-test is limited to analyze the mean value of two exper-
imental results. So in this work, one way ANOVA test is conducted for the statistical anal-
ysis of the swarm intelligence based classifiers. In an ANOVA test, a significant difference 
is assessed by finding the ratio of between-group variance (MSB) to the within-group var-
iance (MSW). This ratio is known as F (observed) with k  1, N  k degrees of freedom (df). 
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This is shown in Eq. (38).   

kNSSW
kSSB

MSW
MSBobservedF




/
1/)(  (38) 

The statistical test result is obtained by comparing F(observed) with F(critical) at a 
significance level of  = 0.05. If F(observed) value is greater than the F(critical) value, 
then there will be a significant difference among the experimental results. Table 12 shows 
the ANOVA test results conducted for the MCC value of the Swarm intelligence-based 
classifiers. 

 

Table 12. ANOVA statistical test result for MCC value of the swarm intelligence-based 
classifier. 

Source of 
Variation 

Sum of 
Square 

df Mean Square F(observed) p-value F(critical) 

Between 
Groups 

0.000807 
(SSB) 

3 
(k1) 

0.000269 
(MSB) 18.60908 

(MSB/MSW) 
8.28E-05 3.490295 

Within 
Groups 

0.000174 
(SSW) 

12 
(Nk) 

1.45E-05 
(MSW) 

Total 0.000981 15  
 

From Table 12, it is clear that the F(observed) value is greater than that of F(critical) 
value. This comparison result supports that at least one classifier performance differs from 
all other classifier’s performance. But, it fails to identify the better classifier for fabric 
defect detection. Hence the Least Significant Difference (LSD) test is conducted to deter-
mine the better classifier. The Least Significant Difference is calculated using Eq. (39).  

1,2 N kMSW F
LSD

r
 

  (39) 

calculated LSD value for r = 4 and F1,N-k = F1,12 = 4.75 using Eq. (39) is 0.007385. 
In the LSD test, if the absolute difference between the mean values of any two exper-

imental results is greater than 0.007385, it may be concluded that the experimental results 
obtained from the classifiers are statistically different. 

Table 13. Least Significant Difference test result for MCC value of the swarm intelligence-
based classifier. 

SINN  
Classifier 

Dataset 
Mean (X) 

Absolute Differ-
ence, |Xi Xj| 

C3R1 C3R3 C4R1 C4R3

BPSO 0.96657 0.96657 0.978 0.967 0.970523 (X1)  
|X1 X2| = 0.00513  
|X1 X3| = 0.01042 
|X1 X4| = 0.01938 
|X2 X3| = 0.00529 
|X2 X4| = 0.01425 
|X3 X4| = 0.00896 

TVAC-BPSO 0.977 0.977143 0.967 0.977527 0.97389 (X2)

TVIW-BPSO 0.977 0.977143 0.977 0.988669 0.980937 (X3)

EBPSO 0.989 0.988669 0.989 0.989 0.98889 (X4)
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The absolute differences between the mean values of MCC obtained from the swarm 
intelligence-based classifiers are shown in Table 13. From the Table 13, it is clear that the 
absolute differences between the mean values of MCC obtained from the EBPSO based 
BPNN classifier (X4) and other swarm intelligence based BPNN classifiers ((X1), (X2) (X3)) 
are greater than the observed LSD. By this comparison, it is concluded that the EBPSO 
based BPNN classifier performance result is statistically different from all other existing 
BPSO based classifiers. Therefore, EBPSO based BPNN classifier achieves better results 
than the existing classifiers for defect detection in fabrics. 

4. CONCLUSION 

The proposed system is investigated on a different combination of co-occurrence fea-
tures and performance metrics of each feature is evaluated with swarm intelligence-based 
classifiers for fabric defect detection. Among all the co-occurrence features better perfor-
mance results are obtained by WL-GLCM based co-occurrence features. By comparing 
the results of all the swarm intelligence-based classifiers, the proposed Evolutionary state 
greedy reset BPSO (EBPSO) based classifier yields better results. In addition to that, it 
overcomes the premature convergence problem in BPSO. Hence proposed technique 
shows significant improvement in performance metrics with a reduced number of features 
compared to other BPSO based classifiers. The effectiveness of the classifier performance 
for an unbalanced dataset is analyzed with the Matthews Correlation Coefficient (MCC) 
and the proposed classifier yields maximum MCC and accuracy of 0.989 and 99.75% with 
5 features than existing methods.  
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