
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 38, 479-496 (2022)
DOI: 10.6688/JISE.202203 38(2).0012

Aggregates Selection in Replicated
Document-Oriented Databases

KHALED JOUINI
MARS Research Lab LR17ES05
ISITCom, University of Sousse

H. Sousse, 4011 Tunisia
E-mail: khaled.jouini@isitc.u-sousse.tn

Document-stores leverage the flexibility of structured documents to pack closely related
data within a single autonomous aggregate (i.e. document). Selecting an appropriate set
of aggregates for a document database is a non-trivial task since: (i) there are no clear-cut
transformation rules from a conceptual design to a document design; (ii) a large space of
design options must often be considered; and (iii) most importantly, it is difficult, if not
impossible, to find out a single set of aggregates suitable for all data access patterns.

In a previous work, we proposed distorted replicas: a replication scheme that leverages
ubiquitous replication in document-stores and restructures replicated data in different ways
to better cope with the heterogeneity of data access patterns. In this paper, we tackle the
problem of aggregates selection and replication in an integrated manner. In particular, given
a database with a replication factor of C and a workload W , we propose novel cost-driven
techniques allowing to: (i) determine the most interesting aggregates; and (ii) pack the most
interesting aggregates into C disjoint and complete subsets in such a way that the execution
time of W is minimized. Experimental results obtained over two real-world workloads
showed that distorted replicas allow to run queries up to tens of times faster than state-of-
the-art approaches.

Keywords: logical & physical design, aggregate data model, replication, 0-1 MKP, docu-
ment-stores

1. INTRODUCTION

NoSQL systems rise has been driven by the desire to store data on large clusters
of commodity servers and to provide horizontal scalability, high availability, and high
throughput for write/read operations [1]. Document-stores leverage the flexibility of
structured documents (e.g. JSON) to pack closely related data in a single autonomous
document or aggregate, rather than having them scattered across several tables as in the re-
lational model. By doing so, document-stores manipulate related data in a single database
operation and avoid cross-nodes writes and joins, which are prohibitive in highly dis-
tributed environments [2]. Fig. 1 depicts a slightly modified JSON-formatted document
from the archives of the DBLP bibliography [3] and illustrates the key differences be-
tween the aggregate data model and the relational data model.

Received March 16, 2020; revised August 26, 2020; accepted October 5, 2020.
Communicated by Reynold C.K. Cheng.

479

480 KHALED JOUINI

Fig. 1. Aggregate data model vs. Relational data model.

A key challenge in document-stores is how to model documents to meet the needs
of applications in terms of performance and access patterns. Several causes make the
selection of an appropriate set of aggregates a non-trivial task. First, there are no clear-
cut transformation rules from a conceptual design to a document design, as efficient as
the normalization process of relational databases [4]. Second, a wide range of alterna-
tive design options must often be considered (Fig. 2). When the number of entities and
relationships is large, this may easily lead to a combinatorial explosion of alternative can-
didate schemas [4]. Third, a judicious modeling choice depends entirely on how we tend
to manipulate data [1], and hence, must be cost-driven and influenced by the workload
experienced by the system (i.e. workload-aware) [5]. Last and most importantly, it is
commonly accepted that it is difficult, if not impossible, to find out a single set of aggre-
gates suitable for all queries [4].

Replication is ubiquitous in NoSQL systems. In a previous work [6], we proposed a
new replication scheme called distorted replicas. The main idea behind distorted replicas
is to restructure replicated documents in different ways to better cope with the unavoidable
heterogeneity of data access patterns. The idea of organizing replicated data in different
ways was first introduced in [7] and applied to relational databases hosted on servers
with mirrored disks. The idea was next applied to replicated blocks in distributed file
systems [8]. We think that restructuring replicated data is much more of a central aspect
for aggregate-oriented databases than it is for relational databases, since most applications
will have to deal with queries that do not fit well with the aggregate structure.

The problem we tackle in this paper is as follows. Given a database with a repli-
cation factor of C (i.e. a database replicated C times) and an incoming query workload
W , we have to determine C subsets of complete and disjoint aggregates that optimize W
(i.e. that minimize the execution time of W). While there has been work in the area of
document-oriented database design [4,9,10], we are not aware of any work that addresses
the problem of aggregates selection and replication in an integrated manner. To deal with
the logical and physical design challenges triggered by distorted replicas, we make the
following key contributions: (i) we show how to identify interesting aggregates and how
to assign them an interestingness value; (ii) we map the problem of aggregates selection
to a 0-1 multiple knapsack problem and solve it using a branch and bound technique;
and (iii) we evaluate our approach on top of MongoDB using two real-world datasets:
DBLP [3] and TPC-H [11]. The obtained results show that distorted replicas can execute
queries up to tens of times faster than state-of-the-art approaches.

The remainder of this paper is organized as follows. Section 2 briefly reviews the
main concepts related to document-stores. Section 3 discusses our workload-aware, cost-
based algorithm for aggregates selection. Section 4 presents related works. Section 5

AGGREGATES SELECTION IN REPLICATED DOCUMENT-ORIENTED DATABASES 481

Fig. 2. Alternative schemas for the DBLP dataset; Nested rectangles represent embedded docu-
ments; Arrows represent references between aggregates.

gives an experimental study of distorted replicas performance. Section 6 discusses the
main results and findings. Section 7 concludes the paper.

2. ANATOMY OF A DOCUMENT-STORE

There exists a wide range of academic and commercial document-stores, each with
some features that may not exist in others. In the sequel, we use MongoDB as a represen-
tative of the feature set but also reference other document-store systems.

2.1 Document Modeling: Challenges and Considerations

2.1.1 Read-overhead

One of the most critical document-modeling choices is how to represent relation-
ships between data: with references (i.e. normalized data model) or with embedded doc-
uments (i.e. denormalized data model). References represent relationships between data
by including a link from one document to another, just as in the relational model. The
normalized data model strives for a single copy of the data, minimizing redundancy and
favoring consistency [4]. However, if related data is stored in separate servers, joins and
writes may be prohibitively slow.

Embedded documents represent relationships by storing related objects in a single
aggregate and hence, avoid cross-nodes joins and writes. Aggregates are useful in that
they pack into one document, objects that are expected to be accessed together. How-
ever, there are many use cases where objects or fields need to be accessed individually.
When a field needs to be accessed individually, not only that field’s value is loaded in
the memory hierarchy, but also all the data within the same aggregate. Loading large
amounts of data irrelevant for a given query may seriously waste main memory, disk, and
network bandwidths and increase the number of CPU cycles wasted in waiting for data
loading [12]. The introduced read-overhead is one of the most important downsides of
aggregate-oriented data models.

482 KHALED JOUINI

2.1.2 Aggregate roots

Objects in an aggregate are bound together by a root object, known as the aggregate
root [1]. In most cases, there exist many root candidates. Grouping objects by one of the
roots may help with some data interactions but is necessarily an obstacle for many others.
As reported in [1], the entire aggregate orientation approach works well only when data
access is aligned with aggregate roots. If data is accessed in a different way, the whole
system performance may be substantially impacted. Consider the DBLP example of Fig. 1
and the relationship between authors and publications. Some queries will require to access
authors whenever they access a publication; this fits in well with combining a publication
with its authors into a single aggregate that can be stored and accessed as a unit. Other
queries, however, will require to access the history of publications whenever they access
an author. In such a case, it would be necessary to dig into every aggregate in the database.
As aptly stated in [1], we can reduce this burden by building secondary indexes, but we’re
still working against the aggregate structure. Relational databases have an advantage here
as they allow to slice and dice data in different ways for different queries.

In the following, an aggregate a is represented by a pair (r,E), where a.E is the set
of entities embedded within a and a.r ∈ E is the root of a. An aggregate formed by a
single entity is said to be atomic. To benefit from the efficiency of bitwise operations in
our algorithms, a.E is represented by a bitmap of | E | bits, where E is the set of modeled
entities. The ith bit of the bitmap is set to 1 if the ith modeled entity is embedded within
the aggregate, and to 0 otherwise.

2.2 Replication

Replication is the process of maintaining different replicas of the same data on dif-
ferent servers. The primary purpose of replication is to enhance availability and fault-
tolerance by providing multiple paths to redundant data. Replication can also be used to
increase: (i) I/O throughput by distributing requests across servers; and (ii) data locality
by allowing a client application to access data from the closest server.

A set of servers maintaining replicas of the same data (sub-)set is called a Replica Set
(or RS) in MongoDB. A replica set is composed of one master node, called primary, and
a set of slave nodes, called secondaries. The primary node is the only member in a replica
set that receives writes. When the primary receives a write request, it updates its data set
and records the write in the operations Log (i.e. opLog). Secondary nodes periodically
import the opLog and apply all changes to their local replicated collections in such a way
that they reflect the master collections [13]. As in most NoSQL systems, replication in
MongoDB is by default asynchronous: (i) there may exist a delay between the occurrence
of an operation on the primary and its application on a secondary (i.e. replication lag);
and (ii) the client application does not have to wait for the completion of a write on slaves.

2.3 Sharding

Sharding is similar to horizontal partitioning in RDBMSs. It consists in splitting a
data set according to a given field, called the shard key. The resulting data subsets are
called chunks and are hosted on multiple separate servers, called shards. Each shard is
an independent database having its own subset of data stored on its own local disks. In
MongoDB, each shard can be a complete replica set. A prominent concern in sharding

AGGREGATES SELECTION IN REPLICATED DOCUMENT-ORIENTED DATABASES 483

is to balance the load between shards. Typically, when a chunk grows beyond a given
size, it is split causing an increase in the number of chunks held by the server. If the
chunk distribution becomes uneven, some chunks are migrated from the shard that has
the largest number of chunks to the one with the least number of chunks, until the cluster
is rebalanced. A similar process occurs when a new shard is added to the cluster.

3. WORKLOAD-AWARE, COST-BASED
AGGREGATES SELECTION

3.1 Overview

The main idea behind distorted replicas [6] is to restructure replicated data in dif-
ferent ways to better cope with the unavoidable heterogeneity of data access patterns. In
our work, data restructuring is materialized by: (i) converting a reference between two
aggregates into an embedded document and inversely, and (ii) reorganizing data accord-
ing to different aggregate roots. Note here that restructuring aggregates according to new
roots is not tedious as document-stores provide optimized operators allowing to promote
an entity from “embedded” to “root” (e.g. $replaceRoot in MongoDB). We should
also note that in our work data is only reorganized locally, i.e. within the same replica
set (shard). Accordingly, even if references are used, we do not have to perform costly
cross-nodes joins to reconstruct an aggregate.
We assume that we are given a database D with a replication
factor C and a representative workload W , for which we need
to recommend aggregates and their “distorted” replicas. The
workload can be obtained when migrating from RDBMS to
NoSQL as in [14,15] or by processing the Log of the database
as in [8, 16]. Our goal is to find C disjoint subsets of aggre-
gates, such that the performance of W is optimized, subject to
two constraints: (1) Disjointness constraint: aggregates within
the same subset are disjoint, which means that within a replica
set member, each modeled entity appears in at most one aggre-
gate; (2) Restorability constraint: while not physically identi-
cal, replicas have to be logically identical. This means that all
entities must appear within each replica set member.

Fig. 3. Aggregates selecti-
on: key steps.

The key steps of our solution, pictured in Fig. 3, are in the spirit of S. Chaudhuri & V.
Narasayya work on index, materialized views, and horizontal/vertical partitions selection
in RDBMSs, summarized in the VLDB ten-year best paper award of S. Chaudhuri [16].
For simplicity of exposition, we retain the terminology used in [16] wherever applicable.

As illustrated in Fig. 2, an aggregate-oriented database designer is faced with a
plethora of alternative design options: what entity is the owner of a relationship (i.e.
what entity should embed a relationship), which relationships to denormalize, to which
depth (i.e. subsequent relationships), etc.. Enumerating all possible combinations of em-
bedding and referencing, becomes exponential as the number of entities and relationships
increases [4]. To limit the space of the considered aggregates, we first restrict ourselves
to those relevant for at least one query in the workload. Each relevant aggregate is then

484 KHALED JOUINI

assigned with a value quantifying its interestingness.
An aggregate suitable for one query, may substantially degrade the performance of

another query. The goal of the “relevant aggregates merging” step is hence to find addi-
tional aggregates, that although are not optimal for any individual query, are useful for
multiple queries, and therefore could be optimal for the workload. Given the set of inter-
esting aggregates and a replica set of C members, the “aggregates selection” step aims to
select C subsets of complete and disjoint aggregates so that the total interestingness of the
replica set is a maximum.

As in [5,8,16], we assume that there is a function Cost(q,a) that returns the optimizer
estimated cost of a query q when q is answered using an aggregate a. As stated in [16],
many database systems support the necessary interfaces to answer such “what-if” ques-
tions. In the absence of such interfaces, we could follow the same approach as [5, 8] and
estimate Cost(q,a) by the footprint of q, i.e. by the total number of bytes read (i.e. con-
sumed) by q. The footprint of q corresponds to: Size(a)×Cardinality(a)×Selectivity(q),
where Size(a) is the estimated size of a, Cardinality(a) the estimated number of a in-
stances, and Selectivity(q) the percentage of instances that q selects (with 0 meaning no
instances and 1 meaning all instances). If no index is used, a full scan is necessary and
Selectivity(q) is dropped from the formula. Without any loss of generality, one can supply
other Cost(q,a) estimations to our algorithm.

3.2 Determining Relevant Aggregates from Individual Queries

In the following, the term rootable entities is used to denote entities in a query that
can potentially be good aggregate roots. Rootable entities form the basis for “determining
relevant aggregates from individual queries”, the first step of our approach (Fig. 3). We
define rootable entities as follows. Let q.E be the set of modeled entities referenced in a
query q ∈ W . Intuitively, an entity e ∈ q.E is rootable for q, if it is potentially useful to
group the entities referenced in q by e (i.e. to create an aggregate rooted at e that embeds
all of the entities referenced in q). We consider that an entity e ∈ q.E is rootable for q if
there exists a field f of e such that f appears in the Group By clause, the Order By
clause, or in a filter predicate of q. In the absence of at least one entity satisfying one of
the above conditions, each e ∈ q.E is considered as a rootable entity.

Intuitively, an aggregate a is relevant for a query q if q is answerable using a, hence,
if all of q.E’s entities are embedded within a (q.E ⊆ a.E). Considering all relevant ag-
gregates for a query is not scalable since, in principle, we would have to consider any
aggregate a such that q.E ⊆ a.E. To prune the space of relevant aggregates, we only
consider aggregates whose roots are rootable entities and approach the task of “relevant
aggregates selection” in two steps. From each query qi ∈W , we first derive a preliminary
set Ai of aggregates relevant for qi. Each of those aggregates: (i) is rooted at a rootable
entity for qi; and (ii) contains exactly all of the entities referenced in qi (and nothing else).
For each a j ∈ Ai, we next check its relevance for the remaining workload queries. The
output of this stage is a relevance matrix R(qi,a j), indicating whether or not an aggregate
a j is relevant for a query qi, i.e. R(qi,a j) = 1 if a j is relevant for qi, and 0 otherwise.

Example. Let’s consider the following self-explanatory SQL queries.
q1: ”select a.mail from author a where a.name=..”
q2: ”select a .id, count(*) from author a, publication p where p.year=.. group by a.id”.

AGGREGATES SELECTION IN REPLICATED DOCUMENT-ORIENTED DATABASES 485

a1=(author,{author}) is a relevant aggregate for q1. a2=(author,{author, publication})
and a3=(publication,{author, publication}) are relevant aggregates for q2.
As a1.r = a2.r and a1.E ⊆ a2.E, we conclude that a2 is also relevant
for q1. Accordingly, R(q1,a2) is set to 1. In contrast to a2, a3 is not
relevant for q1, since a3.r ̸= a1.r. R(q1,a3) does not change and
remains equal to 0, as shown in the relevance matrix opposite.

q1 q2

a1 1 0
a2 1 1
a3 0 1

△
3.3 Measuring Interestingness of Relevant Aggregates

Our next goal is to define a metric that captures the relative interestingness of each
relevant aggregate. Such a metric is essential to rank aggregates and pick the most valu-
able ones in the final replica set. Intuitively, an aggregate is interesting for a workload
W , if it speeds up a significant fraction of W ’s queries, i.e. allows to significantly reduce
the total cost of W . The relevance matrix is useful for indicating which aggregates are
relevant for which queries. However, it cannot be used by its own to determine interest-
ingness as it does not take into account neither the relative importance (i.e. footprints) of
queries nor the read overhead introduced by answering a query q using an aggregate that
embeds entities useless for q (not referenced in q).

Let A be the set of all relevant aggregates, Ai ⊆ A the set of aggregates relevant
for a query qi (∀ a j ∈ A, R(qi,a j) = 1), Opt(W) the optimal cost of W , and Opt(qi)
the optimal cost of qi. Opt(qi) is defined as the lowest achievable cost to answer qi:
Opt(qi) = Mina j∈Ai(Cost(qi,a j)). Opt(W) is the lowest achievable cost of W : Opt(W) =
|W |
∑
1

Opt(qi). We define Int(a)∈ [0,1], the interestingness of an aggregate a for a workload

W , as the fraction of the cost of all queries in W for which a is relevant. Formally,

Int(a)→ [0,1] is defined as follows: Int(a) =

|W |
∑
1

R(qi,a)×
Opt(qi)

2

Cost(qi,a)

Opt(W) .

Int(a) is normalized by the total workload cost to make it comparable. This can be
used as well if it is necessary to prune aggregates by discarding from further consideration
those whose interestingness is below a predefined threshold.

Example. Consider for simplicity a workload consisting of one query q and 3 rele-
vant aggregates a1, a2, a3, such that Cost(q,a1) = 10 units, Cost(q,a2) = 15 units and
Cost(q,a3) = 20 units. The relative interestingness is: Int(a1) = 1, Int(a2) = 0.67 and
Int(a3) = 0.5. △

Example. Assume that W consists of 2 queries q1 and q2 and that we have 4 relevant
aggregates a1, a2, a3, and a4. Each cell in the following table gives the cost of answering
a query qi using an aggregate a j (with “-” meaning that a j is not relevant for qi).
As illustrated in the table opposite, a1 is optimal for q1 and a2 is opti-
mal for the more expensive query q2 (having higher optimal cost). a3
and a4 allow to answer q1 and q2 but introduce a read overhead. The
interestingness of each aggregate is: Int(a1) = 0.33, Int(a2) = 0.67,
Int(a3) = 0.76 and Int(a4) = 0.5.

q1 q2

a1 10 -
a2 - 20
a3 15 25
a4 20 40

486 KHALED JOUINI

Intuitively, a2 is more interesting than a1 for the given workload, as it is optimal for
a query more expensive than the query for which a1 is optimal. a3 is more interesting than
a4 as it allows to answer q1 and q2 with a lower read overhead. a3 is more interesting than
a2 as it allows to answer q1 without introducing a “high” additional cost for q2. △

3.4 Merging Pairs of Interesting Aggregates

The disjointness constraint states that non-disjoint aggregates cannot be stored
within the same replica set member. This is essential to avoid data redundancy and, hence,
data inconsistency. Due to the disjointness constraint, a large part of relevant aggregates
derived from individual queries will be rejected and we can end up with sub-optimal rec-
ommendations for the workload. The intuition behind “aggregates merging” is that merg-
ing two mutually exclusive aggregates, called the parent aggregates, in one sub-optimal
aggregate, called the merged aggregate, is in some cases better than retaining one parent
and rejecting the other. As the merged aggregate and its parents are mutually exclusive,
the merged aggregate: (i) should be usable (i.e. relevant) in answering all queries where
each of its parents was used; and (ii) the cost of answering queries using it should not be
“much higher” than the cost of answering queries using one of its parents.

In our work, we only merge aggregates that meet the two following criteria. The
parent aggregates must have: (i) the same root; and (ii) exactly one non-common entity
with the merged aggregate. The first condition is necessary to ensure that the merged
aggregate is relevant for all queries for which one of its parents is relevant. The second
condition ensures that the cost of answering these queries using the merged aggregate is
not “much higher” than the cost of answering them using its parents. The merged aggre-
gate is retained only when its interestingness is greater than the lowest interestingness of
its parents.

Example. Let a3 = (r,{r,s, t}) be a merged aggregate and a1 = (r,{r,s}), a2 = (r,{r, t})
its parent aggregates. Assume that the cost matrix is as follows.

q1 q2

a1 10 -
a2 - 20
a3 20 40

The interestingness of a1, a2 and a3, is respectively Int(a1) = 1
3 ,

Int(a2) =
2
3 and Int(a3) =

1
2 . a3 is therefore retained.

Suppose now that Cost(q1,a3) = 50 and Cost(q2,a3) = 100. In such
case, Int(a3) = 1

5 and a3 is not retained as retaining a2 is a better choice
(the gain achieved is lower than the loss caused by the read-overhead).

△
3.5 Interesting Aggregates Selection as a 0-1 MKP

Given the set I of interesting aggregates and C replica-set members (C ≪ |I|), our
goal is to select C disjoint subsets of I, so that: (i) the total interestingness of the selected
aggregates is a maximum; and (ii) the disjointness and the recoverability constraints are
met. The aggregates selection problem can be likened to a 0-1 multiple knapsack problem
(MKP) which is known to be NP-hard. More precisely, given C knapsacks (replica set
members) and N items (interesting aggregates), we have to find binary variables xi j, i ∈
{1..C}, j ∈ {1..N}, having the following meaning: xi j = 1 if aggregate j is assigned to
member i, and 0 otherwise. Formally, the problem is stated as follows. Let B be a bitmap
with | E | bits all set to 1:

AGGREGATES SELECTION IN REPLICATED DOCUMENT-ORIENTED DATABASES 487

Input : items, knapsacks, level, nodeID, bestNode, maxProfit
Output: Id of the decision-tree node that corresponds to the optimal solution

1 if j < items.length()−1 then
2 B&B(items, knapsacks, level+1, nodeID + ”.0”, bestNode, maxProfit)

3 for i = 0; i < knapsacks.length(); i++ do
4 if Hamming weight(knapsacks[i].bitmap ∧ items[level].bitmap) == 0 then
5 knapsacks[i].pro f it+= items[level].pro f it
6 knapsacks[i].bitmap = knapsacks[i].bitmap∨ items[level].bitmap
7 if level < items.length()−1 then
8 B&B (items, knapsacks, level+1, nodeID + ”.” + str(i+1), bestNode,

maxProfit)
9 else if knapsacks[i].pro f it > maxPro f it then

10 maxPro f it = knapsacks[i].pro f it
11 bestNode = nodeID

Fig. 4. A Branch&Bound algorithm for aggregates packing.

maximize
C

∑
i=1

N

∑
j=1

Int(a j)xi j subject to,

xi j ∈ {0,1}, i ∈ {1, . . . ,C}, j ∈ {1, . . . ,N} (1)
N

∑
i=1

xi j = 1, j ∈ {1, . . . ,N} (2)

N

∑
j=1

w jxi j ≤ B i ∈ {1, . . . ,C} (3)

Constraint (1) is self-explanatory. Constraint (2) indicates that a given aggregate
cannot be assigned to more than one replica set member. Constraint (3) (disjointness con-
straint) substitutes the classic capacity constraint of the knapsack problem and indicates
that a given member cannot hold two non-disjoint aggregates. When no confusion is pos-
sible, the terms item / aggregate, knapsack / RS member, and profit / interestingness are
used interchangeably in the sequel.

To solve the aggregates selection problem, we opt for a depth-first branch-and-bound
approach. The pseudo-code of our algorithm is shown in Fig. 4. In this algorithm, the
decision tree’s successive levels are built by selecting a branching aggregate and assign-
ing it to each knapsack in turn. The branching aggregate is first assigned to a dummy
knapsack (lines 1–2), implying its exclusion from the current solution. The aggregate is
then assigned to each knapsack that satisfies constraint (2) (lines 3–8). If constraint (2)
is satisfied (i.e. the conjunction of the knapsack bitmap and the item bitmap is 0), B&B
is called recursively to continue exploring the corresponding sub-tree. In the other case,
the branch is ignored. This is illustrated in the example of Fig. 5, where knapsack 0 is
the dummy knapsack and aggregates a1 and a2 are not disjoint. The branches that assign
a1 and a2 to the same “non-dummy” knapsack are discarded from further consideration
(node 1.1 and node 2.2).

In case we have explored all items in a given path, we check if we have a greater

488 KHALED JOUINI

profit than before and update the optimal solution (lines 9-11). Once the set of aggregates
assigned to each member is determined, we have to check the recoverability constraint.
Indeed, if the disjunction of the bitmaps of aggregates assigned to a knapsack Ki is a
bitmap different than B, this means that one or more modeled entity is not represented in
Ki. In such a case, an atomic aggregate for each of those entities is added to the member.

Fig. 5. Item 1 and item 2 are not disjoint. The branches that assign them to the same knapsack are
discarded (Branch&Bound).

4. RELATED WORK

4.1 Trojan Data Layouts

[8] proposes Trojan Layouts, a data layout inspired by PAX (Partition Attributes
Across) and intended to improve data access times in Hadoop Distributed File System
(HDFS). Given a relation R with arity n, PAX partitions each block into n mini-blocks.
The ith mini-block stores all the values of the ith attribute of R. Trojan Layouts split
an HDFS block into m ≤ n mini-blocks and store in each mini-block the values of k
(1 ≤ k ≤ n) attributes (i.e. vertical partitioning inside each chunk). Trojan Layouts pro-
vide a high degree of spatial locality when the values of the k grouped attributes are
sequentially accessed and avoid to read (n− k) irrelevant attributes for a given query. To
better handle a mix of queries with different access patterns, [8] also proposes to group
attributes differently in each HDFS block replica according to the query workload.

Trojan Layouts reorganize a modeled entity’s attributes at the block level, while dis-
torted replicas reorganize entities at the database level. Trojan Layouts are then only
useful for queries touching a limited subset of an entity’s attributes, whereas distorted
replicas are useful for queries touching more than one entity.

4.2 Secondary Indexes and the Divergent Physical Design

Numerous techniques have been proposed to build secondary indexes on NoSQL
databases. In [17] the authors propose a novel tuning paradigm for replicated databases,
called divergent designs. Given a replicated database, a divergent design indexes the same
data differently in each replica, and hence, specializes replicas for different subsets of the
workload [17]. With this design, each query is routed to the replica that can evaluate it
most efficiently. The idea of divergent design was further developed in [18], where the
authors proposed RITA, an index-tuning advisor for replicated databases. RITA allows to:
(i) generate fault-tolerant divergent designs; and (ii) spread the load evenly over replicas.

AGGREGATES SELECTION IN REPLICATED DOCUMENT-ORIENTED DATABASES 489

With secondary indexes, some of the latency would be hidden, but performance
would only be sub-optimal since we’re still “working against the aggregate structure”
as aptly stated in [1] (a further discussion on secondary indexes is given in Section 6).

4.3 Schema Modeling

Despite the wide diffusion of document-oriented DBs, little work has been devoted to
their modeling [15]. The work of [9] introduces an aggregates-based logical data model,
called NoAM (NoSQL Abstract Model), and demonstrates how data modeled in NoAM
can be implemented in different NoSQL types. The NoAM modeling approach consists of
four steps: (i) aggregate design: the classes of aggregated objects needed for an applica-
tion are identified (conducted by use cases and performance requirements); (ii) aggregate
partitioning: aggregates are partitioned into smaller data elements; (iii) high-level NoSQL
DB design: aggregates are mapped to the NoAM model according to the identified parti-
tions; and (iv) implementation: the NoAM schema is converted to the schema of the target
NoSQL DB type. Although [9] admits that “aggregate design is mainly driven by data
access operations”, it does not provide a practical workload-aware, cost-based approach
for identifying aggregates.

The work of [4] explores different schema design tactics and provides general guide-
lines for modeling document-oriented DBs. Notably, [4] advocates a workload-aware
design consisting of two phases: (i) leveraging common heuristics to generate a finite
number of candidate schemas (i.e. candidate generation); and (ii) ranking these candi-
date schemas using cost functions (i.e. candidate ranking). [4] states that there are two
approaches to candidate generation: top-down and bottom-up. The bottom-up approach
starts with a normalized schema and optimizes each query by adding denormalized struc-
tures. The top-down approach starts with a set of globally optimal aggregates that answers
each query with a single look-up. Our work follows the broad lines of [4] and can be seen
as an implementation of the top-down approach. In our work, however, we go further
than [4] (and [9]) and propose a set of practical algorithms and cost functions for the
identification, evaluation, and selection of aggregates.

4.4 Database Migration from RDBMS to Document-Oriented NoSQL

As mentioned previously, join operations are rarely supported in document-stores
and are often processed at the application layer, in a much more expensive way than
RDBMS. Unsurprisingly, most of the existing work on database migration from RDBMS
to document-oriented NoSQL [14, 15] propose variants of the denormalized form and try
to best balance the trade-offs between the normalized form and the denormalized form.
We distinguish two types of denormalization: table-level denormalization and column-
level denormalization. For table-level denormalization, [14] proposes a Breadth-First
Search algorithm to find a path from a root table (i.e. root entity) to other related ta-
bles. This path is used for creating a document template for the root table (by recursively
embedding, in a Breadth-First Search fashion, related tables). To reduce the number of
embedded entities, the approach of [14], referred to as BFS in the sequel, exploits each
link between entities not more than once (an example is given in Fig. 8 (b), where the
entity Region is embedded only once). As noticed in [19], BFS adds too many weakly
related tables in the root document.

490 KHALED JOUINI

The most recent work on denormalization [15] proposed CLDA (Column-Level De-
normalization with Atomicity), a column-level based denormalization. Rather than em-
bedding entire entities inside aggregates, CLDA preserves all original entities in separate
aggregates and duplicates only those columns accessed in non-primary-foreign-key-join
predicates (e.g. filter predicates). By doing so, CLDA aims at avoiding join operations
while minimizing the read-overhead. CLDA can be considered as an implementation
of the bottom-up approach discussed in [4]. An important downside of CLDA is that it
introduces data redundancy, which is often a source of inconsistency. In contrast with
our approach, CLDA is not cost-driven, i.e. does not take into account neither the rela-
tive importance of queries nor their costs. Furthermore, CLDA systematically duplicates
columns without considering the cases where the gain achieved through duplication is
lower than the loss caused by the read-overhead. An experimental evaluation of BFS [14],
CLDA [15], and distorted replicas is given in Section 5.

5. EXPERIMENTAL EVALUATION

Distorted replicas were implemented on top of MongoDB release 3.6. Experiments
were performed on dedicated dual-core i5-3230M systems, running Ubuntu 16.04.1 LTS.
Each core offers a base speed of 2.6 GHz and the two cores can handle up to four simul-
taneous threads. These computers feature 16 GB main memory (DDR3-1600MHz), 128
kB L1 cache, 512 kB L2 cache, and 3 MB L3 cache. The hard disk is a Serial-ATA/600
having a rotational speed of 7200 rpm. MongoDB was run using its default settings and
no special tuning was done. All queries were implemented using the MongoDB Aggrega-
tion Pipeline. For each query, we report the average execution time of three consecutive
runs. We ran our experiments with two main objectives in mind: (i) to show that distorted
replicas allow improving data access performance significantly (Subsection 5.1), and (ii)
to evaluate the effectiveness of our aggregates selection algorithm (Subsection 5.2).

5.1 Distorted Replicas Effectiveness

We compared distorted replicas with two state-of-the-art approaches: BFS [14], a
table-level denormalization method, and CLDA [15], a column-level denormalization
method. BFS, CLDA, and distorted replicas were evaluated using two complementary
real-world datasets: DBLP [3], a relatively simple workload, and TPC-H [11], a more
complex workload. In this paper, we are focusing on reorganizing data within the same
replica set and are less concerned with sharding1. We then assume that we are given a
MongoDB cluster consisting of one replica set or a MongoDB cluster consisting of sev-
eral shards, each deployed as a replica set. Our aim is to replicate the database hosted at
a replica set in different ways and to evaluate the gains in execution time.

5.1.1 DBLP

The DBLP Computer Science Bibliography dataset [3] contains bibliographic infor-
mation on scientific publications. All the DBLP records are distributed in one big XML
file. Each record is associated with a set of fields representing bibliographic data relevant

1The study of the effect of data movements between shards (between replica-sets) is part of our ongoing work.

AGGREGATES SELECTION IN REPLICATED DOCUMENT-ORIENTED DATABASES 491

with respect to its type and has an id field that uniquely identifies it. We developed a
DBLP parser in Java following the recommendations of [3]. Currently, our parser only
extracts “article” and “inproceeding” records. The extracted records were inserted in the
same collection. The resulting MongoDB collection contains ≈ 3.1 million publication
documents, embedding ≈ 1.6 million distinct authors, and ≈ 9.5 thousand distinct jour-
nals/conferences. The average document size is 538 bytes, and the total collection size is
≈ 1.5 GB. The considered workload is intentionally basic, so that the fundamental prop-
erties of CLDA, BFS, and distorted replicas can be better illustrated and highlighted. The
workload consists of the following queries.

q1: “Find the authors of a given publication”. In the parsed DBLP dataset, the average
number of authors per publication is ≈ 2.85. We randomly selected 3 publications
co-written by 3 authors and reported the average execution time.

q2: “Find the publication titles of a given author”. The average number of publications
per author is ≈ 5.46. We randomly selected 3 authors with 6 publications each and
measured the average execution time. As authors may have variations in their first
names (e.g. “Mike Stonebraker”, “Michael Stonebraker”, etc.), we used a regular
expression to find out publications (e.g. author. id: {/Stonebraker$/}).

q3: “Find the number of publications per year”.
The considered BFS aggregate, depicted in Fig. 6 (a), is rooted at Publication and embeds
Author and Journal. As shown in Fig. 7, BFS is slightly slower than CLDA and distorted
replicas for q1. This is due to the fact that BFS embeds Journal within the aggregate
rooted at Publication, whereas CLDA and distorted replicas do not. Fig. 7 also shows
that BFS outperforms CLDA for q3 but turns out to be very slow when used to answer q2.
The poor performance of BFS for q2 is caused by the necessity to visit each Publication
document and, for each document, to iterate over its Authors array (analogously, if the
BFS aggregate were rooted at Author, it would be slightly slower than CLDA and dis-
torted replicas for q2, but very slow for q1 and q3).

CLDA is optimal for q1 and q2. However, in the absence of a query involving
Publication and containing a filter predicate on Journal.year, the relationship between
Publication and Journal is not denormalized. Answering q3 using CLDA requires there-
fore a costly join operation (Fig. 7).

Fig. 6 (b) illustrates the set of aggregates selected by our approach (for C = 3).
As shown in Fig. 7, distorted replicas are optimal for q1 and q3 and only slightly
slower than CLDA for q2 (as distorted replicas embed the entire Publication entity
within the aggregate rooted at Author, whereas CLDA only embeds Publication. id and
Publication.title). Overall, distorted replicas are, respectively, ≈ 2.8 and ≈ 1.28 faster
than BFS and CLDA for the considered workload (an improvement factor of 2 for a query
q or a workload W means that q/W is executed 2 times faster).

Fig. 6. DBLP dataset; (a) BFS DB; (b) Distorted replicas (C = 3).

492 KHALED JOUINI

Fig. 7. Query performance (DBLP).

5.1.2 TPC-H

We generated TPC-H data using the TPC-H DBGEN data generator tool with a scale
factor of 10 and developed a Java loader module to import TPC-H data in MongoDB.

We considered 10 representative TPC-H qu-
eries: q1, q3, q5, q6, q10, q11, q14, q15, q17,
q19. The outputs of our algorithm steps
are synthesized in Table 1. The BFS ap-
proach could produce different denormal-
ized schemas, depending on the order of
edge visits [14, 15]. We adopted the schema
described in [15] and illustrated in Fig. 8 (b).
As shown in Fig. 8 (b), the BFS DB is very
close to a fully denormalized DB having the
same root. The only difference is that Region
is embedded only once.

Fig. 8. TPC-H dataset; (a) Fully denormal-
ized DB; (b) BFS DB.

Fig. 9. Query performance (TPC-H).

Fig. 9 depicts the performance achieved by BFS, CLDA and distorted replicas, in
terms of query execution time. Fig. 10 reports the improvements achieved by distorted
replicas over BFS and CLDA as a function of the replication factor C. As shown in
Fig. 9 and Fig. 10, BFS is by far outperformed by CLDA and distorted replicas (resp.,
≈ 1.51 and up to ≈ 4.97 times faster). To understand the behavior of distorted replicas
and CLDA, let’s consider the atomic aggregate {Lineitem,(Lineitem)}, which is optimal
for queries q1 and q6 and contributes to optimizing q15 and q17. The atomic aggregate
{Lineitem,(Lineitem)} is selected by our knapsack algorithm ∀ C ≥ 2. Due to queries

AGGREGATES SELECTION IN REPLICATED DOCUMENT-ORIENTED DATABASES 493

such as q5, q14, and q19, the relationships between Lineitem, Supplier, Part, and Nation
are partly denormalized in CLDA (i.e. some columns from Supplier, Part, and Nation are
embedded within Lineitem). The embedded columns are useless for queries q1, q6, q15
and q17, and introduce a substantial read-overhead. Furthermore, CLDA nests Lineitem
into Order as an array of sub-documents to better support atomicity [15]. Answering q1,
q6, q15, and q17 using CLDA, requires therefore an expensive unwind operation (to flatten
the array of sub-documents).
As expected and shown in Fig. 9, dis-
torted replicas outperform CLDA for
these queries. Fig. 9 also shows that
when C is low, CLDA performs better
than distorted replicas for some queries
(e.g. q5 and q15). This is due to the dis-
jointness constraint, which does not al-
low to select all optimal aggregates. As
shown in Fig. 9, when C is increased,
more optimal aggregates are selected and
more queries are optimized.

Fig. 10. Improvement factor as a function of the
Replication Factor.

5.2 Selection Algorithm Performance

Now we focus on the effectiveness of our algorithm of aggregates selection.

5.2.1 Number of Iterations.

First of all, we show the effect of adding the disjointness constraint to our knap-
sack formulation. Recall that the “disjointness constraint” substitutes the classic capacity
constraint of the knapsack problem and is used to prune the search space. Table 2 com-
pares the number of iterations with and without the disjointness constraint as a function
of the replication factor (i.e. number of knapsacks). The number of iterations without the
disjointness constraint corresponds to the total number of nodes in the decision tree. As
shown in Table 2, the disjointness constraint substantially reduces the number of iterations
in our algorithm: the fraction of visited nodes for C = 5 is ≈ 1.17803E-07.

Table 1. Aggregates selection algorithm applied to TPC-H queries.
of
queries

of relevant
aggregates

of merged
pairs

of selected
aggregates
(C=2)

of selected
aggregates
(C=3)

of selected
aggregates
(C=4)

of selected
aggregates
(C=5)

10 18 3 3 4 5 6

Table 2. Knapsack iterations as a function of the replication factor C (N=21 items).
C=2 C=3 C=4 C=5

With Disjointness Constraint 47 600 2 252 212 84 579 458 2 584 233 662
Without Disjointness Const-
raint

10 460 353 203 4.39805E+12 4.76837E+14 2.1937E+16

494 KHALED JOUINI

Table 3. Execution time as a function of the replication factor C (N=21 items).
C=2 C=3 C=4 C=5

794 ms 8 s 302 s 172 m

5.2.2 Execution time

Table 3 shows the time taken to create aggregate groups, as a function of the replica-
tion factor C. The execution time of our algorithm is highly dominated by the resolution
of the MKP problem using the branch-and-bound algorithm. For 21 interesting aggregates
and 5 replicas, the time taken to group aggregates is around 172 minutes. This is accept-
able, given that grouping is an offline process. Recall that, as suggested in Subsection
3.3, the execution time can be reduced by discarding aggregates whose interestingness is
below a predefined threshold.

6. DISCUSSION

Like materialized views and secondary indexes, distorted replicas are intended to
improve query performance for workloads of common and repeated query patterns. In
this work, we showed that distorted replicas substantially reduce query execution time.
A salient feature of our work is that it maps the problem of aggregates packing to a 0-1
Multiple Knapsack problem and solves it using a branch and bound technique.

Typically, database systems gather statistics on search queries and provide tools for
diagnosing database performance. In the same way as materialized views and secondary
indexes, database admins can generate distorted replicas (and eventually delete less use-
ful ones) when they witness slow execution times due to new query patterns. Distorted
replicas can also be generated when a database is migrated from RDBMS to NoSQL
or at design time (in the latter case, the DB designer will have to estimate relationship
cardinalities and document sizes). As materialized views, distorted replicas restructure
documents to provide new ways for exploring data. The main difference is that distorted
replicas take advantage of the already-existing replication to generate restructured data
without any additional refresh cost, while materialized views introduce a significant write
overhead. It is worth noticing that if materialized views were enabled to regenerate base
data in a two-way replication scenario, they would be an interesting tool to implement
distorted replicas (such a scenario is permitted in some RDBMSs such as Oracle).

Compared to distorted replicas, secondary indexes only allow sub-optimal perfor-
mance. Consider for example the DBLP dataset where data is organized by Publication
and a query such as “Find Stonebraker’s publications”. A secondary index on author iden-
tifiers allows only retrieving the subset of documents with an author named Stonebraker.
In contrast, with a distorted replica where data is organized by Author, only one docu-
ment embedding all Stonebraker’s publications would be retrieved. Secondary indexes
are also not helpful for map/reduce jobs and queries requiring a full scan or involving reg-
ular expressions. With the DBLP dataset and the MongoDB settings of Section 5, a query
looking for the publications of any author having “Stonebraker” as last name (regex: au-
thor. id: {/Stonebraker$/})), takes on average 49980 ms with a secondary index, 18505
ms without an index and only 3849 ms if data is organized by Author.

AGGREGATES SELECTION IN REPLICATED DOCUMENT-ORIENTED DATABASES 495

7. CONCLUSION

Aggregates are useful in that they pack into one document, data that is expected to be
accessed together. Aggregates are essential to data processing at the level of large-scale
clusters, but severely limit the ways data can be efficiently explored and processed. This
paper deepened the idea of distorted replicas, a replication scheme that restructures repli-
cated data in different ways to improve data access times. In particular, we showed how to:
(i) identify relevant aggregates; (ii) assign interestingness values to relevant aggregates;
(iii) merge pairs of interesting aggregates; and (iv) pack interesting aggregates in such a
way that the total interestingness of a replica set is maximized. We also implemented our
ideas on top of MongoDB and evaluated distorted replicas using two real-world datasets.
Experimental results show that distorted replicas substantially reduce query execution
time: up to tens of times faster than state-of-art methods.

As a part of our future work, we intend to define a cost model to help query optimiz-
ers determine the replica to which a query should be directed. Another interesting point
to consider is a closer study of dynamic migration of data between shards and its impact
on distorted replicas and on load balancing.

ACKNOWLEDGMENT

We would like to thank Pr. Ouajdi Korbaa for many helpful discussions and reviews
that improved this paper.

REFERENCES

1. P. J. Sadalage and M. Fowler, NoSQL Distilled: A Brief Guide to the Emerging World
of Polyglot Persistence, Addison-Wesley Professional, NJ, 2012.

2. A. Corbellini, C. Mateos, A. Zunino, D. Godoy, and S. Schiaffino, “Persisting big-
data: The nosql landscape,” Information Systems, Vol. 63, 2017, pp. 1-23.

3. M. Ley, “DBLP – some lessons learned,” in Proceedings of VLDB Endowment, Vol. 2,
2009, pp. 1493-1500.

4. V. Reniers, D. V. Landuyt, A. Rafique, and W. Joosen, “Schema design support for
semi-structured data: Finding the sweet spot between NF and De-NF,” in Proceedings
of IEEE International Conference on Big Data, 2017, pp. 2921-2930.

5. C. de Lima and R. dos Santos Mello, “A workload-driven logical design approach for
nosql document databases,” in Proceedings of the 17th International Conference on
Information Integration and Web-Based Apps & Services, 2015, pp. 1-10.

6. K. Jouini, “Distorted replicas: Intelligent replication schemes to boost I/O throughput
in document-stores,” in Proceedings of IEEE/ACS 14th International Conference on
Computer Systems and Applications, 2017, pp. 25-32.

7. R. Ramamurthy, D. J. DeWitt, and Q. Su, “A case for fractured mirrors,” The VLDB
Journal, Vol. 12, 2003, pp. 89-101.

8. A. Jindal, J. Quiané-Ruiz, and J. Dittrich, “Trojan data layouts: right shoes for a
running elephant,” in Proceedings of ACM Symposium on Cloud Computing, 2011,
p. 21.

496 KHALED JOUINI

9. P. Atzeni, F. Bugiotti, L. Cabibbo, and R. Torlone, “Data modeling in the NoSQL
world,” Computer Standards & Interfaces, Vol. 6, 2020, pp. 103-149.

10. V. Varga, C. Sacarea, and A. É. Molnár, “Conceptual graphs based modeling of semi-
structured data,” in Proceedings of the 23rd International Conference on Conceptual
Structures, LNCS 10872, 2018, pp. 167-175.

11. “The TPC-H benchmark,” http://www.tpc.org/tpch, 2020.
12. K. Jouini, G. Jomier, and P. Kabore, “Read-optimized, cache-conscious, page layouts

for temporal relational data,” in Proceedings of the 19th International Conference on
Database and Expert Systems Applications, LNCS 5181, 2008, pp. 581-595.

13. “MongoDB,” http://www.mongodb.com/guides/, 2019.
14. G. Karnitis and G. Arnicans, “Migration of relational database to document-oriented

database: Structure denormalization and data transformation,” in Proceedings of the
7th International Conference on Computational Intelligence, Communication Sys-
tems and Networks, 2015, pp. 113-118.

15. J. Yoo, K. Lee, and Y. Jeon, “Migration from RDBMS to NoSQL using column-
level denormalization and atomic aggregates,” Journal of Information Science and
Engineering, Vol. 34, 2018, pp. 243-259.

16. S. Chaudhuri and V. R. Narasayya, “Self-tuning database systems: A decade of pro-
gress,” in Proceedings of the 33rd International Conference on Very Large Data
Bases, 2007, pp. 3-14.

17. M. P. Consens, K. Ioannidou, J. LeFevre, and N. Polyzotis, “Divergent physical de-
sign tuning for replicated databases,” in Proceedings of ACM SIGMOD International
Conference on Management of Data, 2012, pp. 49-60.

18. Q. T. Tran, I. Jimenez, R. Wang, N. Polyzotis, and A. Ailamaki, “RITA: an index-
tuning advisor for replicated databases,” in Proceedings of the 27th International
Conference on Scientific and Statistical Database Management, 2015, pp. 22:1-
22:12.

19. B. Namdeo and U. Suman, “Performance analysis of schema design approaches for
migration from RDBMS to NoSQL databases,” in Advances in Data and Information
Sciences, 2020, pp. 413-424.

Khaled Jouini received the Ph.D. degree in Computer Sci-
ence from Paris-Dauphine University, France. He was a research
staff member at Telecom ParisTech, France. Since 2011, he has
been with Sousse University, Tunisia, where he is currently an
Associate Professor. His research interests include non-volatile
memory, database systems, and large-scale data management
and mining.

