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Word embeddings are playing a crucial role in a variety of applications. However, most
previous works focus on word embeddings which are either non-discriminative or hardly
interpretable. In this work, we investigate a novel approach, referred to as SWET, which
learns supervised word embeddings using topic models from labeled corpora. SWET inher-
its the interpretability of topic models, the discriminativeness of supervised inference from
labels. More importantly, SWET enables us to directly exploit a large class of existing un-
supervised and supervised topic models to learn supervised word embeddings. Extensive
experiments show that SWET outperforms unsupervised approaches by a large margin, and
are highly competitive with supervised baselines.

Keywords: supervised word embeddings, topic models, supervised learning, supervised to-
pic models, word vectors

1. INTRODUCTION

Word embeddings refer to vector representations of words that can capture their
meanings. Those vectors can be applied in diverse NLP tasks [1]. Recently, several stud-
ies present the effectiveness of word embeddings in a variety of applications [2], such
as text classification, language modeling, named entity recognition, parsing, and tagging,
etc. Word2Vec [3] and Glove [4] are two of the most well-known methods that can learn
powerfully word embeddings from large-scale corpora.

While there is an enormous literature on unsupervised learning for word embeddings,
there are few approaches on supervised word embeddings (SWE) that have capacity for
encoding the supervision from labeled data. Unsupervised word embeddings are often
non-discriminative and therefore, undesirable for supervised tasks [2, 5, 6]. A large class
of embedding methods based on deep neural networks [3, 7] can model the local context
of a word well. Remarkably, some recent approaches such as ELMO [8], BERT [9]
take advantages of contextual information to learn word embeddings which are extremely
rich in semantic knowledge. Nevertheless, those methods require large computational
resource. In fact, they are difficult and complex to implement on devices of low capacity
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[10]. Furthermore, those methods often produce continuous vectors that hardly support
interpretability [11].

Interpretability of model is crucial in various practical applications [12, 13]. To ob-
tain interpretable word embeddings, some methods use sparsity constraints [14, 15] and
rotation techniques [16,17]. Another work [18] exploits informative priors to create inter-
pretable and domain-informed dimensions for probabilistic word embeddings. Recently,
Word2Sense [19] extends topic models to refine the representation of a polysemous word
in a short context. Besides, many studies proposed to combine the benefits of topic mod-
els [20] and deep neural networks [21–25]. Although those approaches can target inter-
pretability, they ignore discriminativeness.

There are few efforts to develop methods that can learn discriminative embeddings.
L-SVD [2] was proposed to encode labels into the co-occurrence matrix of terms and then
used SVD or Glove to learn discriminative embeddings. Besides, another proposal [26]
considered each word has many embeddings, each of which associates with a class la-
bel. Other works [6, 27] tried to fine-tune the universal embeddings for specific tasks and
achieved promising results. Recently, LEAM [28] jointly learns label and word embed-
dings in the same latent space. This framework uses the text-label compatibility to learn
an attentive model for text representation. All of those approaches succeed in capturing
the supervision from labels, but lack interpretability.

In this work, we are interested in learning word embeddings which are both discrim-
inative and interpretable. Moreover, the embeddings should be easy and light to train and
test. Therefore, our contributions are as follows:

• We propose SWET, which can learn supervised word embeddings using topic mod-
els from labeled corpora. SWET inherits not only the interpretability of topic mod-
els but also the discriminativeness of supervised inference from labels. More im-
portantly, SWET enables us to directly exploit a large class of existing unsuper-
vised [29–31], supervised [32–41] topic models to learn supervised word embed-
dings. This property is really beneficial in practice.

• We provide a theoretical analysis which shows the rationale behind SWET.

• We did an extensive experiments to evaluate SWET and compare with various base-
lines. We find that SWET outperforms unsupervised approaches by a large margin,
and are highly competitive with supervised state-of-the-art baselines.

The remainder of this paper is organized as follows: Section 2 presents some back-
grounds. In Section 3, we present SWET, instantiate its application to some classes of
topic models, and present the rationale behind SWET. The experiments and evaluation
are presented in Section 4. Section 5 discusses future work and concludes the paper.

2. BACKGROUND

2.1 Topic Models

Consider a corpus D consisting of M documents and a vocabulary of V terms. A topic
model assumes a corpus is composed from K topics β , and each topic β k = (βk1, ...,βkV )
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Algorithm 1 : Two-phase SDR

Phase 1: Learn an unsupervised model to get K topics as an initialization: β1, · · · ,βK .
Phase 2: (finding discriminative space)

1. for each document d in class c, select a set Nd of its nearest neighbors in c.
2. infer new representation θ ∗

d for each document d in class c by using the Frank-
Wolfe algorithm [35] to maximize sum of log likelihood of document d and its
neighbors in Nd

3. compute new topics as: β ∗
k j ∝ ∑d∈D d jθ

∗
dk.

Finally, Ω∗ = span{β ∗
1 , ...,β

∗
K} is the discriminative space.

is a probability distribution on the vocabulary of K terms, meaning that ∑ j βk j = 1 and
βk j ≥ 0 for any k, j. Each document d = (d1, ..., dV ) (d j is a count of term w j in document
d) is a mixture of those K topics. Each vector θd = (θd1, ...,θdK) represents the topic
proportion in document d, such that ∑k θdk = 1 and θdk ≥ 0 for any k. The target of learn-
ing a topic model is often to discover the hidden structures (β ,θ1, ...,θD) from the given
corpus. While β shows popular topics in the corpus, θd tells the importance/proportion of
each topic in document d. Probabilistic latent semantic analysis [30] and latent Dirichlet
allocation (LDA) [29] are popular topic models. When K needs to be pre-specified by
users, those models are parametric.

2.2 Supervised Topic Models

Supervised topic models [32,34,36] aim to incorporate side information such as class
labels into topic models. Label information is injected into the topical space and makes
the space more discriminative for each class. Those models are effective for supervised
tasks such as document classification or regression.

Supervised LDA (sLDA) [36] assigns each document to a response variable. Gener-
ative process for each document d of length N is described as below:

1. Draw topic proportion θ ∼ Dir(α).

2. For the n-th word in d:
draw topic assignment zn ∼ Mult(θ), then draw word wn ∼ Mult(βzn)

3. Draw class label y ∼ so f tmax( 1
N ∑

N
n=1 zn,η)

A difference between sLDA and LDA is y, which is an observed variable repre-
senting for the label of a document. Inference of sLDA also uses variational methods
to approximate posterior distribution given a pair of document and label. Nevertheless,
sLDA needs much memory for all parameters and exorbitant computations.

Another effective framework [35] called supervised dimension reduction (SDR) suc-
ceeds in incorporating labels into an unsupervised topic model to find a low-dimensional
representation for documents. The framework is briefly described in Algorithm 1. The
SDR framework learns a new space β

∗ encoding three features: label, document manifold
and the semantic topics initialized in Phase 1. The label data and document manifold are
utilized in Phase 2 to learn a low-dimensional topical space which is discriminative.
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3. SUPERVISED WORD EMBEDDINGS
WITH TOPIC MODELS (SWET)

In this section, we present SWET for learning supervised word embeddings, which
are interpretable and discriminative. We will also explain why our approach is reasonable
and discuss some of its key properties.

3.1 Method

SWET contains two steps:
• Step 1: Learn a supervised topic model to obtain topics β

∗ of size K×V, where K
is the number of topics and V is the vocabulary size.

• Step 2: Form the embedding of word j by taking the jth column of β
∗ and then

normalizing it by a normalization method, such as L1, L2, so f tmax.

Next we discuss two different approaches to obtaining topics in Step 1.

3.1.1 Supervised approach

Various supervised topic models [32–41] can be used in Step 1 of SWET. Note that
SWET can be applied in a variety of situations because the side information of documents
may be categories, tags, ratings, etc. Word embeddings, learned in those cases, can be
applied to classification problems or recommendation systems.

3.1.2 SDR-based approach

Supervised dimension reduction (SDR) [35] is the simple framework that boosts un-
supervised topic models to work well with supervised tasks. It exploits the local structure
of each class and the document manifold to learn a discriminative topical space.

This paragraph explains how SWET can encode the local structure of each class
into word embeddings. SDR (Algorithm 1) attempts to learn a new representation θ ∗

d
for each document, which remains the structure of each class. Some dimensions of θ ∗

d
are promoted because θ ∗

d captures the topic proportions of nearest neighbors. These pro-
moted dimensions refer to the distinctive topics acknowledged as a local structure of class.
Moreover, the representation of word w j is calculated by normalizing the column vector
β ∗
(.) j, where β ∗

(.) j ∝ ∑d∈D d jθ
∗
d . If a large number of documents in D containing w j belong

to same class, several dimensions of β ∗
(.) j will be promoted. Hence, the representation

β ∗
(.) j can capture local structure of a class. We recognize this structure as a global context

which helps to regularize word embeddings. Intuitively, global context provides two sig-
nificant advantages: the meaning of a word is understood more clearly, the representation
is potentially discriminative. On the other hand, SDR is a flexible framework. One can
use any unsupervised topic models in Phase 1 of SDR (Algorithm 1) and make supervised
word embeddings.

3.2 Rationale of the Supervised Embeddings

In this section, we explain why we can obtain a word representation by taking
columns of matrix β . We mention the relationship between word representation and topic
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modeling. To see this aspect clearly, we need other views about learning topic models.
The prevailing approaches use an approximation inference to find a maximum likelihood
solution for given corpus. However, learning topic models can be viewed as non-negative
matrix factorization [42]. The corpus can be represented by a M×V matrix document-
by-term D (M documents, V terms and each element di j of matrix D is a count of terms
w j in document i). Learning a topic model is to find a topic matrix β with non-negative
entries and a stochastically generated matrix θ such that D[M,V ] ≈ θ [M,K]β [K,V ]. With the

constraints on θ and β :
{

∑
K
k=1 θdk = 1 for each document d.

∑
V
j=1 βk j = 1 for each topic k.

Before going into the detail of word representation, we consider a solution to find
two matrices θ and β . They are learned by minimizing a cost function that quantify the
quality of the approximation between D and θβ . Instead of using L1 or L2 distance to
build the cost function, KL-divergence [43] can be applied. The KL-divergence between
two matrices is calculated as below:

KL(D||θβ ) = ∑d∈M ∑
V
j=1(d j log d j

∑
K
k=1 θdkβk j

−d j +∑
K
k=1 θdkβk j)

Note that ∑
V
j=1 ∑

K
k=1 θdkβk j = 1 due to (3.2). Minimizing KL-divergence is equivalent to:

argmax
θ ,β

∑
d∈M

V

∑
j=1

(d j log
K

∑
k=1

θdkβk j)

Regarding to word embedding, we can consider topic modeling as a representation
learning by re-writing the objective function as follows:

min
θ ,β

KL(D||θβ ) = min
θ ,β

∑
j

KL(D(.) j||θβ . j) (1)

where D(.) j is the jth column of matrix D and β (.) j is the j-th column of matrix β .
There are some reasons why our word embeddings are suitable. Firstly, two words

that are highly co-occurrent have a higher similarity in our method. D(.) j is the statistic
of term w j in the whole corpus and is characteristic for w j. While β (.) j is considered
as the code or hidden representation of D(.) j as well as term w j, θ can be regarded as a
transformation matrix which maps the feature vector D(.) j to the code β (.) j. If term wi
and term w j have similar statistics i.e. D(.) j is close to D(.)i or (wi, w j) co-occurs in many
contexts, their representations should be close to each other. It is clear that the vectors
β (.) j and β (.)i will be close to each other when optimizing Eq. (1) because of the similarity
between D(.)i and D(.) j.

The second reason is the benefit of taking a column of β to obtain word embeddings.
Each row of the matrix β is a topic. Hence, if we look into each column of β , we see
how the meaning of the word is related to the topics. In other words, each column of β

indicates the semantic information of a word. Moreover, the column vector β (.) j captures
both local context (word co-occurrence patterns implicitly encoded by topic models) and
global context (as mentioned in Section 3.1.2), therefore, this representation is reasonable.

3.3 The Properties of SWET

We next analyze some key properties of SWET.
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3.3.1 Interpretability

Due to inheriting the advantages of topic models, SWET achieves an interpretable
ability. It is easy to see that each dimension of the embedding space corresponds to a
topic and hence is interpretable. When using L1 normalization, the embedding vector
β ′
(.) j ∝ β ∗

(.) j of word j can be considered as a probability distribution over topics, and each
element β ′

i j in the embedding vector explains how word j is related to topic i. If β ′
i j is

high, the meaning of word j has a strong connection to topic i. Most existing methods for
word embeddings do not have this property.

3.3.2 Discriminativeness

Discriminativeness could be understood as class-attention word embeddings. This
property is especially significant for classification tasks. We obverse that if the meaning
of word j is strongly connected to a class c (or j has a high contribution to class c) and is
different to the remaining classes, its representation should be discriminative for that class.
Each class c has its own local structure which is different from those of other classes, and
this discriminative information is often encoded in θ ∗

d when doing inference. Therefore,
the discriminativeness in θ ∗

d is inherently translated into the topics after learning, e.g.,
in SDR [35]: β ∗

k j ∝ ∑d∈D d jθ
∗
dk,

in FSLDA [33]: β ∗
k j ∝ ∑d∈D ∑

N
n=1 1(wd,n = j)φ k

d,n ≈ ∑d∈D d jθ
∗
dk,

where φd,n is the variational multinomial parameter for the topic assignment zd,n. As a
consequence, the embedding vector β ′

(.) j for each word j is discriminative.
SWET enables us to estimate the contribution of each word to each class. Note that

the probability of word j appearing in document d is: p(w = j|d) = ∑
K
k=1 θdkβk j Hence, the

contribution of word j to class c can be approximated by:

p(w = j|c) ≈ ∑d∈Dc p(w= j|d)
∑

V
r=1 ∑d∈Dc p(w=r|d) =

∑d∈Dc ∑
K
k=1 θdkβk j

∑
V
r=1 ∑d∈Dc ∑

K
k=1 θdkβkr

(2)

With each class c, one can select top words which contribute the most to the class.
This is extremely significant to understand the classes and provides an excellent interpre-
tation for a class.

4. EVALUATION

In this section, we investigate the main properties of SWET and compare with state-
of-the-art baselines. We use seven benchmark datasets including 20NG, R52, R8, OH,
and MR as in [44]; AGNews and DBpedia as in [28]. Some statistics of the datasets are
described in Table 1.

Three different versions of SWET are used in our evaluation: SWET-SDR which uses
SDR [35] to learn discriminative topics via dimension reduction; SWET-FSLDA which
uses FSLDA [33] to learn a supervised topic model.

4.1 Analysis about Interpretability and Discriminativeness

We first want to verify the interpretability and discriminativeness. DBpedia is used
in this evaluation.
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Table 1. Some statistics of the data-
sets.

Dataset #Training #Test #Classes
20NG 11314 7532 20
R8 5485 2189 8
R52 6532 2568 52
OH 3357 4043 23
MR 7108 3554 2
AGNews 120000 7600 4
DBPedia 560000 70000 14

Table 2. NPMI of word embeddings
methods. Higher is better.

Model R8 R52 OH MR
word2vec -0.82 -0.84 -0.88 -0.94
LEAM -0.87 -0.88 -0.89 -0.93
SWET-SDR -0.80 -0.82 -0.68 -0.69
SWET-FSLDA -0.62 -0.61 -0.71 0.32

Baselines: Word2Vec [3] and LEAMi [28] are used in this evaluation. While Word2-
Vec is a representative for the unsupervised approach, LEAM is the state-of-the-art su-
pervised method for word embeddings.

Settings: For SWET-SDR, we set K = 300 topics, other parameters are chosen as
in [35]. For Word2Vec, we use Google’s pre-trained modelii including word vectors for a
vocabulary of 3 million words. The dimensionality of the embedding vectors is 300.

Interpretability: We want to quantitatively assess the interpretability of each dimension.
We select top words of each dimension by getting a set of words having the highest value
on the dimension. Then we compute NPMI [45] for selected top words. NPMI essentially
measures the coherence of the words in a given set, and is often used for evaluation
about interpretability. The results are shown in Table 2. It is obvious that SWET-based
approaches have higher NPMI than others. It suggests that each dimension of the word
embeddings learned by SWET is more interpretable than that by the other methods. This
is not difficult to explain because the value of each dimension of SWET is meaningful
and strongly relates to a topic.

We further perform an qualitative assessment by selecting a particular word and its
learnt embedding, then we get top 3 dimensions/topics with the highest value of the em-
bedding vector. We extract 30 words, which have the highest probability in each of the
three topics, and visualize their embeddings by t-SNE [46]. Fig. 1 shows an example of
the interpretability for representation of the word “advertisement”. Fig. 1a shows the topic
proportions of word “advertisement”, in which the topics 216 (red), 96 (green), 294 (blue)
are the highest ones. Table 3 presents some top words of the topics illustrating in Fig. 1.
It is obvious that top characteristic words of a topic should be represented close to each
other because all of them are related to the same topic. Word representation learned by
SWET-SDR can capture label and manifold information, therefore, the separation among
three topics is noticeable. However, Word2Vec or LEAM cannot separate the topics, it
means that they are unable to interpret the word “advertisement” based on each dimension
of the embedding.

Discriminativeness: With SWET, we can extract top characteristic words for each class
by using Eq. (2). In Word2vec, we compute and choose words having the high frequency

ihttps://github.com/guoyinwang/LEAM
iihttps://code.google.com/archive/p/word2vec/

https://github.com/guoyinwang/LEAM
https://code.google.com/archive/p/word2vec/


420 DIEU VU, KHANG TRUONG, KHANH NGUYEN, NGO VAN LINH, KHOAT THAN

0

0.04

0.08

0.12

P
ro
p
o
rt
it
io
n
s

0 100 200 300
Topics

(a) Topic proportions of
word ”advertisement”

-100

0

100

-200 0 200

(b) Word embedding
learned by SWET-SDR

300

0

-300

-200 0 200

(c) Word embedding
learned by Word2Vec

-60

0

60

-20 20 60

(d) Word embedding
learned by LEAM

Fig. 1. Illustration about the interpretability for the representation of the word “advertisement”; (a)
shows the contribution of each topic to word “advertisement”, learned by SWET-SDR; (b) shows
the embeddings of some words representing topics 216 (red), 96 (green), 294 (blue), which have
highest contributions to “advertisement”; (c) and (d) visualize the embeddings of those words which
are learned by Word2Vec and LEAM respectively.

Table 3. Illustration for the top characteristic words of some topics, learned by
SWET-SDR from DBpeadia.

Topic Top characteristic words

216 center district street states city united county places national building.

96 church built hospital river museum mall school places building house.

294 science academy university education private research students public international college.

in each class. For LEAM, we compute the similarity between word and class embed-
dings by the cosine measure. Then we choose the words having the highest similarity.
We evaluate on DBPedia dataset. Table 4 presents top 10 words and Fig. 2 visualizes
the embeddings in 2-dimensional space, using t-SNE [46]. We observe that top words by
SWET-SDR robustly relate to the corresponding classes, while there are many “noisy”
words extracted by Word2vec and LEAM. In SWET-SDR, the embeddings of the charac-
teristic words belonging to the same class are close to each other. Meanwhile, observing
the results of Word2Vec and LEAM, the words characterizing a class distribute chaoti-
cally. Moreover, it is difficult to see separation among classes from the embeddings by
Word2Vec or LEAM.

4.2 Document Classification Task

In this section, we evaluate SWET via classification task.

Baselines: Word2Vec [47] is a popular word embedding method. We use the Google’s
pre-trained Word2Vecii. fastText iii [48] is the fast and simple method for text representa-
tion. Document embeddings were built by averaging word/n-grams embeddings. SWEM
iv (Simple word embedding models) [49] uses pooling method operated over word em-
bedding. LEAM (label embedding attentive models) [28] learns jointly word and label
embeddings with a compatibility metric between words and labels. The classifier used
is MLP layer with a sigmoid or softmax function. LSVD [2] is the method that can

iiihttps://github.com/facebookresearch/fastText/
ivhttps://github.com/dinghanshen/SWEM

https://github.com/facebookresearch/fastText/
https://github.com/dinghanshen/SWEM
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Fig. 2. Comparison of SWET-SDR, Word2Vec, and LEAM in term of the discriminativeness. The
points having the same color and shape are the characteristic words in the same class.

Table 4. Illustration for the top characteristic words of each class, learned by three
methods. The words in Italic seems not characterize the corresponding class. DBPe-
dia is used in this evaluation.

Class name Word2vec SWET-SDR LEAM

Artist writer best music singer
american known born
also end unk.

writer songwriter artist musi-
cian singer author band pro-
ducer composer english.

sculptor artist painter nidaros
sculpture printmaker artistic art-
works illustrator watercolor.

Building register built building lo-
cated house church his-
toric national end unk.

listed register places museum
street hospital mall hotel cen-
ter style.

renovation plaza building build-
ings constructed grosset sitting 91
richardsonian erected.

Album rock music records stu-
dio band released album
first end unk.

album released studio mu-
sic recorded live debut songs
compilation release.

album albums soundtrack unre-
leased montenegrin richardsonian
mixtape ep tour disturbed.

simultaneously use both local context of words and labels to learn word embeddings.
TextGCNv [44] is the method which learn the representation of words and documents
jointly on a graph. BERT [9] learns word embeddings by contextual information. With
BERT-last, we use a pretrained modelvi , then learn a MLP layer for classification and
freeze all other layers. We also include the evaluation about the low-dimensional repre-
sentation of documents which is learned by SDRvii [35].

For embedding methods (SWET, Word2Vec and LSVD), we represent a document
by concatenating all of word embedding vectors of that document. Such a concatenation
preserves the information of the embeddings. Then, LibLinear [50] is used to train SVM
classifier, with regularization parameter C = 0.1.

Settings: We perform the classification task on 7 benchmark datasets: 5 medium-size
datasets and 2 big datasets. The description of these datasets is reported in Table 1. To
implement SWET, the parameters are chosen the same as in the original work of SDR
and FSLDA. We only tune the parameter K (number of topics) in the training process.
When changing K, it means that we change the size of the word embedding vector. For
the baselines, we use the default settings as suggested in their original papers.
vhttps://github.com/yao8839836/text_gcn
vihttps://github.com/google-research/bert
viihttp://www.jaist.ac.jp/˜s1060203/codes/sdr/

https://github.com/yao8839836/text_gcn
https://github.com/google-research/bert
http://www.jaist.ac.jp/~s1060203/codes/sdr/
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Table 5. Test accuracy on document classification task (%).
Model 20NG R8 R52 Ohsumed MR AGNews DBPedia
word2vec 79.9 96.89 91.12 60.72 75.75 90.61 97.97
fastText 79.38 96.13 92.81 57.7 75.14 92.50 98.60
SWEM 85.16 95.32 92.94 63.12 76.65 92.24 98.42
TextGCN 86.34 97.07 93.56 68.36 76.74 - -
LSVD 81.25 96.21 87.97 51.42 71.53 88.93 96.58
LEAM 81.91 93.31 91.84 58.58 76.95 92.45 99.02
SDR 80.16 93.92 88.28 56.44 64.24 86.65 94.03
BERT-last 67.90 96.02 89.66 51.17 79.24 - -
SWET-SDR 86.34 97.12 92.75 66.93 76.45 92.64 98.11
SWET-FSLDA 84.88 97.08 93.00 67.30 75.30 91.52 -

Table 6. Accuracy on classification task (%) when using different methods for nor-
malization in SWET. c (a) indicates that the methods use concatenation (averaging)
of word vectors to represent a document.

Method No−normc L2c Maxc So f tmaxc L1c L1a

MR 57.71 75.66 76.45 66.51 76.45 72.36
R8 85.56 96.16 96.35 95.93 97.12 84.46
R52 73.97 90.19 91.55 86.29 92.75 73.71

Results and Analysis: Table 5 shows the test accuracy of each model on all datasets.
SWET-based methods surpass the unsupervised approaches (Word2Vec, SWEM, BERT-
last) in most cases. Moreover, SWET-SDR outperforms all of the baselines on 20NG,
R8 and AGNews. This can be explained by that embeddings of SWET-SDR are strongly
related to topics and discriminative by classes while the classes of documents in 20NG,
R8, and AgNews datasets are document topics. Therefore, classification on the three
datasets with SWET gains a good result.

TextGCN achieves the highest accuracy on R52 and Ohsumed, and seems to perform
best amongst the baselines. It is worth noting that the accuracy gap between SWET-SDR
and TextGCN is extremely tight. On the other hand, BERT-last is a representation of
contextual approaches. Therefore, it is easy to understand that BERT-last is the best result
on a sentiment dataset - MR.

In conclusion, it is undeniable that the deep learning methods have better perfor-
mance than the others on large datasets while TextGCN and SWET perform better on
small datasets. Overall, SWET-based methods are usually one of the top methods that
achieve the best results on all datasets.

Sensitivity analysis: We next assess the influence of normalization and document repre-
sentation approaches as well as the sensitivity of the number of topics in SWET. We find
that Step 2 of SWET plays a key role in document classification as evidenced in Table
6. L1-normalization is suitable for SWET because it shows the best accuracy while no
normalization may result in a bad accuracy. We also find that concatenation seems to be
better than averaging when representing documents from word embeddings.

The number of topics is the dimensionality of word embeddings and thus affects
the performance of SWET on classification task. In Fig. 3, we show the test accuracy
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Fig. 3. Accuracy of SWET-SDR and SWET-FSLDA as the number of topics increases.

of SWET-SDR and SWET-FSLDA on three datasets R52, R8 and MR. We observe that
SWET-SDR has a higher accuracy than SWET-FSLDA as the number of topic increases.
This seems to be due to the fact that SWET-SDR captures manifold information between
classes from SDR that makes more discriminativeness for the document representation.

5. CONCLUSION

We investigated supervised word embedding approaches learned by supervised topic
models (SWET). SWET can capture the discriminativeness and interpretability. The ex-
tensive experiments show that SWET is highly competitive with existing approaches.
Nevertheless, SWET still has some drawbacks, for example, the weakness of preserv-
ing local context or word order in a text.
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