
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 38, 775-790 (2022)

DOI: 10.6688/JISE.202207_38(4).0005

775

Monte-Carlo Simulation for Mahjong

JR-CHANG CHEN1,+, SHIH-CHIEH TANG2 AND I-CHEN WU2,3

1Department of Computer Science and Information Engineering

National Taipei University

New Taipei City, 23741 Taiwan
2Department of Computer Science

National Yang Ming Chiao Tung University

Hsinchu, 30050 Taiwan
3Research Center for IT Innovation

Academia Sinica

Taipei, 11529 Taiwan

E-mail: jcchen@mail.ntpu.edu.tw; fight5566jay@gmail.com; icwu@cs.nctu.edu.tw

Mahjong is a four-player, stochastic, imperfect information game. This paper focuses

on the Taiwanese variant of Mahjong, whose complexity is higher than that of Go. We

design a strong anytime Monte-Carlo-based Taiwanese Mahjong program. First, we adopt

the flat Monte Carlo to calculate the win rates of all afterstates/actions such as discarding

each tile. Then, we propose a heuristic method, which we incorporate into flat Monte Carlo

to obtain the accurate tile to be discarded. As an anytime algorithm, we can stop simula-

tions and return the current best move at any time. In addition, we prune bad actions to

increase accuracy and efficiency. Our program, SIMCAT, won the championship in the

Mahjong tournaments in Computer Olympiad 2020 and TAAI 2019/2020.

Keywords: Monte-Carlo simulation, discard-twice method, imperfect information game,

Mahjong, progressive pruning

1. INTRODUCTION

Mahjong is a game originated from China, and is popular around the world with an

estimation of about six hundred million players [24]. There are many different sets of Mah-

jong rules, such as the Japanese, Taiwanese, American, Beijing and Hong Kong rules. In

Asia, this game does not only provide entertainment for amateurs, but also has many pro-

fessional player associations and leagues [23]. Mahjong is a four-player, stochastic, im-

perfect information game. The complexity of Mahjong, estimated to be 4.3  10185, is high-

er than that of Go [21, 25]. Moreover, there are more than 1048 hidden states during the

course of a game [12]. Therefore, it is a challenge to design a strong program. In this paper,

for simplicity of discussion, we adopt Taiwanese rules whose winning conditions are rel-

atively simple.

Since Mahjong is a multi-player partially-observable imperfect information game, it

is difficult to directly apply the techniques from perfect information games, such as alpha-

beta search [7], Maxn [14] and Monte-Carlo tree search [6, 11]. Therefore, many programs,

including VERYLONGCAT [5] and MAHJONGDAXIA [22], search based on a simplified

model [5]. However, these programs do not use anytime search algorithms, and namely

cannot recommend the best move to play until the whole search completes. This shortcom-

Received August 24, 2021; revised April 1, 2021; accepted April 27, 2021.

Communicated by Chang-Shing Lee.
+ Corresponding author.

JR-CHANG CHEN, SHIH-CHIEH TANG, I-CHEN WU

776

Fig. 1. The 34 patterns in Mahjong.

1 This paper follows the terminologies and notations in [15].
2 The simplified notations are used in this paper. For example, 111w represents the three tiles 1w, 1w, and 1w.

ing in turn leads to a shallow search and weak playing strength since time control must be

considered strictly in tournament settings. Hence, it is better to have an algorithm that can

stop the search and return the current best move at any time.

In this paper, we present a Monte-Carlo-based Mahjong program following Taiwan-

ese rules. We use flat Monte Carlo [3] to approximate the win rates of given states as

described in Section 3, and use progressive pruning [1, 2, 4] to prune inferior actions for

better performance. Then, we design heuristics to enhance the strength in Section 4. In our

experiments in Section 5, these methods are analyzed to show the performance. The best

version of our programs, named SIMCAT, outperformed the baseline version with a win

rate of 66.2% and won the championship in the Mahjong tournaments in Computer Olym-

piad 2020 and TAAI 2019/2020. The rules are introduced in Section 2, and the concluding

remarks are given in Section 6.

2. BACKGROUND

In this section, we review Mahjong in Section 2.1 and the previous works in Section 2.2.

2.1 Mahjong

In this subsection, we only briefly mention the rules relevant to this paper. Detailed

information refers to [15, 18].1

There are 144 tiles in Mahjong, among which 8 tiles are flowers and 136 tiles com-

pose 34 patterns, each of which contains four identical tiles. In Fig. 1, the patterns are

classified into five suits, which are wan (denoted by w), tong (or pin, denoted by t), sou

(or tiao, denoted by s), wind and dragon. Each of wan, tong and sou includes nine number

patterns, which are 1w to 9w, 1t to 9t, and 1s to 9s. Wind includes east, south, west and

north. Dragon includes white, green and red.

A meld is a sequence (a.k.a. shun in Chinese), a triplet (a.k.a. ker in Chinese) or a

gong. A sequence consists of three consecutive number tiles of the same suit, such as 1w,

2w and 3w, which are denoted by 123w for simplicity.2 A triplet (or a gong) consists of

three (or four) identical tiles, such as 111w (or 1111w). A pair consists of two identical

tiles, such as 11w. A tatsu consists of two or three tiles and need one more tile to form a

meld, such as 13w and 233w. Note that a pair is also a tatsu. A block is either a meld or a

tatsu.

wan (w)

tong (t)

sou (s)

wind

dragon

1 2 3 4 5 6 7 8 9

east south west north

red green white

MONTE-CARLO SIMULATION FOR MAHJONG

777

In Mahjong, four players around a square table take turns to play counterclockwise.

From the view of the current player (that is, the game-playing program, denoted by C), the

other three players are called the lower player (the player to the right), the opposite player

(the player who is opposite to C) and the upper player (the player to the left) by turns,

denoted by L, O and U respectively. At the beginning, all tiles are faced down and ran-

domly piled up into the wall, and each player takes 16 tiles, called a hand, from the wall.

Four players take turns to take a legal action (see below). The winning condition is satisfied

for a player when his/her hand contains five melds and one pair. A player can win a game

by picking a tile from the wall, or by taking the tile discarded by other players. When 16

tiles are left in the wall and no player wins, the game ends in a draw.

Legal actions include pick (a.k.a. mo in Chinese) and steal (a.k.a. bid). Pick indicates

that the player takes a tile from the wall. Steal includes eat, pong and gong. Eat indicates

that a player takes the tile discarded by the upper player to form a sequence. Pong indicates

that a player takes the tile discarded by other players to form a triplet. Gong indicates that

a player picks from the wall or takes the tile discarded by other players to form a gong, and

then picks again. After a player picks or steals a tile in case of not winning yet, he/she has

to discard a tile, maintaining a total of 3n + 1 tiles, where the integer 0  n  5. The ith

round for a player indicates that it is the ith time he/she discards a tile.

2.2 Previous Works

Maxn is the generalization of minimax which can be applied to multi-player perfect

information games [14]. A player in multi-player games makes a move that maximizes

his/her return value.

Due to the imperfect information and the complexity in Mahjong, a simplified model

was adopted where other players just picked a tile and then discarded it. For Taiwanese

rules, VERYLONGCAT [5] used the expectimax tree [10] to compute the win rate of a given

hand, and utilized expert knowledge for pruning. A lookup table for querying the minimum

number of tiles to win (MTW) was built in advance. A transposition table was used to ac-

celerate the computation. MAHJONGDAXIA used divide and conquer to decompose a hand,

and also used a complicated heuristic function to choose a tile to be discarded [22].

In the past, many researches focused on training. For Japanese rules, Mizukami and

Tsuruoka proposed a method that trained models including opponent models by using

game records of expert players and decided moves using Monte-Carlo simulation together

with these models [16]. Gao used supervised learning to train a convolution neural network

[9]. The network without any search reached 2-dan on the well-known Japanese Mahjong

online platform, Tenhou.3 Microsoft made a Japanese Mahjong program, SUPHX, using

deep reinforcement learning [12], and reached 10-dan on Tenhou. It required a considera-

ble amount of computational resources for training.

Monte-Carlo sampling [13, 17] is a computational algorithm that uses random simu-

lations to obtain numerical results. For move decision problems, flat Monte Carlo (flatMC)

[3] has three stages, which are the generation of all possible states by playing each legal

action, the simulation of these states, and the choice of the final action with the highest

mean of simulated values. In this paper, we adopt flatMC to compute the win rate of a hand

and propose heuristics to decide the move based on simulation results, so that the program

3 Tenhou is available at http://tenhou.net/

JR-CHANG CHEN, SHIH-CHIEH TANG, I-CHEN WU

778

is simple, effective, and suitable for the time constraint in tournaments since it is an any-

time algorithm.

3. FLAT MONTE CARLO FOR MAHJONG

We adopt flat Monte Carlo (flatMC) as described in Section 2.2, which consists of

three stages, for Mahjong. In this section, we describe the implementation of the simulation

stage in detail. To use flatMC to compute win rates, we simply simulate legal actions for

state transitions until a game ended. Given a state s, the next state after taking the action a

from s is called an afterstate saf, similar to the terminology used in [19]. Let Safter be the set

of all afterstates of s. We simulate each saf  Safter and obtain its win rate.

In Mahjong, we design the function FlatMCMJ(saf, m, nt) for the above process, where

m is the number of rounds for each player in each simulation, and nt is the total number of

simulations. To reduce the complexity, the simulation stage uses an optimistic strategy.

That is, in the beginning of a simulation, we generate m tiles for each player which he/she

will pick from the wall in next m rounds. As we foresee all tiles, we can find an optimal

solution to win by discarding useless tiles. Note that in FlatMCMJ, other players do not

declare a win even though their hands satisfy the winning condition. Therefore, the result

is either a win of the current player or a draw. Two simulation models are proposed below.

3.1 Single-Player Model

This model only simulates the pick action by the current player, and ignores the tiles

discarded by other players. A tile is hidden from a player if it is in the wall or is in other

players’ hands. When a player picks a tile, the probability that the tile belongs to a pattern

is calculated by the number of hidden tiles of the pattern divided by the number of total

hidden tiles. For each simulation, the player repeatedly takes one tile m times but does not

discard any tile. So, his/her hand contains 16 + m tiles in the end. The player wins when 17

tiles among the 16 + m tiles satisfy the winning condition, and otherwise it is a draw.

The advantage is that the implementation is simple. Since it is not necessary to con-

sider the tiles other players discard, we only need to generate the current player’s tiles. A

characteristic of FlatMCMJ is to reserve as many blocks as possible, which will be dis-

cussed in detail in Section 4.

3.2 Four-Player Model

Based on the single-player model, this model additionally simulates the steal action

by the current player. We assume that other players are dummy players, just picking a tile

and then discarding it.

During a simulation, due to the uncertainty of Mahjong, when other players discard a

tile, the player may win after stealing it or after ignoring it (that is, picking another tile).

For example, assume that the hand is 1789t788s in Fig. 2 (a). In next two rounds, a player

may win by stealing 9s and then picking 1t in Fig. 2 (b), or not stealing 9s (that is, picking

2t) and then picking 3t in Fig. 2 (c). Therefore, we store and simulate both hands such that

we can choose the best solution from these results.

MONTE-CARLO SIMULATION FOR MAHJONG

779

(a) The hand.

(b) A win after stealing.

(c) A win after not stealing.

Fig. 2. Examples to illustrate both stealing and not stealing should be considered. The notations, L,

O, U, and C denote the lower player, the opposite player, the upper player, and the game-playing

program, respectively.

3.3 Implementation

In Fig. 3, the functions, FlatMCMJ and OneSim, implement the four-player model.

In FlatMCMJ, we generate all afterstates saf of a given state s. Then, we simulate for each

saf in OneSim and can elaborate its win rate. The number of total simulations nt is evenly

distributed to each saf. The best action is the one with the highest win rate. In OneSim, let

Si and Si+1 be the set of current states and the set of afterstates. There are m rounds in one

simulation. In each round, all afterstates generated from the current states in Si become the

new set Si+1 in the next round. After m rounds, the player wins if there exists a winning

strategy in the set of states, and otherwise it is a draw.

In each round, we generate at most seven afterstates for each hand by taking legal

actions which are one pick, three pongs and three eats. For example, assume that the hand

is 234456w1199t258s, and the four tiles, tL, tO, tU and tC, picked by the four players are 1t,

9t, 4w and 2s respectively. The seven afterstates generated are one hand that contains the

picked tile 2s, three hands that contain triplets, 111t, 999t and 444w, and three hands that

contain sequences, 234w, 345w and 456w. After m rounds, at most 7m hands are generated,

and hence the computational cost grows exponentially.

Function OneSim(saf, m)

Input: an initial afterstate saf, the number of total rounds m

Output: win or draw

1. S0  {saf}

2. for i = 0 to m 1 do

3. Si+1  

Picked tiles

L

Round

1

2

O U C Steal 9s

Pick 2t

() win

1st action After two rounds

1

2

Steal 9s

Pick 2t

()

win

Picked tilesRound 1st action After two rounds

L O U C

JR-CHANG CHEN, SHIH-CHIEH TANG, I-CHEN WU

780

4. get four tiles tL, tO, tU and tC, each of which is assigned to the lower,

 opposite, upper and current players respectively

5. for each s in Si do

6. while a pong occurs do

7. s  remove the two tiles identical to the discarded tile from s

8. Si+1  Si+1 {s}

9. end while

10. if an eat occurs then

11. for at most three combinations of eat do

12. s  remove the two tiles related to tU from s

13. Si+1  Si+1 {s}

14. end for

15. end if

16. s  add tC to s /* pick */

17. Si+1  Si+1 {s}

18. end for

19. end for

20. if there exists a winning condition in Sm then

21. return win

22. end if

23. return draw

Function FlatMCMJ(s, m, nt)

Input: an initial state s, the number of rounds m, the number of total simulations nt

Output: the best action

Local variables: an action array A[MAX_ACTIONS],

an integer array winCount[MAX_ACTIONS]

1. A  All actions from s

2. Initialize all elements in winCount[] to 0

3. for each ai in A do

4. saf  make ai at s /* saf is an afterstate of s */

5. Repeat nt/|A| times do

6. winCount[i]  accumulate the win count by calling OneSim(saf, m)

7. end repeat

8. end for

9. return the action with the highest win count in winCount[]
Fig. 3. The algorithm for FlatMCMJ of the four-player model of Mahjong.

4. DISCARD-TWICE METHOD

This section discusses an important issue called tatsu-breaking in Mahjong. The win-

ning condition is five melds and one pair, which implies exactly six blocks. If a hand has

more than six blocks, we call the hand has excessive blocks. Consider the hand ht =

445w1267t1144888999s with seven blocks. The hand will discard a tile from a tatsu even-

tually because only six blocks are needed to satisfy the winning condition. The breaking

MONTE-CARLO SIMULATION FOR MAHJONG

781

operation is so-called to break a tatsu in this paper, such as discarding 1t from the tatsu

12t. In this example, FlatMCMJ will discard 4w and the hand will still maintain seven

blocks. In reality, we do not know which tatsu is useless before the winning condition is

satisfied, but it is a win in FlatMCMJ since the algorithm does not need to know which

tiles to be discarded while playing. Consequently, FlatMCMJ may overestimate the simu-

lated win rate in this case. This causes that FlatMCMJ tends to reserve as many blocks as

possible.

Therefore, we propose rule-based heuristics to find a reasonable tatsu-breaking option

to cope with this problem. We describe a method to calculate the number of blocks of a

hand in Section 4.1 and two heuristics in Section 4.2.

4.1 Calculate the Number of Blocks of a Hand

We propose a method that can quickly calculate the number of blocks for a given

hand. First, the minimum number of tiles to win, called MTW, is the least number of tiles

we need to pick or steal to satisfy the winning condition for a given hand [5]. Based on the

definition, we let the function MTW(c) be the minimum number of tiles that the player has

to pick and not discard to form c − 1 meld and one pair. Hence, MTW(6) is the minimum

number of tiles to win. For example, for the hand ht = 445w1267t1144888999s, MTW(1)

= MTW(2) = MTW(3) = 0, MTW(4) = 1, MTW(5) = 2, MTW(6) = 3, MTW(7) = 4 and

MTW(8) = 6. The first three are zeros, since there are already one pair and two melds, say

44w, 888s and 999s. For MTW(4), we simply need to add one more tile, say 3t, to form

one new meld for the tatsu 12t. Similarly, for MTW(5), MTW(6) and MTW(7), we only

need to add one extra, say 8t, 1s and 4s, respectively. However, for MTW(8), we need two

tiles, say 67w, to form an extra meld, since it runs out of tatsu after making MTW(7).

Apparently, the function is monotonically increasing.

Second, if MTW(c) − MTW(c − 1)  2, it is impossible to find a block besides those

included in MTW(c − 1). That is, it needs two tiles to form an extra meld or a pair when

computing MTW(c). Thus, there are at most c − 1 blocks. For example, there are at most

seven blocks in ht since MTW(8) − MTW(7) = 2. MTW(c) − MTW(c − 1)  1, the hand has

at least one block that is not included in the blocks when computing MTW(c − 1). Thus,

there are at least c blocks. For example, there are at least seven blocks in ht since MTW(7)

− MTW(6) = 1. Therefore, the number of blocks for a given hand is the maximum c such

that

MTW(c) − MTW(c − 1)  1. (1)

4.2 Rule-Based Heuristics

In this subsection, we propose the discard-twice method to cope with excessive blocks.

This method considers the first discarded tile t1 and the next discarded tile t2. The best t1

is discarded according to heuristics.

First, given a hand ht, we calculate the number of blocks after discarding each tile t1

in ht using the method in Section 4.1. Then, we classify the tiles into two sets, called the

tatsu-breaking set and the non-tatsu-breaking set. If the number of blocks decreases after

t1 is discarded, then t1 belongs to the tatsu-breaking set. Otherwise, t1 belongs to the non-

tatsu-breaking set. For example, there are five blocks in ht = 445w1267t1144s. If 1t is dis-

JR-CHANG CHEN, SHIH-CHIEH TANG, I-CHEN WU

782

carded, then the afterstate 445w267t1144s has four blocks since the maximum c satisfying

Eq. (1) is four. If 4w is discarded, the afterstate 45w1267t1144s has five blocks. Hence, 1t

is in the tatsu-breaking set and 4w is in the non-tatsu-breaking set. In ht, the eight tiles

1267t1144s are in the tatsu-breaking set, and the three tiles 445w are in the non-tatsu-

breaking set.

Second, we consider the effect of breaking a tatsu by consecutively discarding two

tiles, t1 and t2 in ht. We calculate the win rate for each afterstate using FlatMCMJ described

in Section 3.3, and obtain the following data.

• The discarded tile t1tb with the best win rate wr1tb in the tatsu-breaking set

• The set of discarded tiles {t1tb}  ht − t1tb with good win rates wr2tb after t1tb is discarded

• The set of discarded tiles {t1ntb} with good win rates wr1ntb in the non-tatsu-breaking set

• The discarded tile t2ntb with the best win rate wr2ntb, where t2ntb  ht − t for each tile t 

{t1ntb} that is discarded

Given an action, the mean value m and the standard deviation  are calculated after

lots of simulations. The confidence interval of the action is between the lower bound m −

rd   and the upper bound m + rd  , where rd is a constant ratio. A good win rate wr2tb

means that the confidence interval of wr2tb overlaps with that of the best win rate among

the tiles in {t2tb}. That is, the upper bound of three standard deviations 3 of wr2tb is equal

to or greater than the lower bound of 3 of the best in wr2tb assuming rd = 3. A good win

rate wr1ntb is defined similarly.

Based on the above data, we propose two rule-based heuristics to decide which tile is

eventually discarded and give examples below.

(A) Heuristic 1 (H1): Choose the tile t1 whose next discarded tile achieves the best win

rate.

The idea is to break the tatsu in this round if the player is forced to break a tatsu in

the next round. First, we discard two tiles at once for all combinations of two tiles in ht.

Then, we analyze the win rates of afterstates by FlatMCMJ. Among all possible tile t2, we

choose the one whose next discarded tile t2 achieves the best win rate. If t1 is in the tatsu-

breaking set, the tatsu is broken.

For example, in Table 1, given the hand ht = 445w1267t1144s, the best win rate is

16.7% obtained by discarding 1t and then 2t. Hence, the tile to be discarded in this round

is 1t and the tatsu 12t is broken. In contrast, FlatMCMJ discards 4w since it only considers

discarding one tile. However, if the player picks a useful tile such as 3w, 6w, 5t, 8t, 1s and

4s, the player must break a tatsu and lead to a lower win rate, which cannot be detected by

FlatMCMJ. By applying H1, this situation is considered by discarding two tiles, and the

tatsu can be broken.

Table 1. The decision made by H1. The hand is 445w1267t1144s.

 Discard the 1st tile Discard the 2nd tile

Tatsu-breaking
t1tb = 1t

wr1tb = 18.7%

t2tb = 2t

wr2tb = 16.7%

Non-tatsu-breaking
t1ntb = 4w

wr1ntb = 21.2%

t2ntb = 1t

wr2ntb = 13.4%

MONTE-CARLO SIMULATION FOR MAHJONG

783

(B) Heuristic 2 (H2): Choose the good tile t1 that appears both in the non-tatsu-breaking

set in this round and in the tatsu-breaking set in the next round.

Although H1 can break a tatsu, it would be too aggressive sometimes because it is

possible to pick or steal a good tile before discarding t2. Take the hand ht = 145w1267t

1144s as an example. Obviously, a tatsu like 12t usually has a better chance of forming a

meld than a single tile like 1w. However, H1 only considers the win rate after discarding

t2. After discarding the single tile 1w, the hand becomes 45w1267t1144s, and all discarding

actions will break a tatsu in the next round. That is, no matter which tile is discarded in the

first round, a tatsu is forced to be broken after two rounds in this case. So, the hands after

two rounds are similar, and their sampled win rates are close by FlatMCMJ. In Table 2,

H1 chooses to discard 1t since its wr2tb = 14.0% is slightly better than 13.5%. Therefore, H1

cannot distinguish which one is better between discarding a single tile and breaking a tatsu.

The idea of H2 is to discard the tile which is less likely to form to a meld before

breaking the tatsu. After discarding the tile 1t in the tatsu 12t in this round in the tatsu-

breaking set, discarding 1w or 2t in the next round may get close win rates. Thus, {t2tb}

includes 1w. On the other hand, 1w is less likely to form a meld. Discarding 1w often gets

a high win rate by FlatMCMJ and thus {t1ntb} includes 1w. Hence, H2 chooses the single

tile 1w in {t1ntb}{t2tb} rather than breaks the tatsu 12t.

Table 2. The decision made by H2. The hand is 145w1267t1144s.

 Discard the 1st tile Discard the 2nd tile

Tatsu-breaking
t1tb = 1t

wr1tb = 15.1%

t2tb = 1w

wr2tb = 14.0%

Non-tatsu-breaking
t1ntb = 1w

wr1ntb = 21.3%

t2ntb = 1t

wr2ntb = 13.5%

(C) The Combination of FlatMCMJ and Heuristics

The property of FlatMCMJ is that it tends to reserve as many blocks as possible. H1

makes the decision according to the win rates after two tiles are discarded consecutively.

H2 discards the tile which is hard to form a meld prior to breaking a tatsu. In this subsection,

we design three versions of FlatMCMJ to mix these properties as follows.

• FlatMCMJoriginal: Choose t1tb if wr1tb  wr1ntb, and choose a tile by FlatMCMJ otherwise.

It indicates that when breaking a tatsu is judged to be good in this round, we do not

consider the next round. This version is the same as the original FlatMCMJ.

• FlatMCMJH1: Choose t1tb if wr1tb  wr1ntb, and choose a tile by H1 otherwise. This version

deals with the problem that FlatMCMJoriginal tends to reserve excessive blocks.

• FlatMCMJH2+H1: Choose t1tb if wr1tb  wr1ntb, and choose a tile by H2 otherwise. If no tile

is chosen by H2, namely {t1ntb}{t2tb} = , choose a tile by H1. This version suppresses

the tendency of FlatMCMJH1 towards aggressively breaking a tatsu.

5. EXPERIMENTS

The experiments are done on a desktop computer with an AMD Ryzen 5 2600 6-core

processor. Taiwanese rules are adopted. There are two teams, each of which includes the

JR-CHANG CHEN, SHIH-CHIEH TANG, I-CHEN WU

784

two players sitting on the opposite side and uses the same version of the program. A match

includes 384 games according to the Computer Olympiad tournament [20].4 The team that

wins more games is the winner of the match. To avoid the influence of luck, each wall is

used in two games, so both teams can play the same hand once.

We compare the two models of FlatMCMJ in Section 5.1. We experiment with pro-

gressive pruning to accelerate the computation in Section 5.2. Different numbers of simu-

lations are compared in Section 5.3 The discard-twice method is discussed in Section 5.4.

Finally, the best version is compared with the baseline in Section 5.5.

5.1 Comparison of SP and FP Models of FlatMCMJ

We compare the performance of the single-player model (SP) and the four-player

model (FP) of FlatMCMJ proposed in Section 3. In Table 3, FP outperforms SP reaching

a win rate of 62.1%. The reason is that SP ignores all steals during simulations. The results

also show that the steal action is important in Mahjong. We use FlatMCMJ(FP) for the

following experiments.

Table 3. Comparison of the single- and four-player models. A total of 781 matches and

win rates with 95% confidence.

team # of win matches win rate

FlatMCMJ(SP) 228 37.9% (±0.67%)

FlatMCMJ(FP) 374 62.1% (±0.67%)

5.2 The Results of Using Progressive Pruning

Progressive pruning (PP) [1, 2, 4, 13] adopts the confidence interval to prune inferior

actions/moves during search, and thus facilitates finding out the best action. The process

to find the best action includes many iterations. In each iteration, we compute the confi-

dence interval of each action by simulations. Inferior actions are pruned (see below), and

if exactly one action is left, the process ends and returns the action immediately. Since the

total number of simulations is fixed in the whole process, superior actions will obtain more

simulations in the next iteration after inferior actions are pruned.

The confidence interval of an action is (m − rd  , m + rd  ), where m,  and rd are

the mean value, the standard deviation and a constant ratio, respectively, after lots of sim-

ulations. Assume that a node has two actions a and b. The mean and standard deviation of

a are ma and a respectively, and those of b are mb and b respectively. The action a is

inferior to b if m + rd  a < mb − rd  , which indicates the upper bound of a is less than

the lower bound of b. Hence, the action a is pruned.

This subsection analyzes the effectiveness of progressive pruning in Mahjong. First,

we analyze the pruning rate  affected by the constant ratio rd and the number of simula-

tions n of each action. When rd is set to a smaller value or when  decreases, the confidence

interval becomes smaller, filtering out more actions. In Fig. 4, rd = 2 filters out more actions

than rd = 3. The two lines of rd are close (less than 5%) when n  9000. When n increases,

 decreases and thus  increases. In Fig. 4,  reaches 79.8% for rd = 2 and 75.0% for rd =

3 when n = 10000.

4 In the Mahjong tournament of the Computer Olympiad, a match includes 384 games; however, 192 games

before 2014.

MONTE-CARLO SIMULATION FOR MAHJONG

785

Fig. 4. The pruning rate  under different n and rd.

Second, we investigate the percentage e of the best actions that are filtered out. As-

sume that the best action is obtained by making 15,000,000 simulations for each action of

a hand. As shown in Fig. 5, e < 0.2% when n > 300 for rd = 2, and e  0 for rd = 3. Almost

all of the best actions are reserved by progressive pruning. We adopt rd = 3 in the following

experiments.

Fig. 5. The percentage e of the best actions filtered out.

Third, we compare the effectiveness of using and not using progressive pruning, de-

noted by FlatMCMJ(FP) and FlatMCMJ(FP)+PP respectively. In the experiments, the total

number of simulations is 10000 for each hand. In FlatMCMJ(FP)+PP, let each action sim-

ulates 300 times in the first iteration and 100 times in the following iterations. Table 4

shows that FlatMCMJ(FP)+PP performs slightly better than FlatMCMJ(FP). Since some

poor actions are pruned, the saved simulations are applied to good actions.

Table 4. Comparison of using and not using pruning.

team # of win matches win rate

FlatMCMJ(FP) 1162 49.7% (1.70%)

FlatMCMJ(FP)+PP 1177 50.3% (1.70%)

5.3 Comparison using Different Numbers of Simulations

We compare different numbers of simulations for each hand. Table 5 shows the win

rates of FlatMCMJ(FP)+PP using 20000, 40000, 80000 and 200000 simulations against

that using 10000 simulations. The results show that more simulations we use, better per-

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

n

 o = 2

 o = 3

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

n

 o = 2

 o = 3

JR-CHANG CHEN, SHIH-CHIEH TANG, I-CHEN WU

786

formance we have. In the following experiments, we adopt 200000 simulations which

achieve the best win rate of 53.5%.

Table 5. Comparison between different numbers of simulations (against 10000 simu-

lations).

of simulations # of matches # of win matches win rate

 20,000 8558 4415 51.5% (0.89%)

 40,000 2435 1275 52.3% (1.67%)

 80,000 1604 849 52.9% (2.05%)

200,000 1188 635 53.5% (2.38%)

5.4 The Results of the Discard-twice Method

The discard-twice method includes two heuristics, H1 and H2, as mentioned in Sec-

tion 4. We compare the performance of the three versions, FlatMCMJoriginal, FlatMCMJH1

and FlatMCMJH2+H1, which does not use any heuristics, only uses H1, and uses both H1

and H2, respectively. In this experiment, the four-player model (FP) and progressive prun-

ing (PP) are used in all versions.

In Table 6 (a), FlatMCMJ(FP)H1+PP weakens the strength. In practice, H1 makes the

program tend to break a tatsu even when a single tile exists in a hand. H2 makes up this

disadvantage. Hence, FlatMCMJ(FP)H2+H1+PP is the best, reaching a win rate of 59.5%, as

shown in Table 6 (b).

Table 6. Comparison of the two heuristics of the discard-twice method.

(a) The version using no heuristics vs. the version using H1.

team # of win matches win rate

FlatMCMJ(FP)original +PP 150 53.8% (4.91%)

FlatMCMJ(FP)H1 +PP 129 46.2% (4.91%)

(b) The version using no heuristics vs. the version using both H1 and H2.

team # of win matches win rate

FlatMCMJ(FP)original +PP 133 40.5% (4.46%)

FlatMCMJ(FP)H2+H1 +PP 195 59.5% (4.46%)

While performing the best, the heuristic H2+H1 incurs little overhead. We use 10000

hands that have excessive blocks as testing data. Each hand is given 200000 simulations

in total. Note that PP is not used to make sure all simulations are executed. Table 7 lists

the execution time for the three versions, FlatMCMJ(FP)original, FlatMCMJ(FP)H1 and Flat-

MCMJ(FP)H2+H1. The results show that the three versions consume nearly the same com-

putation cost and that the overhead of heuristics H1 and H2+H1 is very small, about 4%.

Table 7. Computation time for different heuristics with 200000 simulations.

 FlatMCMJ(FP)original FlatMCMJ(FP)H1 FlatMCMJ(FP)H2+H1

Execution time (sec.) 5.015 (0.0163) 5.214 (0.0170) 5.215 (0.0170)

MONTE-CARLO SIMULATION FOR MAHJONG

787

5.5 Comparison with the Baseline

The final version, FlatMCMJ(FP)H2+H1+PP, adopts the four-player model, progressive

pruning and the discard-twice method. We compare its performance with that of the base-

line version, FlatMCMJ(SP). Both versions simulate 200000 times. As shown in Table 8,

the final version outperforms the baseline, reaching a win rate of 66.2%.

Table 8. Comparison of the final version and the baseline.

team # of win matches win rate

FlatMCMJ(SP) 214 33.8% (3.10%)

FlatMCMJ(FP)H2+H1 + PP 419 66.2% (3.10%)

6. CONCLUSIONS

This paper describes the design of our Monte-Carlo-based Mahjong program, SIMCAT.

We propose the single-player and four-player models for Mahjong that are used in the

simulation stage in flat Monte Carlo. Moreover, we design the discard-twice method that

includes two rule-based heuristics.

In the experiments, the version that uses flat Monte Carlo with the four-player model,

progressive pruning and the discard-twice method outperforms the baseline that uses the

single-player model, reaching a win rate of 66.2%. SIMCAT used the above methods and

won the championship in the Mahjong tournaments in Computer Olympiad 2020 and

TAAI 2019/2020.

Our work provides the basis for Mahjong programs. Several possible future works

can be developed based on our work. First, the discard-twice can be extended to discard N

(N  3). However, in the case of a given fixed number of simulations for each hand, the

average simulation count for each discard-N action decreases significantly, resulting in

inaccurate win rates for discard-N actions. Second, our model can be applied to other Mah-

jong rules, such as American rules and Hong Kong rules. Third, based on flatMC, the

search may choose Monte Carlo Tree Search for further investigation. Fourth, our methods

may be merged with deep reinforcement learning, such as AlphaZero [7].

ACKNOWLEDGMENT

This research is partially supported by the Ministry of Science and Technology (MOST)

of Taiwan under Grant Number 110-2634-F-009-022, 110-2634-F-259-001 through Per-

vasive Artificial Intelligence Research (PAIR) Labs, and 108-2221-E-305-008-MY3. The

computing resource is partially supported by National Center for High-performance Com-

puting (NCHC) of Taiwan. Thank Fong-Sheng Liao for the discussions that inspired us to

design the method.

REFERENCES

1. B. Bouzy, “Move-pruning techniques for Monte-Carlo go,” Advances in Computer

Games, 2005, pp. 104-119.

JR-CHANG CHEN, SHIH-CHIEH TANG, I-CHEN WU

788

2. B. Bouzy and B. Helmstetter, “Monte-Carlo go developments,” Advances in Com-

puter Games, 2004, pp. 159-174.

3. C. B. Browne, et al., “A survey of Monte Carlo tree search methods,” IEEE Transac-

tions on Computational Intelligence and AI in Games, Vol. 4, 2012, pp. 1-43.

4. G. M. J. B. Chaslot, J. T. Saito, B. Bouzy, J. W. H. M. Uiterwijk, and H. J. van den

Herik, “Monte-Carlo strategies for computer go,” in Proceedings of the 18th Belgium-

Netherlands Conference on Artificial Intelligence, 2006, pp. 83-91.

5. L.-K. Chuang and I.-C. Wu, “A study of Mahjong program design,” Master’s Thesis,

Department of Computer Science, National Chiao Tung University, Taiwan, 2015. (in

Chinese)

6. R. Coulom, “Efficient selectivity and backup operators in Monte-Carlo tree search,”

in Proceedings of the 5th International Conference on Computers and Games, 2006,

pp. 72-83.

7. D. Silver, et al., “Mastering chess and shogi by self-play with a general reinforcement

learning algorithm,” arXiv Preprint, 2017, arXiv:1712.01815.

8. D. J. Edwards and T. Hart, “The alpha beta heuristic,” Artificial Intelligence Project,

RLE and MIT Computation Center, 1963, 5 pages.

9. S. Gao, F. Okuya, Y. Kawahara, and Y. Tsuruoka, “Building a computer Mahjong

player via deep convolutional neural networks,” arXiv Preprint, 2019, arXiv:1906.

02146.

10. T. G. Hauk, “Search in trees with chance nodes,” Master’s Thesis, Department of

Computer Science, University of Alberta, Canada, 2004.

11. L. Kocsis and C. Szepesvári, “Bandit based Monte-Carlo Planning,” in Proceedings

of the 15th European Conference on Machine Learning, 2006, pp. 282-293.

12. J. Li, et al., “Suphx: Mastering Mahjong with deep reinforcement learning,” arXiv

Preprint, 2020, arXiv:2003.13590.

13. F.-S. Liao, “Monte-Carlo sampling methods for Computer Mahjong,” Master’s Thesis,

Department of Computer Science, National Chiao Tung University, Taiwan, 2017. (in

Chinese)

14. C. A. Luckhardt and K. B. Irani, “An algorithmic solution of N-person games,” in

AAAI-86 Proceedings, Vol. 1, 1986, pp. 158-162.

15. S. D. Millter, Riichi Mahjong: The Ultimate Guide to the Japanese Game Taking the

World by Storm, lulu.com Publisher, US, 2016.

16. N. Mizukami and Y. Tsuruoka, “Building a computer Mahjong player based on Monte

Carlo simulation and opponent models,” in Proceedings of IEEE Conference on Com-

putational Intelligence and Games, 2015, pp. 275-283.

17. A. Shapiro, “Monte Carlo sampling methods,” Handbooks in Operations Research

and Management Science, Vol. 10, 2003, pp. 353-425.

18. Y.-C. Shan, C.-H. Wei, C.-H. Lin, I-C. Wu, L.-K. Chuang, and S.-J. Tang, “A frame-

work for computer Mahjong competitions,” ICGA Journal, Vol. 37, 2014, pp. 44-56.

19. R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, MIT Press,

MA, 2018.

20. W.-J. Tseng, L.-K. Chuang, I-C. Wu, S.-S. Lin, and S.-J. Yen, “Longcat wins mahjong

tournament in ICGA 2013,” ICGA Journal, Vol. 36, 2013, pp. 184-185.

21. H. J. van den Herik, J. W. Uiterwijk, and J. van Rijswijck, “Games solved: Now and

in the future,” Artificial Intelligence, Vol. 134, 2002, pp. 277-311.

MONTE-CARLO SIMULATION FOR MAHJONG

789

22. C.-W. Wu and S.-S. Lin, “The design and implementation of Mahjong program Mah-

JongDaXia,” Master’s Thesis, Department of Computer Science and Information En-

gineering, Taiwan, 2016. (in Chinese)

23. Japan Mahjong Professional League, http://www.ma-jan.or.jp/.

24. Mahjong Time, online Mahjong platform, http://mahjongtime.com/mahjong-about-

mahjong-time.html/.

25. Math of Mahjong (麻雀の数学), http://www10.plala.or.jp/rascalhp/mjmath.htm/.

Jr-Chang Chen (陳志昌) is an Associate Professor of the De-

partment of Computer Science and Information Engineering at Na-

tional Taipei University. He received his BS, MS and Ph.D. degrees

in Computer Science and Information Engineering from National

Taiwan University in 1996, 1998, and 2005 respectively. He served

as the Secretary General of Taiwanese Association for Artificial In-

telligence in 2015-2017. Dr. Chen’s research interests include arti-

ficial intelligence and computer games. He is the co-author of the

two Chinese chess programs named ELP and CHIMO, the Chinese

dark chess program named YAHARI, and the minishogi program named NYANPASS, which

won gold medals in the Computer Olympiad tournaments. He served as the general chair

of the 10th International Conference on Computers and Games (CG2018).

Shih-Chieh Tang (唐士傑) is currently a Ph.D. candidate in

the Department of Computer Science, National Yang Ming Chiao

Tung University. His research interests include artificial intelligence,

machine learning and computer games. He is the leader of the team

developing the Mahjong program, named SIMCAT, which won gold

medals in TAAI 2019/2020 and Computer Olympiad 2020.

I-Chen Wu (吳毅成) is currently the Executive Officer of Ar-

tificial Intelligence Computing Center at Academia Sinica, a Re-

search Fellow of Research Center for IT Innovation at Academia

Sinica, and also a professor of the Department of Computer Science

at National Yang Ming Chiao Tung University. He received his BS

in Electronic Engineering from National Taiwan University, MS in

Computer Science from NTU, and Ph.D. in Computer Science from

Carnegie-Mellon University, in 1982, 1984 and 1993, respectively.

He serves the Editor-in-Chief of ICGA Journal and an associate ed-

itor in the IEEE Transactions on Games. He currently serves as the Vice President of the

International Computer Games Association, and the president of the Taiwanese Computer

JR-CHANG CHEN, SHIH-CHIEH TANG, I-CHEN WU

790

Games Association; and served as the President of the Taiwanese Association for Artificial

Intelligence in 2015-2017.

His research interests include computer games and deep reinforcement learning, and

his research achievements include several state-of-the-art game playing programs, winning

over 30 gold medals in international tournaments, like Computer Olympiad. He wrote over

150 technical papers, and served as chairs and committee in over 30 academic conferences

and organizations, including the general chair of IEEE CIG conference 2015.

