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Mahjong is a four-player, stochastic, imperfect information game. This paper focuses 

on the Taiwanese variant of Mahjong, whose complexity is higher than that of Go. We 

design a strong anytime Monte-Carlo-based Taiwanese Mahjong program. First, we adopt 

the flat Monte Carlo to calculate the win rates of all afterstates/actions such as discarding 

each tile. Then, we propose a heuristic method, which we incorporate into flat Monte Carlo 

to obtain the accurate tile to be discarded. As an anytime algorithm, we can stop simula-

tions and return the current best move at any time. In addition, we prune bad actions to 

increase accuracy and efficiency. Our program, SIMCAT, won the championship in the 

Mahjong tournaments in Computer Olympiad 2020 and TAAI 2019/2020.  

 

Keywords: Monte-Carlo simulation, discard-twice method, imperfect information game, 

Mahjong, progressive pruning 

 

 

1. INTRODUCTION 
 

Mahjong is a game originated from China, and is popular around the world with an 

estimation of about six hundred million players [24]. There are many different sets of Mah-

jong rules, such as the Japanese, Taiwanese, American, Beijing and Hong Kong rules. In 

Asia, this game does not only provide entertainment for amateurs, but also has many pro-

fessional player associations and leagues [23]. Mahjong is a four-player, stochastic, im-

perfect information game. The complexity of Mahjong, estimated to be 4.3  10185, is high-

er than that of Go [21, 25]. Moreover, there are more than 1048 hidden states during the 

course of a game [12]. Therefore, it is a challenge to design a strong program. In this paper, 

for simplicity of discussion, we adopt Taiwanese rules whose winning conditions are rel-

atively simple.  

Since Mahjong is a multi-player partially-observable imperfect information game, it 

is difficult to directly apply the techniques from perfect information games, such as alpha-

beta search [7], Maxn [14] and Monte-Carlo tree search [6, 11]. Therefore, many programs, 

including VERYLONGCAT [5] and MAHJONGDAXIA [22], search based on a simplified 

model [5]. However, these programs do not use anytime search algorithms, and namely 

cannot recommend the best move to play until the whole search completes. This shortcom- 
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Fig. 1. The 34 patterns in Mahjong. 

1 This paper follows the terminologies and notations in [15]. 
2 The simplified notations are used in this paper. For example, 111w represents the three tiles 1w, 1w, and 1w. 

ing in turn leads to a shallow search and weak playing strength since time control must be 

considered strictly in tournament settings. Hence, it is better to have an algorithm that can 

stop the search and return the current best move at any time.    

In this paper, we present a Monte-Carlo-based Mahjong program following Taiwan-

ese rules. We use flat Monte Carlo [3] to approximate the win rates of given states as 

described in Section 3, and use progressive pruning [1, 2, 4] to prune inferior actions for 

better performance. Then, we design heuristics to enhance the strength in Section 4. In our 

experiments in Section 5, these methods are analyzed to show the performance. The best 

version of our programs, named SIMCAT, outperformed the baseline version with a win 

rate of 66.2% and won the championship in the Mahjong tournaments in Computer Olym-

piad 2020 and TAAI 2019/2020. The rules are introduced in Section 2, and the concluding 

remarks are given in Section 6.  

2. BACKGROUND 

In this section, we review Mahjong in Section 2.1 and the previous works in Section 2.2.  

2.1 Mahjong 

In this subsection, we only briefly mention the rules relevant to this paper. Detailed 

information refers to [15, 18].1  

There are 144 tiles in Mahjong, among which 8 tiles are flowers and 136 tiles com-

pose 34 patterns, each of which contains four identical tiles. In Fig. 1, the patterns are 

classified into five suits, which are wan (denoted by w), tong (or pin, denoted by t), sou 

(or tiao, denoted by s), wind and dragon. Each of wan, tong and sou includes nine number 

patterns, which are 1w to 9w, 1t to 9t, and 1s to 9s. Wind includes east, south, west and 

north. Dragon includes white, green and red.  

A meld is a sequence (a.k.a. shun in Chinese), a triplet (a.k.a. ker in Chinese) or a 

gong. A sequence consists of three consecutive number tiles of the same suit, such as 1w, 

2w and 3w, which are denoted by 123w for simplicity.2 A triplet (or a gong) consists of 

three (or four) identical tiles, such as 111w (or 1111w). A pair consists of two identical 

tiles, such as 11w. A tatsu consists of two or three tiles and need one more tile to form a 

meld, such as 13w and 233w. Note that a pair is also a tatsu. A block is either a meld or a 

tatsu.  

 

 

wan (w)

tong (t)

sou (s)

wind

dragon

1 2 3 4 5 6 7 8 9

east south west north

red green white
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In Mahjong, four players around a square table take turns to play counterclockwise. 

From the view of the current player (that is, the game-playing program, denoted by C), the 

other three players are called the lower player (the player to the right), the opposite player 

(the player who is opposite to C) and the upper player (the player to the left) by turns, 

denoted by L, O and U respectively. At the beginning, all tiles are faced down and ran-

domly piled up into the wall, and each player takes 16 tiles, called a hand, from the wall. 

Four players take turns to take a legal action (see below). The winning condition is satisfied 

for a player when his/her hand contains five melds and one pair. A player can win a game 

by picking a tile from the wall, or by taking the tile discarded by other players. When 16 

tiles are left in the wall and no player wins, the game ends in a draw.  

Legal actions include pick (a.k.a. mo in Chinese) and steal (a.k.a. bid). Pick indicates 

that the player takes a tile from the wall. Steal includes eat, pong and gong. Eat indicates 

that a player takes the tile discarded by the upper player to form a sequence. Pong indicates 

that a player takes the tile discarded by other players to form a triplet. Gong indicates that 

a player picks from the wall or takes the tile discarded by other players to form a gong, and 

then picks again. After a player picks or steals a tile in case of not winning yet, he/she has 

to discard a tile, maintaining a total of 3n + 1 tiles, where the integer 0  n  5. The ith 

round for a player indicates that it is the ith time he/she discards a tile.  

2.2 Previous Works 

Maxn is the generalization of minimax which can be applied to multi-player perfect 

information games [14]. A player in multi-player games makes a move that maximizes 

his/her return value.  

Due to the imperfect information and the complexity in Mahjong, a simplified model 

was adopted where other players just picked a tile and then discarded it. For Taiwanese 

rules, VERYLONGCAT [5] used the expectimax tree [10] to compute the win rate of a given 

hand, and utilized expert knowledge for pruning. A lookup table for querying the minimum 

number of tiles to win (MTW) was built in advance. A transposition table was used to ac-

celerate the computation. MAHJONGDAXIA used divide and conquer to decompose a hand, 

and also used a complicated heuristic function to choose a tile to be discarded [22].  

In the past, many researches focused on training. For Japanese rules, Mizukami and 

Tsuruoka proposed a method that trained models including opponent models by using 

game records of expert players and decided moves using Monte-Carlo simulation together 

with these models [16]. Gao used supervised learning to train a convolution neural network 

[9]. The network without any search reached 2-dan on the well-known Japanese Mahjong 

online platform, Tenhou.3 Microsoft made a Japanese Mahjong program, SUPHX, using 

deep reinforcement learning [12], and reached 10-dan on Tenhou. It required a considera-

ble amount of computational resources for training.  

Monte-Carlo sampling [13, 17] is a computational algorithm that uses random simu-

lations to obtain numerical results. For move decision problems, flat Monte Carlo (flatMC) 

[3] has three stages, which are the generation of all possible states by playing each legal 

action, the simulation of these states, and the choice of the final action with the highest 

mean of simulated values. In this paper, we adopt flatMC to compute the win rate of a hand 

and propose heuristics to decide the move based on simulation results, so that the program 

3 Tenhou is available at http://tenhou.net/ 
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is simple, effective, and suitable for the time constraint in tournaments since it is an any-

time algorithm.  

3. FLAT MONTE CARLO FOR MAHJONG 

We adopt flat Monte Carlo (flatMC) as described in Section 2.2, which consists of 

three stages, for Mahjong. In this section, we describe the implementation of the simulation 

stage in detail. To use flatMC to compute win rates, we simply simulate legal actions for 

state transitions until a game ended. Given a state s, the next state after taking the action a 

from s is called an afterstate saf, similar to the terminology used in [19]. Let Safter be the set 

of all afterstates of s. We simulate each saf  Safter and obtain its win rate.  

In Mahjong, we design the function FlatMCMJ(saf, m, nt) for the above process, where 

m is the number of rounds for each player in each simulation, and nt is the total number of 

simulations. To reduce the complexity, the simulation stage uses an optimistic strategy. 

That is, in the beginning of a simulation, we generate m tiles for each player which he/she 

will pick from the wall in next m rounds. As we foresee all tiles, we can find an optimal 

solution to win by discarding useless tiles. Note that in FlatMCMJ, other players do not 

declare a win even though their hands satisfy the winning condition. Therefore, the result 

is either a win of the current player or a draw. Two simulation models are proposed below.  

3.1 Single-Player Model  

This model only simulates the pick action by the current player, and ignores the tiles 

discarded by other players. A tile is hidden from a player if it is in the wall or is in other 

players’ hands. When a player picks a tile, the probability that the tile belongs to a pattern 

is calculated by the number of hidden tiles of the pattern divided by the number of total 

hidden tiles. For each simulation, the player repeatedly takes one tile m times but does not 

discard any tile. So, his/her hand contains 16 + m tiles in the end. The player wins when 17 

tiles among the 16 + m tiles satisfy the winning condition, and otherwise it is a draw. 

The advantage is that the implementation is simple. Since it is not necessary to con-

sider the tiles other players discard, we only need to generate the current player’s tiles. A 

characteristic of FlatMCMJ is to reserve as many blocks as possible, which will be dis-

cussed in detail in Section 4.   

3.2 Four-Player Model  

Based on the single-player model, this model additionally simulates the steal action 

by the current player. We assume that other players are dummy players, just picking a tile 

and then discarding it.  

During a simulation, due to the uncertainty of Mahjong, when other players discard a 

tile, the player may win after stealing it or after ignoring it (that is, picking another tile). 

For example, assume that the hand is 1789t788s in Fig. 2 (a). In next two rounds, a player 

may win by stealing 9s and then picking 1t in Fig. 2 (b), or not stealing 9s (that is, picking 

2t) and then picking 3t in Fig. 2 (c). Therefore, we store and simulate both hands such that 

we can choose the best solution from these results.  
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(a) The hand. 

 
(b) A win after stealing. 

 
(c) A win after not stealing. 

Fig. 2. Examples to illustrate both stealing and not stealing should be considered. The notations, L, 

O, U, and C denote the lower player, the opposite player, the upper player, and the game-playing 

program, respectively.  

3.3 Implementation  

In Fig. 3, the functions, FlatMCMJ and OneSim, implement the four-player model. 

In FlatMCMJ, we generate all afterstates saf of a given state s. Then, we simulate for each 

saf in OneSim and can elaborate its win rate. The number of total simulations nt is evenly 

distributed to each saf. The best action is the one with the highest win rate. In OneSim, let 

Si and Si+1 be the set of current states and the set of afterstates. There are m rounds in one 

simulation. In each round, all afterstates generated from the current states in Si become the 

new set Si+1 in the next round. After m rounds, the player wins if there exists a winning 

strategy in the set of states, and otherwise it is a draw. 

In each round, we generate at most seven afterstates for each hand by taking legal 

actions which are one pick, three pongs and three eats. For example, assume that the hand 

is 234456w1199t258s, and the four tiles, tL, tO, tU and tC, picked by the four players are 1t, 

9t, 4w and 2s respectively. The seven afterstates generated are one hand that contains the 

picked tile 2s, three hands that contain triplets, 111t, 999t and 444w, and three hands that 

contain sequences, 234w, 345w and 456w. After m rounds, at most 7m hands are generated, 

and hence the computational cost grows exponentially.  

 

 

Function OneSim(saf, m) 

Input: an initial afterstate saf, the number of total rounds m  

Output: win or draw 

1. S0  {saf} 

2. for i = 0 to m 1 do 

3.  Si+1    

Picked tiles

L

Round

1

2

O U C Steal 9s

Pick 2t

( ) win

1st action After two rounds

1

2

Steal 9s

Pick 2t

( )

win

Picked tilesRound 1st action After two rounds

L O U C



JR-CHANG CHEN, SHIH-CHIEH TANG, I-CHEN WU 

 

 

780 

 

4.  get four tiles tL, tO, tU and tC, each of which is assigned to the lower,  

  opposite, upper and current players respectively  

5.  for each s in Si do 

6.   while a pong occurs do 

7.    s  remove the two tiles identical to the discarded tile from s  

8.    Si+1  Si+1 {s} 

9.   end while 

10.   if an eat occurs then 

11.    for at most three combinations of eat do 

12.     s  remove the two tiles related to tU from s  

13.     Si+1  Si+1 {s} 

14.    end for 

15.   end if 

16.   s  add tC to s                /* pick */ 

17.   Si+1  Si+1 {s} 

18.  end for  

19. end for  

20. if there exists a winning condition in Sm then  

21.  return win 

22. end if 

23. return draw 

 

 

Function  FlatMCMJ(s, m, nt) 

Input: an initial state s, the number of rounds m, the number of total simulations nt 

Output: the best action  

Local variables: an action array A[MAX_ACTIONS],  

an integer array winCount[MAX_ACTIONS]  

1. A  All actions from s                                        

2. Initialize all elements in winCount[] to 0 

3. for each ai in A do  

4.  saf  make ai at s             /* saf is an afterstate of s */ 

5.  Repeat nt/|A| times do 

6.   winCount[i]  accumulate the win count by calling OneSim(saf, m)  

7.  end repeat 

8. end for 

9. return the action with the highest win count in winCount[] 
Fig. 3. The algorithm for FlatMCMJ of the four-player model of Mahjong. 

4. DISCARD-TWICE METHOD 

This section discusses an important issue called tatsu-breaking in Mahjong. The win-

ning condition is five melds and one pair, which implies exactly six blocks. If a hand has 

more than six blocks, we call the hand has excessive blocks. Consider the hand ht = 

445w1267t1144888999s with seven blocks. The hand will discard a tile from a tatsu even-

tually because only six blocks are needed to satisfy the winning condition. The breaking 
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operation is so-called to break a tatsu in this paper, such as discarding 1t from the tatsu 

12t. In this example, FlatMCMJ will discard 4w and the hand will still maintain seven 

blocks. In reality, we do not know which tatsu is useless before the winning condition is 

satisfied, but it is a win in FlatMCMJ since the algorithm does not need to know which 

tiles to be discarded while playing. Consequently, FlatMCMJ may overestimate the simu-

lated win rate in this case. This causes that FlatMCMJ tends to reserve as many blocks as 

possible. 

Therefore, we propose rule-based heuristics to find a reasonable tatsu-breaking option 

to cope with this problem. We describe a method to calculate the number of blocks of a 

hand in Section 4.1 and two heuristics in Section 4.2.  

4.1 Calculate the Number of Blocks of a Hand 

We propose a method that can quickly calculate the number of blocks for a given 

hand. First, the minimum number of tiles to win, called MTW, is the least number of tiles 

we need to pick or steal to satisfy the winning condition for a given hand [5]. Based on the 

definition, we let the function MTW(c) be the minimum number of tiles that the player has 

to pick and not discard to form c − 1 meld and one pair. Hence, MTW(6) is the minimum 

number of tiles to win. For example, for the hand ht = 445w1267t1144888999s, MTW(1) 

= MTW(2) = MTW(3) = 0, MTW(4) = 1, MTW(5) = 2, MTW(6) = 3, MTW(7) = 4 and 

MTW(8) = 6. The first three are zeros, since there are already one pair and two melds, say 

44w, 888s and 999s. For MTW(4), we simply need to add one more tile, say 3t, to form 

one new meld for the tatsu 12t. Similarly, for MTW(5), MTW(6) and MTW(7), we only 

need to add one extra, say 8t, 1s and 4s, respectively. However, for MTW(8), we need two 

tiles, say 67w, to form an extra meld, since it runs out of tatsu after making MTW(7). 

Apparently, the function is monotonically increasing.  

Second, if MTW(c) − MTW(c − 1)  2, it is impossible to find a block besides those 

included in MTW(c − 1). That is, it needs two tiles to form an extra meld or a pair when 

computing MTW(c). Thus, there are at most c − 1 blocks. For example, there are at most 

seven blocks in ht since MTW(8) − MTW(7) = 2. MTW(c) − MTW(c − 1)  1, the hand has 

at least one block that is not included in the blocks when computing MTW(c − 1). Thus, 

there are at least c blocks. For example, there are at least seven blocks in ht since MTW(7) 

− MTW(6) = 1. Therefore, the number of blocks for a given hand is the maximum c such 

that 

MTW(c) − MTW(c − 1)  1. (1) 

4.2 Rule-Based Heuristics 

In this subsection, we propose the discard-twice method to cope with excessive blocks. 

This method considers the first discarded tile t1 and the next discarded tile t2. The best t1   

is discarded according to heuristics.  

First, given a hand ht, we calculate the number of blocks after discarding each tile t1 

in ht using the method in Section 4.1. Then, we classify the tiles into two sets, called the 

tatsu-breaking set and the non-tatsu-breaking set. If the number of blocks decreases after 

t1 is discarded, then t1 belongs to the tatsu-breaking set. Otherwise, t1 belongs to the non-

tatsu-breaking set. For example, there are five blocks in ht = 445w1267t1144s. If 1t is dis-
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carded, then the afterstate 445w267t1144s has four blocks since the maximum c satisfying 

Eq. (1) is four. If 4w is discarded, the afterstate 45w1267t1144s has five blocks. Hence, 1t 

is in the tatsu-breaking set and 4w is in the non-tatsu-breaking set. In ht, the eight tiles 

1267t1144s are in the tatsu-breaking set, and the three tiles 445w are in the non-tatsu-

breaking set.  

Second, we consider the effect of breaking a tatsu by consecutively discarding two 

tiles, t1 and t2 in ht. We calculate the win rate for each afterstate using FlatMCMJ described 

in Section 3.3, and obtain the following data.  

• The discarded tile t1tb with the best win rate wr1tb in the tatsu-breaking set 

• The set of discarded tiles {t1tb}  ht − t1tb with good win rates wr2tb after t1tb is discarded 

• The set of discarded tiles {t1ntb} with good win rates wr1ntb in the non-tatsu-breaking set 

• The discarded tile t2ntb with the best win rate wr2ntb, where t2ntb  ht − t for each tile t  

{t1ntb} that is discarded 

Given an action, the mean value m and the standard deviation  are calculated after 

lots of simulations. The confidence interval of the action is between the lower bound m − 

rd   and the upper bound m + rd  , where rd is a constant ratio. A good win rate wr2tb 

means that the confidence interval of wr2tb overlaps with that of the best win rate among 

the tiles in {t2tb}. That is, the upper bound of three standard deviations 3 of wr2tb is equal 

to or greater than the lower bound of 3 of the best in wr2tb assuming rd = 3. A good win 

rate wr1ntb is defined similarly.  

Based on the above data, we propose two rule-based heuristics to decide which tile is 

eventually discarded and give examples below.  

(A) Heuristic 1 (H1): Choose the tile t1 whose next discarded tile achieves the best win 

rate. 

The idea is to break the tatsu in this round if the player is forced to break a tatsu in 

the next round. First, we discard two tiles at once for all combinations of two tiles in ht. 

Then, we analyze the win rates of afterstates by FlatMCMJ. Among all possible tile t2, we 

choose the one whose next discarded tile t2 achieves the best win rate. If t1 is in the tatsu-

breaking set, the tatsu is broken.  

For example, in Table 1, given the hand ht = 445w1267t1144s, the best win rate is 

16.7% obtained by discarding 1t and then 2t. Hence, the tile to be discarded in this round 

is 1t and the tatsu 12t is broken. In contrast, FlatMCMJ discards 4w since it only considers 

discarding one tile. However, if the player picks a useful tile such as 3w, 6w, 5t, 8t, 1s and 

4s, the player must break a tatsu and lead to a lower win rate, which cannot be detected by 

FlatMCMJ. By applying H1, this situation is considered by discarding two tiles, and the 

tatsu can be broken.  

 

Table 1. The decision made by H1. The hand is 445w1267t1144s. 

 Discard the 1st tile Discard the 2nd tile 

Tatsu-breaking 
t1tb = 1t 

wr1tb = 18.7% 

t2tb = 2t 

wr2tb = 16.7% 

Non-tatsu-breaking 
t1ntb = 4w 

wr1ntb = 21.2% 

t2ntb = 1t 

wr2ntb = 13.4% 
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(B) Heuristic 2 (H2): Choose the good tile t1 that appears both in the non-tatsu-breaking 

set in this round and in the tatsu-breaking set in the next round.  

Although H1 can break a tatsu, it would be too aggressive sometimes because it is 

possible to pick or steal a good tile before discarding t2. Take the hand ht = 145w1267t 

1144s as an example. Obviously, a tatsu like 12t usually has a better chance of forming a 

meld than a single tile like 1w. However, H1 only considers the win rate after discarding 

t2. After discarding the single tile 1w, the hand becomes 45w1267t1144s, and all discarding 

actions will break a tatsu in the next round. That is, no matter which tile is discarded in the 

first round, a tatsu is forced to be broken after two rounds in this case. So, the hands after 

two rounds are similar, and their sampled win rates are close by FlatMCMJ. In Table 2, 

H1 chooses to discard 1t since its wr2tb = 14.0% is slightly better than 13.5%. Therefore, H1 

cannot distinguish which one is better between discarding a single tile and breaking a tatsu.  

The idea of H2 is to discard the tile which is less likely to form to a meld before 

breaking the tatsu. After discarding the tile 1t in the tatsu 12t in this round in the tatsu-

breaking set, discarding 1w or 2t in the next round may get close win rates. Thus, {t2tb} 

includes 1w. On the other hand, 1w is less likely to form a meld. Discarding 1w often gets 

a high win rate by FlatMCMJ and thus {t1ntb} includes 1w. Hence, H2 chooses the single 

tile 1w in {t1ntb}{t2tb} rather than breaks the tatsu 12t.  

 

Table 2. The decision made by H2. The hand is 145w1267t1144s. 

 Discard the 1st tile Discard the 2nd tile 

Tatsu-breaking 
t1tb = 1t 

wr1tb = 15.1% 

t2tb = 1w 

wr2tb = 14.0% 

Non-tatsu-breaking 
t1ntb = 1w 

wr1ntb = 21.3% 

t2ntb = 1t 

wr2ntb = 13.5% 

 

(C) The Combination of FlatMCMJ and Heuristics 

The property of FlatMCMJ is that it tends to reserve as many blocks as possible. H1 

makes the decision according to the win rates after two tiles are discarded consecutively. 

H2 discards the tile which is hard to form a meld prior to breaking a tatsu. In this subsection, 

we design three versions of FlatMCMJ to mix these properties as follows.  

 

• FlatMCMJoriginal: Choose t1tb if wr1tb  wr1ntb, and choose a tile by FlatMCMJ otherwise. 

It indicates that when breaking a tatsu is judged to be good in this round, we do not 

consider the next round. This version is the same as the original FlatMCMJ.  

• FlatMCMJH1: Choose t1tb if wr1tb  wr1ntb, and choose a tile by H1 otherwise. This version 

deals with the problem that FlatMCMJoriginal tends to reserve excessive blocks.  

• FlatMCMJH2+H1: Choose t1tb if wr1tb  wr1ntb, and choose a tile by H2 otherwise. If no tile 

is chosen by H2, namely {t1ntb}{t2tb} = , choose a tile by H1. This version suppresses 

the tendency of FlatMCMJH1 towards aggressively breaking a tatsu. 

5. EXPERIMENTS 

The experiments are done on a desktop computer with an AMD Ryzen 5 2600 6-core 

processor. Taiwanese rules are adopted. There are two teams, each of which includes the 
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two players sitting on the opposite side and uses the same version of the program. A match 

includes 384 games according to the Computer Olympiad tournament [20].4 The team that 

wins more games is the winner of the match. To avoid the influence of luck, each wall is 

used in two games, so both teams can play the same hand once.  

We compare the two models of FlatMCMJ in Section 5.1. We experiment with pro-

gressive pruning to accelerate the computation in Section 5.2. Different numbers of simu-

lations are compared in Section 5.3 The discard-twice method is discussed in Section 5.4. 

Finally, the best version is compared with the baseline in Section 5.5.  

5.1 Comparison of SP and FP Models of FlatMCMJ 

We compare the performance of the single-player model (SP) and the four-player 

model (FP) of FlatMCMJ proposed in Section 3. In Table 3, FP outperforms SP reaching 

a win rate of 62.1%. The reason is that SP ignores all steals during simulations. The results 

also show that the steal action is important in Mahjong. We use FlatMCMJ(FP) for the 

following experiments.  

 

Table 3. Comparison of the single- and four-player models. A total of 781 matches and 

win rates with 95% confidence.  

team # of win matches win rate 

FlatMCMJ(SP)  228 37.9% (±0.67%) 

FlatMCMJ(FP)  374 62.1% (±0.67%) 

5.2 The Results of Using Progressive Pruning 

Progressive pruning (PP) [1, 2, 4, 13] adopts the confidence interval to prune inferior 

actions/moves during search, and thus facilitates finding out the best action. The process 

to find the best action includes many iterations. In each iteration, we compute the confi-

dence interval of each action by simulations. Inferior actions are pruned (see below), and 

if exactly one action is left, the process ends and returns the action immediately. Since the 

total number of simulations is fixed in the whole process, superior actions will obtain more 

simulations in the next iteration after inferior actions are pruned.  

The confidence interval of an action is (m − rd  , m + rd  ), where m,  and rd are 

the mean value, the standard deviation and a constant ratio, respectively, after lots of sim-

ulations. Assume that a node has two actions a and b. The mean and standard deviation of 

a are ma and a respectively, and those of b are mb and b respectively. The action a is 

inferior to b if m + rd  a < mb − rd  , which indicates the upper bound of a is less than 

the lower bound of b. Hence, the action a is pruned.  

This subsection analyzes the effectiveness of progressive pruning in Mahjong. First, 

we analyze the pruning rate  affected by the constant ratio rd and the number of simula-

tions n of each action. When rd is set to a smaller value or when  decreases, the confidence 

interval becomes smaller, filtering out more actions. In Fig. 4, rd = 2 filters out more actions 

than rd = 3. The two lines of rd are close (less than 5%) when n  9000. When n increases, 

 decreases and thus  increases. In Fig. 4,  reaches 79.8% for rd = 2 and 75.0% for rd = 

3 when n = 10000.  

 
4 In the Mahjong tournament of the Computer Olympiad, a match includes 384 games; however, 192 games 

before 2014. 
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Fig. 4. The pruning rate  under different n and rd.  

 

Second, we investigate the percentage e of the best actions that are filtered out. As-

sume that the best action is obtained by making 15,000,000 simulations for each action of 

a hand. As shown in Fig. 5, e < 0.2% when n > 300 for rd = 2, and e  0 for rd = 3. Almost 

all of the best actions are reserved by progressive pruning. We adopt rd = 3 in the following 

experiments.  

 

 
Fig. 5. The percentage e of the best actions filtered out. 

 

Third, we compare the effectiveness of using and not using progressive pruning, de-

noted by FlatMCMJ(FP) and FlatMCMJ(FP)+PP respectively. In the experiments, the total 

number of simulations is 10000 for each hand. In FlatMCMJ(FP)+PP, let each action sim-

ulates 300 times in the first iteration and 100 times in the following iterations. Table 4 

shows that FlatMCMJ(FP)+PP performs slightly better than FlatMCMJ(FP). Since some 

poor actions are pruned, the saved simulations are applied to good actions.  

 

Table 4. Comparison of using and not using pruning. 

team # of win matches win rate 

FlatMCMJ(FP) 1162 49.7% (1.70%) 

FlatMCMJ(FP)+PP 1177 50.3% (1.70%) 

5.3 Comparison using Different Numbers of Simulations 

We compare different numbers of simulations for each hand. Table 5 shows the win 

rates of FlatMCMJ(FP)+PP using 20000, 40000, 80000 and 200000 simulations against 

that using 10000 simulations. The results show that more simulations we use, better per- 
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formance we have. In the following experiments, we adopt 200000 simulations which 

achieve the best win rate of 53.5%.  

 

Table 5. Comparison between different numbers of simulations (against 10000 simu-

lations). 

# of simulations # of matches # of win matches win rate 

 20,000 8558 4415 51.5% (0.89%) 

 40,000 2435 1275 52.3% (1.67%) 

 80,000 1604  849 52.9% (2.05%) 

200,000 1188  635 53.5% (2.38%) 

 

5.4 The Results of the Discard-twice Method 

The discard-twice method includes two heuristics, H1 and H2, as mentioned in Sec-

tion 4. We compare the performance of the three versions, FlatMCMJoriginal, FlatMCMJH1 

and FlatMCMJH2+H1, which does not use any heuristics, only uses H1, and uses both H1 

and H2, respectively. In this experiment, the four-player model (FP) and progressive prun-

ing (PP) are used in all versions.  

In Table 6 (a), FlatMCMJ(FP)H1+PP weakens the strength. In practice, H1 makes the 

program tend to break a tatsu even when a single tile exists in a hand. H2 makes up this 

disadvantage. Hence, FlatMCMJ(FP)H2+H1+PP is the best, reaching a win rate of 59.5%, as 

shown in Table 6 (b).  

 

Table 6. Comparison of the two heuristics of the discard-twice method.  

(a) The version using no heuristics vs. the version using H1. 

team # of win matches win rate 

FlatMCMJ(FP)original +PP 150 53.8% (4.91%) 

FlatMCMJ(FP)H1 +PP 129 46.2% (4.91%) 

(b) The version using no heuristics vs. the version using both H1 and H2. 

team # of win matches win rate 

FlatMCMJ(FP)original +PP 133 40.5% (4.46%) 

FlatMCMJ(FP)H2+H1 +PP 195 59.5% (4.46%) 

 

While performing the best, the heuristic H2+H1 incurs little overhead. We use 10000 

hands that have excessive blocks as testing data. Each hand is given 200000 simulations 

in total. Note that PP is not used to make sure all simulations are executed. Table 7 lists 

the execution time for the three versions, FlatMCMJ(FP)original, FlatMCMJ(FP)H1 and Flat-

MCMJ(FP)H2+H1. The results show that the three versions consume nearly the same com-

putation cost and that the overhead of heuristics H1 and H2+H1 is very small, about 4%.  

 

Table 7. Computation time for different heuristics with 200000 simulations. 

 FlatMCMJ(FP)original FlatMCMJ(FP)H1 FlatMCMJ(FP)H2+H1 

Execution time (sec.) 5.015 (0.0163) 5.214 (0.0170) 5.215 (0.0170) 
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5.5 Comparison with the Baseline 

The final version, FlatMCMJ(FP)H2+H1+PP, adopts the four-player model, progressive 

pruning and the discard-twice method. We compare its performance with that of the base-

line version, FlatMCMJ(SP). Both versions simulate 200000 times. As shown in Table 8, 

the final version outperforms the baseline, reaching a win rate of 66.2%.  

 

Table 8. Comparison of the final version and the baseline. 

team # of win matches win rate 

FlatMCMJ(SP) 214 33.8% (3.10%) 

FlatMCMJ(FP)H2+H1 + PP 419 66.2% (3.10%) 

6. CONCLUSIONS 

This paper describes the design of our Monte-Carlo-based Mahjong program, SIMCAT. 

We propose the single-player and four-player models for Mahjong that are used in the 

simulation stage in flat Monte Carlo. Moreover, we design the discard-twice method that 

includes two rule-based heuristics.  

In the experiments, the version that uses flat Monte Carlo with the four-player model, 

progressive pruning and the discard-twice method outperforms the baseline that uses the 

single-player model, reaching a win rate of 66.2%. SIMCAT used the above methods and 

won the championship in the Mahjong tournaments in Computer Olympiad 2020 and 

TAAI 2019/2020.  

Our work provides the basis for Mahjong programs. Several possible future works 

can be developed based on our work. First, the discard-twice can be extended to discard N 

(N  3). However, in the case of a given fixed number of simulations for each hand, the 

average simulation count for each discard-N action decreases significantly, resulting in 

inaccurate win rates for discard-N actions. Second, our model can be applied to other Mah-

jong rules, such as American rules and Hong Kong rules. Third, based on flatMC, the 

search may choose Monte Carlo Tree Search for further investigation. Fourth, our methods 

may be merged with deep reinforcement learning, such as AlphaZero [7].  
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